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Flutter is an in-flight vibration of flexible striieres caused by energy in the airstream
absorbed by the lifting surface. This aeroelaptienomenon is a problem of considerable
interest in the aeronautic industry, because fluttea potentially destructive instability
resulting from an interaction between aerodynamii@rtial, and elastic forces. To
overcome this effect, it is possible to use passivactive methodologies, but passive
control adds mass to the structure and it is, thenes undesirable. Thus, in this paper, the
goal is to use linear matrix inequalities (LMIs)chmiques to design an active state-
feedback control to suppress flutter. Due to unmesdse aerodynamic-lag states, one
needs to use a dynamic observer. So, LMIs also agpéed to design a state-estimator.
The simulated model consists of a classical flatteplin a two-dimensional flow. Two
regulators were designed, the first one is a ndousi design for parametric variation and
the second one is a robust control design, botligdes by using LMIs. The parametric
uncertainties are modeled through polytopic undetias. The paper concludes with
numerical simulations for each controller. The opj@op and closed-loop responses are
also compared and the results show the flutter seggion. The perfomance for both
controllers are compared and discussed.

Keywords: Flutter, active control, LMI, polytopic uncertdias, robustness

Introduction

Flutter occurs when the fluid surrounding a struetieeds back
dynamic energy into the structure instead of abegrh. Typically
a structure will be stable up to a limiting velgcifthe flutter
velocity) for given conditions. Flutter is more dily to occur in
wings, ailerons and other flexible parts of airtsafith considerable
aerodynamic loads. This aeroelastic phenomenon canse
increasing wing fatigue and limit aircraft fligheblocities. So, it is
necessary in the aeronautic industry to reduceo ®uppress this
effect, (Bisplinghoff et al., 1996).

In the last decades, this problem has been studyednany
authors using different techniques. De Marqui Jrakt (2001)
conducted a complete historical review of flute&rpwing the main
methodologies and developments to suppress flinttaircraft. In
general, one can use either passive or active icpobs

Passive flutter supression techniques add weiglch&mge the
local or global stiffening and require redesignn@onents can also
be moved to perform a mass balancing, but this odetlogy may
be not feasible in some situations. Another stsatisgto operate
below the flutter velocity, but this procedure reds flight
perfomance.

On the other hand, active flutter suppression obngystem
suppresses flutter without redesign and adding nfdesidea is old
and it was first tested in 1973 on a B-52-E aiitcthit achieved
flight velocity above the specified limit, besidesme problems
with model accuracy and robustness, (Garrick, 1976)

Nowadays, there are many control techniques thatbeaused
for active flutter control. For instance, Olds (¥9%sed a flat plate
in a 2-D flow and numerically simulated the uncotied model

Bail (1997), considering the same model of Olds9{)9 used
state estimators for compensate the lack of inftona He
investigated and compared two control methods bygus dynamic
observer, namely the LQG control and €bntrol, solved by Ricatti
equations. Bail (1997) considered the disturbaegestion problem
assuming the external disturbance modeled by a wimt in a
control-flap. Norlander et al. (2000) also used@en_QG control
techniques to evaluate a model on a wind-tunnél téaley and
Soloway (1996) have made an experimental investigain a
transonic wind-tunnel to demonstrate the use of dbeeralized
predictive control for flutter suppression of a saic airfoil.

Non-conventional techniques can also be used tgresp
flutter. Belo et al. (2001) described an invesimaton the
application of fuzzy logic by using the method ofaidani to
establish control laws for flutter suppression. ytsémulated an
aerolastic structure (NACA 0012 type rigid rectaiagwing) with
two-dimensional and non-linear aerodynamic behavitowever,
non-conventional techniques, in special those basddzzy logic
and neural networks, are not well defined in temhspassivity,
robustness and stability. Many papers employ narveational
technigues, but many omit stability and robustn@s®fs. Several
researchers have studied these topics and manmagedve stability
and robustness characteristics in this kind of roflet. The
development in this area is recent, (Lewis, 1999).

One of the most recent developments in active obnises
convex optimization algorithms to solve problemssatibed by
linear matrix inequalities (LMI) requirements, (Gh@& and
Niculescu, 2000). There are many toolbox codes ialhec
developed to solve this kind of problem, for exaephMI Toolbox
Matlabd, (Gahinet et al., 1995) and LMIS®] with free code,
(Oliveira et al., 1997). Once formulated in termsam LMI, a

using Matlald]. Linear Quadratic Regulator (LQR) theory was usegroblem can be solved efficiently through these oslgms,

to design a state-feedback controller to maintaabikty of the

closed loop system at the flutter velocity. Despived perfomance,
the results are unrealistic because LQR controdiguires all states
to be known at all times in order to use state liaek. In real

applications, it is not reasonable to expect thiastates used are
available.
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(Gahinet et al., 1995).

The LMI approaches contributed to overcome manfjcdities
in control design. In the last decade, LMI techeidpas been used to
solve many problems that were
methodologies, (Boyd et al. 1994). The major adsgatof LMI
design is to enable specifications such as stahijuirements,
decay rate, input force limitation in the actuatarsl output peak
bounder, (Silva et al., 2004). LMI also permits turnsideration of
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model parameter uncertainties. It is a very uskfal for problems V = velocity

with constraints, where the parameters vary ovenge of values. V; = flutter velocity
Thus, the main aim of this article is to presentethodology for X = state vector

active flutter suppression with robustness to patdm y = output vector

uncertainties, based on LMI techniques. Harman laind (2002) Greek Symbols

demonstrated that it is necessary to consider tobss in flight

control design. They have shown some typical resisanlarge a = pitch angle

envelope flight operation requires the controllerbe robust (in B=flap angle

combination with gain scheduling techniques); fiy~bire control o= air density

tends to provide poor handling quality; aircrafiliag (e.g. rapid # = controller decay rate

maneuver) requires robustness when the aerodyramtool is lost; y = observer decay rate.

and in hypersonic flight, high speed requires $tghiobustness as o= maximum value of input control amplitude
well. Harman and Liu discussed some popular coméaiiniques in Q= convex space

robust flight control applications and one of thésehe possible
application of LMI techniques (classified by the tlars as A Two-Dimensional Aerodastic Airfoil Model
postmodern contrdl

The present paper considers a linear system witkitqmic A typical airfoil is viewed as a flat plate suspeddrom a fixed
uncertainty in some parameters of the system. ©hea procedure point by a spring. The basic model is illustratadfig. 1, (York,
using LMI with polytopic uncertainty was first proped by 1980).
Geromel et al. (1991). The same model simulatedBay (1997)

and Olds (1997) is used. The paper is devoted tiveaflutter- y

supression by using LMI frameworks, so, the aeradyic model is ///////J//////////////////
X

not discussed in detail. Two regulators were dexigithe first one
is a non-robust design for parametric variation tiredsecond one is
a robust control design. The numerical applicattmmpares the
open-loop and closed-loop responses of each ctartrdhe results
show the flutter suppression obtained with the gmmesnethodology.
The perfomance of both controllers are compared disdussed.
Finally, conclusions are presented together wittmesofuture
research directions for active flutter suppressipn using LMI
frameworks.

Nomenclature

A = dynamic matrix ‘
Aqi = aer.Odynamlc‘lag states (i = 1,...,4) Figure 1. The 2-D cross-section of a typical airfoi .

b = semichord

B = input matrix

¢ = distance of control flap from shear center The motion of the airfoil is described by three épdndent

C = output matrix coordinates (degree of freedom): the pluhgéhe pitcha, and the
h = position with respect to plunge flap angleB. To provide the correct forces in order that thess-
I = moment of inertia of pitch angle section behaves like a part of the attached wing, @n use linear

and torsional springs. The linear spring provideestoring force
for the plunge of the airfoil, and it is assumedhiave constant
stiffnessKy,. Likewise, the torsional spring has constant retisK ,
and the flap spring has constant stiffn&ss The control flap is
located at the trailing edge. The goal is to desigrontroller that
produces an additional flap hing torqiig,used to control the flap.
K. = observer gain matrix T.he airfoil ig §upjected to three gerqdynamic !pa'dm lift L is

| = distance to trailing-edge flap center of grpdibm c _c0n5|dered positive in the upward direction. Thehphg mom(_enl\(l

L = lift is assumed to be centered about the one-quartet ofthe airfoil.
The flap torqueT is applied to the flap hinge. A state space mel
implemented that can be used for control designwibigs second
law and Euler equation ca be used to obtain tHeviolg equations

Ig = moment of inertia of flap angle
K = stiffness matrix

Kq = stiffness of pitch spring

Kp = stiffness of flap spring

Ky, = stiffness of plunge

K. = controller gain matrix

L, = lift per unit span on main section
L, = lift per unit span on trailing-edge control aagé
m = mass of airfoil

m, = mass of main body of motion.

m, = mass of trailing-edge control surface ) ,

M = moment of external forces F,=ma and > M, =l (1)

M = pitching moment on main section im1 i=1

M, = pitching moment on trailing-edge flap

M, = mass matrix whereF is force,m is massj is the number of rigid bodies, is

S = static moment accelerationM is momentum of external forcdsis the moment of
S, = static moment of pitch angle inertia, and w is the angular acceleration. The subscript c.m.
Sp = static moment of flap angle specifies that the variable is described in thetazenf mass. The

T = torque of flap spring free body diagram is shown in fig. 2, (Olds, 1997).

u = input control
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Equations (1) are applied to the main body (bodwrig to the
trailing edge control surface (body 2). Small asgleand S are
assumed, so the equations of motion can be liresarébout the
trivial equilibrium point. Equations (2-5) show shilynamic model,
(consideringTs=0):

K,h-q, +L, +mh+mbxd =0 @

IGlii+M1+Kaa—K/,,B—Khhbx_—Ll(db-%+bxi) -
—qy(cb-bx1)=0

q, +L, + mh+mped +md + 2)= 0 @)

~(a, + L) + KB+ M, + (i + F)=0 (5)

_ q
| Oy + L2
\ T+ KB
: body 1 ‘ qy % G2
db ; cb | T+ KB+ M,

body 2

Figure 2. Free body diagram of the main body and tr
surface.

ailing edge control

Equations (2) and (3) are obtained from the maialykend eqgs.
(4) e (5) from the trailing edge control surfaceerélq, is the
vertical flap hinge forcegy is the horizontal flap hinge forckis the
distance from the trailing edge flap to center vty fromc, m is
the mass of body 1m, is the mass of body 2x, is the
nondimensionalized distance of the main sectiortecenf gravity,
lg1 is the moment of inertia per unit length of thiatsection)g, is
the moment of inertia per unit span of trailing edigp about point
G,, b is a normalizing constant, ardis the nondimensionalized
distance to the flap hinge line.

After some mathematical manipulation, eqs. (2)3p ¢an be
combined in a second order system given by, (Ql@87):

:
bm S, s, 1w
bS, 1,  I,+Scbll d

bS, 1,+Sbc I, B

(6)
bK, O O % -L
+ 0 K, Ofa;= -M
0 0 K[| p| |-(r+1)

wheres, is the static moment of the airfoil per unit lemgs; is the
static moment of the control flap, is the moment of inertia for the

airfoil, and Iz is the moment of inertia for the control flap. The

torqueTs is an additional flap hinge torque used to continel flap.
The uncontrolled system is defined By 0. Equation. (6) can be
written in the form:
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-L
MYE)+KY({)={ -M (7)
-(r+T1,)
where:
bm S, Ss
M, =| bS, I, 15 +Sgbc (8)
bS; 1;+Sbc I 5
and
bK, 0 O
K=l 0 K, O 9)
0 0 Kg

whereM, is the mass matrix arlis the stiffness matrix.

Following York (1980), equation (7) can be transfed to
frequency domain and the motion of the airfoil isscribed by
harmonic oscillations. Linearized equations and teady
aerodynamic theory are considered. These consioiesatare
applied to derive the motion equations, which gikie pressure
distribution over the wing and the aerodynamic oesgs of the
oscillating hinges for any position of the hingetwrespect to the
leading edge. The linearization allows the totalodgnamic loads
to be found by superposition of the forces and mumassociated
with each degree of freedom. Once the basic sydiam been
derived, the inverse Fourier transform is useddostruct a state
space model. For more details about this topicYse& (1980) and
Olds (1997). For the present paper is consideredsthte space
model of the form, (Bail, 1997):

x(t) = 4x(t)+ Bu(t)

y(t)=cxt)

whereA is the dynamic matrixB is the input control matrixC is
the output matrixy(t) is the output vecton(t) is the input control
(applied torque to the flap), amxt) is the state vector that is given
by:

(10)

=50 Y0 xF . v0O={" o) s}
X, () ={Ault) 402(t) 4ut) 4a0t)T
where x4(t) are called aerodynamic-lag states, and it is used

describe the "states" of the fluid and to represkataerodynamic
load on the airfoil. The dynamic matuxis 10 x 10; it has the form:

11)

All A12 A13
A = AZl AZZ A23 (12)
A31 A3Z A33
whereA; are derived in Olds (1997) and are given by:
A= —(M 2t 71'pszl)_l7tpsz2 (13)
A, = (M, +2p0?z,)*(K +zpb?z,) (14)
A, =M, +7pb?z, ) 2oz, (15)
ABCM
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AZl = I3><3’ A22 = O3><3’ A23 = O3><4 (16)
PF@&%ﬁF& ﬂ
R R RJ,+[0 R R
= 17
AR R Rl+D R R )
[R R RJ,+[0 R Ry
{a R, R%%
R R R4,
18
AR R R4, (18)
[R R R4,
—AV 0 0 0
A= 0 ‘ﬂz\% 0 0
37 N\
0 0 By 4 0
0 0 o A (19)
[R R R4,
LR R ORl4,
[R R R4,
[R R R,

where p is the air densityz; (i = 1,...,4 andR(i = 1,...,10) are
constants,3 (i = 1,2) are coefficients in exponent in two-term
approximation to the Wagner function, avids the velocity of the
airfoil.

TheR/’'s constants are given in table 1,

Table 1. Ri's constants.

b2 b?
= =—@
R Vv R v e
b? b?
= — =—Q
R v R v e
b? b®
= =— Qo
R 27N R VA
=V Vb
RAV =7¢3
=20 _\Vb
RIO__2¢1¢8

TheZ's constants are given by, (Olds, 1997):

b L b,
, 2, 2
b 3b b
2 5§ wmn (20)
b? b? b?
2w e
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2v 3V ~(o,+a,)
Z,=| 0 Vb Vzbcpe (21)
Vb Vb( @, Vb
7 8 7(79+¢8) ?(¢l+¢2¢8)
2 2
0 2V 2V @,
b b
V2
Z,=|0 0 —®, (22)
T
Vv? Vv?
0 7®8 _2(4510 + 451@8)
-Na, -Na, 0 0
b b
z,=| 0 0 0 0 (23)
0 0 -Va, -Va,
b b

where @( V t/b) are Wagner functions (aerodynamic constants) that

are derived in Olds (1997).
Now the input matridB is given by:

(24)

O O O O o o o

In this study, the measurements of plunge, pitel,flap angle,
and the respectives velocities are assumed to bsurable. So, the
output matrixC is given by:

C:[Iexe 06x4] (25)

Since a complete derivation of the model is novigred, once
the aerodynamic-lag states are unmeasured, one comstruct
estimators for these states from the states tlatm@asurable. The

next section shows how to assure stability to ddsep using LMI
technigues to design a controller and a dynamiervies.

Observer-Based State-Feedback Control Solved by LMI

Rewriting eq. (10) and considering that the dynamatrix has
a parametric variation, so:

x(t) = Alt)x(t) + Bul(t),

ylt)=c xt)

At)oo (26)

where @ is a polytope that is described by a list of westein a
convex space. The dynamic matrix is described Bytquic linear
differential inclusion (LDI):

January-March 2006, Vol. XXVIII, No. 1/ 87



At)oe, @=cdA .A..A) (27)
wherev is the number of vertexes of the polytopic systdie
number of vertexes is givem 8, wherep is the number of
uncertainty parameters. The opera@armeans that the matricés,
Ag,
domain can have many different shapes, and Cogelgcdenotes
the convex hull.

The problem to be investigated is state-feedbackral with
the following linear control law:

u(t) = ch(t) (28)
whereK, must be found. The system described by eq. (26)bea
rewritten in closed-loop form:

x(t)=(Alt)+ Bk,) x(t), Alt)De (29)
The system described by eq. (29) is quadraticadlble if and
only if there exists a symmetric mat®=Q" > 0 such that:

Q(A +BK, )" +(A +BK;)Q<0 (30)

.., A, define a polyhedral convex bounded domain. A crnve

Samuel da Silva and V. Lopes Junior

x0)0e=0t>0, and x(t)Oe (35)
wherex(0), the initial state, is given.
The upper bound of the control input can be written
— -1 1 —
mexul)]=max Y@ smax|ran@=

=Amol QYA

where Anax is the maximum eigenvalue of the following matrix
(Q»lIZYTYQ1I2)1/2

Therefore, the constrainfa(t) || <o is enforced at all times>0
if the LMIs below hold:

o e [$ G

whereg is the maximum value of input control amplitude.

The state-feedback gain matrixks = YQ?!, whereY andQ are
solutions from LMIP (33) and (37). This problem chea solved
using interior-point methods, (Gahinet et al., 190%®r each initial
condition, the inputi assure:

@7

where the symbolsO and<0 means positive and negative definite,

respectively A is ith vertex of the polytopic systens1,2,..v is the
number of vertexes of the polytope.
Inequality (30) is not convex, because the condlitis not

Ot20, |ult)]<oe™ (38)

Since the aerodynamic-lag states are not measuieéssential

jointly convex inK; andQ. This constraint can be overcome by a&o design a dynamic observer. In this work, it @nsidered the

simple trasformation of variables. We can obtairequivalent LMI,
defining Y=K.Q:

QA" +AQ+BY+Y'BT <0, i=12v (31)

design of a deterministic observer to estimateattredynamic states
that are not available. So, the input control is:

ut)= K x(t) (39)

which is an LMI inQ andY. This LMI problem (LMIP) consists of where %(t) is the estimated state vector. One can write itreat

finding Q > 0 andY such that LMI (31) is feasible, or to determine

if the LMl is infeasible, (Boyd et al., 1994). Wartsolve this LMIP
by using interior-point methods, (Gahinet et #943).

We can also impose a decay rate (or the largespuna
exponent) to this problem. The decay rate is defirgis the largegt
such that:

lim e || x(t)]|=0

t—oo

(32

holds for all trajectories of(t).

We can use the quadratic Lyapunov functiV[;ﬁp(x)=xTQ'1x,
to establish a lower bound to the decay rate of dhstem. If
dViyadX)/dt < -2LN o (X) for all trajectories, theW, ., (X(1)) < Viyap
(x(0))e*" and therefore the decay ratef the system is at leagt
These conditions are equivalent to the followinglEM

QA" +AQ+BY+Y'BT +2,Q<0, i=12-v  (33)

When the initial condition is known, it is also pis#e to find an
upper bound on the norm of the control input, €8).(GivenQ>0
and Y, which satisfy the quadratic stabilization coratiti the
inequalities (33) are limited in the ellipsoid givey, (Folcher and
Ghaoui, 1994):

(34)

e:{xDD” xTQ‘lxsl}

The ellipsoid is said to be invariant if:
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equation of the robust observer in the form, (Séval., 2004):

X(t) = Ax(t) + Bult) + K. (Cx(t)- y{t)) (40)
whereK, is the observer gain matrix, which can be obtaibgd
different techniques. In the present work we haseduLMI to
obtain the observer gain matrix. It is possiblefitml an observer
gain through the solution of the following LMI, (Bo et al., 1994):
ATP+PA+WC+C™WT +2yP <0 (41)
where y is the decay rate of the observer, wit»> > y , and
P=P">0 a symmetric matrix.To everyP and W satisfying these
LMI, there corresponds a stabilizing dynamic observThe
observer gain is given B, = P"XW, whereP andW are solutions to
the LMI problem, as given by inequality (41).
The closed-loop system is given by:

BK

{28} - {- QC A+ KeCi BKCHQES}

Open-Loop Simulations

(42)

To verify the proposed methodology, the resultsiofulations
of an open-loop system for diferentes flow velesitare presented.
We consider the following velocitiag = 290 m/sV = 298 m/s and
V = 305m/s. The velocityy = 298 m/s is the flutter velocity\). It
represents the velocity for which the open-looptesys becomes

ABCM
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marginally stable. So, fof < V; the system is asymptotically stable C|osed-L oop Simulations

and forV > V; the system is unstable. In this case, the awfoilld

become unstable and wing separation would occis.adtdangerous This section is devoted to the controller design tfee flow

situation in a real system.
Figures 3, 4 and 5 show the aerolastic time respémseach regulator based on the solution of inequalities) @& (37) for the

flow velocity without considering uncertainty inyaparameter. The controller and inequalities (41) for the observidre valueg/ =1, y

list of constants are given in table 2. We congderfor these = 3 and o =250 were chosen in order to represent practical values

velocity V = 305m/s (unstable case). The goal is to design an LMI

numerical applications, the following initial cotidn vector: for constrains.
x10"~
0.0157 5
-0.01 E
20
0.005 5
-0.003 5 . ‘ ‘ ‘ . ‘ ‘ ‘ .
0 0001 (3(10_3 0.5 1 15 2 25 3 35 4 45 5
x(0)=1 (43) ST
0.0001 =
0 so
0 2
O >50 3 0.5 1 15 2 25 3 35 4 45 5
2><10 ‘
0 =)
§ oy
Table 2. List of Constants %
Parameterf Value (International Systen) 2 o5 1 15 2 25 3 35 4 a5 s
ay 0.0165 time (s)
O 0.335 Figure 4. Aeroelastic time response to initial cond ition in open-loop,
b 0.914[m] considering V =V ;=298 m/s, (marginally stable system).
L 0.41
B 0.32 5000
c 1.0 z
I, 2.69ellkg.m] e o0 thvAvAvnvAunvn N
I 6.73e-1kg.m] E}
m 1.287e2kg/m] -5000 : : : : : : : ‘ :
0 05 1 15 2 25 3 35 4 45 5
Kn m*50” [N/m] 5000
K, 1 ,10C [N/m] ~
Ks 1,500 [N/m] g, W\AW
0 1225[kg/m’| g
Sy 2.35ellkg] 5000505 1 15 2 25 s 35 4 45 5
1470[k ’ ’
S [kl 1000
5><10“ g
— § 0 vnvnvl\vn
& 3
20 MUAVAVAVAV..' &
= 1000 . . . . . , . . .
2 0 05 1 15 2 25 3 35 4 45 5
time (s)
5 \ \ \ \ \ \ . \ .
?(10'3 08 ! 15 2 25 8 35 4 45 5 Figure 5. Aeroelastic time response to initial cond ition in open-loop,
5 considering V =305 m/s >V ¢, (unstable system, V>V ).
I 7YV _ o -
< vav" First the regulator is designed non-robust for wageties. The
s non-robust state-feedback gain matrix is obtaingdsdlving the
o R 05 1 15 2 25 & 35 4 a5 5 following LMIP:
1><10
- Q>0
g 7 T pT
EX u"v"v‘v‘ QA +AQ+BY+Y'B' +2uQ<0
[
& 1 xo)
= e 050 (44)
o o5 1 15 2 25 3 35 4 45 5 X(O) Q
time (s)
Q Y
Figure 3. Aeroelastic time response to initial cond ition in open-loop, 2 >0
considering V = 290 m/s < Vf, (stable system, V<V f). Y o°l
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The gain matrix.=YQ™ is reached by solving inequalities (44).

The non-robust observer gain matrix is obtainedisP W, where
P andW are solutions to LMIP given by:
P>0, AP+PA+WC+C'W™+2yP<0 (45)
Figure 6 shows the closed-loop response for thislition. The
controller reached the requirements and the clésaa-simulation
obtained is stable. The input control for this retotegulator, an

additional flap hing torquel, is computed by using eq. (39), figure

7.

x10~
5 T T T
E
g’ 0 vAv“v"vAv‘v A
c
2
o
5 . . . . . . . . .
0 05 1 15 2 25 3 35 4 45 5
x10
5 T T
=)
£ 0f MANAA
= WWWW
L
a
5 I I I I I I I I I
0 a 0.5 1 15 2 25 3 35 4 45 5
x10
1
=)
g
8’3 0 AN
<
o
]
1 . . . . . . . . .
0 0.5 1 15 2 25 3 35 4 45 5

time (s)

Figure 6. Aeroelastic time response to initial cond ition in closed-loop,
considering V = 305 m/s >V ¢, stable system (non-robust regulator).

60

40 T

20 7

-20

input control, flap hinge torque (N.m)

-40 b

-60 .
0 25 3
time (s)

Figure 7. Input control (additional flap hing torqu
systen in nominal condition (non-robust regulator).

e, Ts) considering the

However, when considering a parametric variatibmas found
that the closed-loop system became unstable. Tlsteray was
assumed to have a possible variationtof0 % in the values of
stiffness of the flap sprind(), stiffness of pitchK,) and stiffness
of plunge K;). So, it has three uncertainty parametprs3j:
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min _ N max _ N
Kg ™ =09Kg" <Kg <Kz ™ =11K;
K, =0.9K," <K, <K,"™=1.1K,"

K, =0.9K," <K, <K,™* =1.1K"

(46)

WhereKl; , KV andKN are the nominal values of parameters of the
respectives springs. For the above considerati@metare eight2f)
vertexes of the polytopic system. The uncertaindies shown in
figure 8. The vertexes of the parameter box arenabination of the
minimum and maximum values of uncertainties of dlistem. It is
supposed that the system can assume any combirzftivalues
inside the box. The vertexes correspond to KA™(, K,™", K,™),
V2 (Kﬁmln, K max Khmln) V3 (Kﬁmln K min Khmaﬁ V4 (Kﬁmln K max
Khmaﬁ, VS (K K min Khmln) V6 (Kﬁmax K max Khmln) V7 (K max,

K™ KM, and V8 Kﬂmax Ko™ K™, These vertexes define
andAg.

the possible dynamic matricés, Az,

min

Kh

Figure 8. Parameter box showing the uncertainties ¢~ ombinations.

The non-robust regulator, designed by LMIPs (440 &45),
assures only the requirements to system in themadraondition.

In order to test the system, the condition of veateV5 and V7
was considered. Figures 9 and 10 present the esmonses of the
closed-loop considering the system in vertexes VBl a/7,
respectively. Clearly, this regulator is not robtgstuncertainties in
the considered parameters. The results were sirfutaall other
vertexes tested.

So, it is required to design an LMI regulator tewae quadratic
stability in the closed-loop considering parametréiation of the
springs. To solve this problem, the model with paetic
uncertainties can be quantified by ranges of pammaelues. The
parameters uncertainties ranges can be descriteegasmeter box,
shown in figure 8. The controller that satisfidlssgstems described
inside this convex space is said to be robust tarpetric variations.
In order to satisfy this requirement it is enoughsblve the LMI
problems from inequalities (33), (37) and (41) &tireight vertexes
simultaneously. The controller can be found using following
LMls:
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x 10"

QA" +AQ+BY+YTB" +2,Q<0
QA" +AQ+BY+Y'BT +2,4Q<0

QA" + AQ+BY+Y'B" +2,Q<0 (47)

Q>0
1 x(O)T >0
x0) Q

Q Y’
Y

2 >0

plunge (m)
o
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|
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time (s)

Figure 9. Aeroelastic time response in closed-loop
of vertex V5, unstable system (non-robust regulator
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Figure 10. Aeroelastic time response in closed-loop
of vertex V7, unstable system (non-robust regulator
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Figure 11. Aeroelastic time response in closed-loop considering condition
of vertex V1 and V > Vf (robust regulator).

The robust state-feedback gain matriKisYQ?, whereY and
Q are solutions to LMIP (47), wherg0), o and i are known. The
observer gain matrix is obtained By=P*W, whereP and W are
solutions to LMIP given by inequality (45).

Figures 11, 12, 13 and 14 show the time resporeanittal
condition considering the robust controller to eges V1, V5, V7
and V8 forV = 305 m/s {/>V;). The results of all other vertexes
were similar.

Analysing figures 11, 12, 13 and 14 it is possitueconclude
that the regulator is robust to the considered mpatac variations.
However, nothing can be said about variation ireotharameters.
For any other parameter variation the procedutieesame, and it is
necessary to consider all vertexes in a polytoystesn.
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Figure 12. Aeroelastic time response in closed-loop considering condition
of vertex V5 and V > Vf (robust regulator).
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Figure 13. Aeroelastic time response in closed-loop
of vertex V7 and V > Vf (robust regulator).

considering condition

Figure 15 shows the aeroelastic time response aenisg the
system in the nominal conditiorK£", K,", Ky“). The controller
designed satisfied the requirements and the cliusgad-obtained
was stable when feedback with robust regulator.

The input control to the robust regulator (addiibflap hing
torque,Ty) is computed by using equation (39). Figure 16ash®
considering the system in the nominal conditionsr the other
conditions inside the uncertainty combinations itegponses were
similar.
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Figure 14. Aeroelastic time response in closed-loop
of vertex V8 and V > Vf (robust regulator).

considering condition
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Figure 16. Input control (additional flap hing torg
system in nominal condition (robust regulator).

ue, Ts) considering the

Conclusions

In this paper an alternative solution to supprésif in a 2-D
airfoil by using active control were presented. Ye chosen to
use LMI techniques due to some advantages when ar@ehpvith
other techniques, as for instance, the facility smve robust
problems and formulation well defined in literatu(8oyd et al.,
1994).

In the first part of this paper, a brief review waade of linear
classical aeroelastic 2D-airfoil model and theestgtace realization.
Following this, the strategy to design the regulgtmntroller and
observer) was discussed. The proposal methodolay werified
through two different designs of regulator, thestfione is a non-
robust to parametric variation and the other ona isbust design.
The results showed that the system becomes unsiaiuder
feedback control with the non-robust regulator fearametric
variation in the spring constants of the system.t@nother hand,
with robust regulator design the system was kegblstfor flutter
velocity conditions.

As a further study, we propose to use fuzzy Talgagieno
models based on an LMI design to develop a noratinegulator to
suppress flutter in aircraft. So, in this casés ipossible to consider
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several non-linearities omited in the model usethis work or still
to use a more advanced model. This kind of cortesign is well
defined in literature and has many successful ioitaf as for
instance, Tanaka et al. (1998) and Teixeira €2an1).
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