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On the Evaluation of Linear and Non-
Linear Models Using DNS Data of 
Turbulent Channel Flows 
In this paper, a priori and a posteriori analyses of algebraic linear and non-linear models 
are carried out in order to compare their ability to predict near wall turbulent flows. Tests 
were done using data from a direct numerical simulation (DNS) of a plane channel flow 
for three Reynolds numbers, based on the friction velocity, Re 180τ = , Re 395τ =  and 
Re 590τ = . These models include the linear standard k ε−  model, the linear 2v f−  
(Manceau et al., 2002) and the non-linear model of Shih (Shih et al., 1995). The results 
obtained are then compared with the DNS data of Moser et al. (1999). The comparisons 
are shown for the mean velocity profile, components of the Reynolds stress tensor, the 
turbulent kinetic energy ( k ), and the dissipation rate ( ε ). The results suggest that the 

2v f− is an efficient model to capture the turbulent shear stress component of the 
Reynolds stress near wall flows. However, it is unable to predict correctly the level of 
anisotropy between normal components of the Reynolds stress tensor. Furthermore, it is 
shown that the presence of non-linear terms in a turbulent model improves the ability to 
predict the anisotropy 
Keywords: Near-wall turbulence, 2v f− model, non-linear model, elliptic relaxation model 
 
 
 
 
 
 

 

Introduction1 

In the field of turbulence modeling, there is a whole hierarchy 
of models to close the Reynolds stress tensor, when the Reynolds 
averaged Navier-Stokes equations (RANS) approach is used. One 
of the difficulties the modeler faces when using computational 
fluid dynamics (CFD) numerical codes is on how to choose the 
best turbulent model to solve his problem. These models range 
from zero up to six differential equations. For models having more 
than two equations, they are frequently based on the turbulent 
kinetic energy (k ) and its dissipation rate (ε ). In these models, 
an eddy viscosity is also introduced in order to close the Reynolds 
stress tensor. Despite the efforts, it is generally agreed that, 
presently, there is no dominant turbulent model that can be 
universally used for complex flows. The pursuit of an improved 
model, based on the RANS approach, is most likely to continue. 
The industrial applications of CFD using these models are 
numerous: prediction of turbulence level for aerodynamics and 
hydrodynamics fields, forced convection, fluid-structure 
interaction, etc.  Hines et al. (2009) studied numerically a 
turbulent flow over a square cylinder with prescribed and 
autonomous motions using a turbulent model to reduce the 
excessive production of turbulent kinetic energy in the stagnation 
region in front of the square cylinder. They were interested in the 
lock-in phenomenon where the effects of the forced oscillations 
dominate the flow. Goldberg el al. (2009) tested the performance 
of a model, based on transport equations of k, ε and an undamped 
eddy viscosity for two aerodynamics flow cases. They found that 
the model is shown to revert to the k ε−  model in near wall flow 
regions. 

Durbin (1991, 1993) shows that these models are not efficient 
enough to predict turbulent flows near wall, especially because they 
need a boundary correction function fµ , since they are unable to 

predict the near-wall zone. It should be noted that several 
relationships have been proposed for a damping function. To 
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overcome these deficiencies, Durbin proposes a model based on the 

normal component of the Reynolds stress, so called 2v f− model, 
in which the correction is implemented via an elliptic differential 
equation, suggesting a new scale for the velocity to capture the 
anisotropy in the near wall region. In other words, a linear relation 
between the Reynolds stress and the deformation rate tensor is 
postulated throughout an eddy viscosity based on the wall-normal 

component of the Reynolds tensor (2v ). 
The papers of Mompean et al. (1996), and of Naji et al. (2004), 

show the behaviour of some nonlinear models when predicting the 
turbulent flow in a square duct. The results clearly show that the 
presence of non-linear terms is important to capture the anisotropy 
of the turbulent stress, in the case of the square duct, responsible for 
the secondary flow. Moosavi and Grandjalikhan Nassab (2008) have 
conducted a numerical study on the turbulent forced convection over 
a single inclined forward step in a duct also using non-linear k ε−  
model. They found that step length and inclination angle have 
important effects on the hydrodynamic behaviour of the flow. 

More recently, Thompson et al. (2010) showed how the eddy 
viscosity depends on the kinematic tensors for plan channel and 
square duct flows. It is clearly proved that using only the 
Boussinesq eddy viscosity is not sufficient to predict the anisotropy 
of the Reynolds stress tensor. For this, the inclusion of non-linear 
terms seems necessary. 

Another kind of approach is used in the paper of Qiu et al. (2011), 
presenting a new model based on the analogy between laminar flows 
of non-Newtonian fluids and turbulent flows of Newtonian fluids. 
This model is based on the first and second normal stress difference, 
normally used in viscoelastic (non-Newtonian) fluids. This model is 
very promising since it does not use the k ε−  turbulent scales, 
making the calculation less expensive. 

The main objective of this work is to study the models by a 
priori and a posteriori tests, using the DNS data of Moser et al. 
(1999). The methodology of the a priori and a posteriori tests is 
described in the section concerning the numerical study.  
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In this paper, we consider three turbulent models: i) the linear 

standard k ε−  model, ii) the linear 2v f−  (Manceau et al., 2002) 
and iii) the non-linear model of Shih et al. (1995). The prediction 
capabilities of these three models are evaluated by comparison with 
the available DNS data (see Moser et al. (1999)). 

The results of the tests are presented for a plan channel 
turbulent flow at different Reynolds numbers and will be of 
interest to the reader working with turbulence modeling. It is also 
useful to improve turbulent models and help to decide how to 
choose an appropriate turbulent model for numerical simulations 
using Reynolds Averaged Navier-Stokes equations. These 
considerations can depend on the kind of flow being modeled, i.e. 
predominant shear flows like boundary layers, and/or flows 
presenting secondary flows where the anisotropy between the 
Reynolds stress normal components is important.  

This paper is organized as follows. The next section presents 
the numerical study and the details of the tested models. The 
section Results and Discussion presents and comments the 
principal results obtained in this work. Conclusions are drawn in 
the final section. 

Nomenclature 

��, ��, �η, ��, ��   = f-equation coefficients 
���, ���    = dissipation equation coefficients 
��   = turbulent viscosity constant 

	  = source term of the 
���� − equation 
	�   = damping wall function 

  = turbulent kinetic energy (=	���� 2⁄ )  

�  = dimensionless turbulent kinetic energy 
�   = turbulent length scale 
��   = turbulent production (=	2
�������) 
���   = Reynolds number based on friction velocity 

(��� 	=	��� 
⁄ ) 
���   = mean flow strain rate tensor 
�∗   = strain rate magnitude 
�   = turbulent time scale 
����   = Reynolds stress tensor 
��, 

,     = Reynolds normal stresses 

��   = friction velocity (=	!"# $⁄ ) 
%, &,'   = mean streamwise, vertical and spanwise 

velocity, respectively 
�, 
,     = fluctuating velocity components 
(, ), *   = streamwise, normal and spanwise 

coordinate directions 
)�   = dimensionless normal distance from wall 

(=	)�� 
⁄ ) 

Greek Symbols 

�  = channel half-width 
��� = Kronecker delta 
+  = turbulent dissipation rate 
+�  = dimensionless turbulent dissipation rate 

  = kinematic molecular viscosity 

�  = turbulent viscosity 
Ω��  = mean flow rotation rate tensor 
Ω∗  = rotation rate magnitude 
-(�,�)  = appropriate turbulent Prandtl numbers 
"#  = shear stress at the wall 

Superscripts 
+  = quantity normalized by �� 	and	
. 

Numerical Study 

A priori study 

The methodology of an a priori test of turbulence models 
consists in using mean field turbulent values coming from Direct 
Numerical Simulation (DNS) of the Navier-Stokes equations. 
The mean velocity components (U , V and W ), the turbulent 
kinetic energy (k ) and its dissipation rate (ε ) obtained through 
the DNS computations are supplied explicitly in the equations of 
the turbulence models providing predictions for Reynolds stress 
components. In this way, the model gives explicitly the values of 
the Reynolds stress components in function of the mean values 
computed by the DNS. These predictions are then compared with 
the Reynolds stress components evaluated directly from the 
DNS. Figure 1 illustrates the procedure of the a priori test. 
Details of this procedure can be found in Mompean et al. (1996). 
The results of the a priori analysis will show how the model, 
through its algebraic expression, is compatible with the Navier-
Stokes equations. 
 

 
Figure 1. The a priori test. 

DNS data 

The DNS data used here are those of Moser et al. (1999). This 
work concerns a fully developed plane turbulent channel flow, 
which was carried out for three different Reynolds numbers, namely 
Re 180τ = , Re 395τ =  and Re 590τ =  where Re u /τ τδ ν= ; uτ  

and δ  being the friction velocity and the channel half-width, 
respectively. 

Below are described the characteristics of the numerical 
simulations done by Moser et al. (1999) using a DNS code. The 
numerical method uses a Chebychev-tau formulation in the wall–
normal direction (y) and a Fourier representation in the horizontal 
directions. A low-storage third-order Runga–Kutta time 
discretization is used for the nonlinear terms. Periodic boundary 
conditions are applied in the streamwise (x) and spanwise (z) 
directions, and the pressure gradient that drives the flow was 
adjusted dynamically to maintain a constant mass flux through the 
channel. The periodic domain sizes were selected so that the two-
point correlations in the streamwise and spanwise directions would 
be essentially zero at maximum separation (half the domain size), 
while the number of Fourier/Chebychev modes (the resolution) was 
selected so that the energy spectra would be sufficiently small at 
large wave numbers. For the three different Reynolds numbers 

cases, there are 13 or more Chebychev grid points below y 10+ = , 
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showing the boundary layer is well resolved. More details can be 
found in the paper of Moser et al. (1999). 

Governing equations and turbulence models for the RANS 

calculations 

In order to model the problem of an incompressible flow in a 
turbulent regime, using the Reynolds Averaged Navier-Stokes 
equations, the mass and momentum conservation equations are used 
and coupled with a turbulent model to obtain the Reynolds stress 

components (i ju u ). 

The k ε−  model 

The k ε−  model retained in this paper is the classical one, 
which is based on the Boussinesq approximation to model the 
Reynolds stresses: 

 
2

2
3i j ij t iju u k Sδ ν= −  (1) 

 
where ijδ  is the Kronecker tensor , , ,( ) / 2ij i j j iS U U= +  is the mean 

rate of the deformation tensor, ,i jU  is the velocity gradient and ,j iU  

is its transpose. 2 /t C kµν ε=  is the so-called turbulent eddy 

viscosity, where �� = 0.09, k  is the turbulent kinetic energy and ε 
is its dissipation rate. These two scales (k and +) are obtained from 
two differential equations, and are used to evaluate the eddy 
viscosity. These equations are derived from the Navier-Stokes 
equations using the Reynolds decomposition for the instantaneous 
field (velocity and pressure). In this decomposition, the fields are 
decomposed in mean and fluctuating parts and replaced in the mass 
and momentum conservation equations. The two differential 
equations, for k and +, are presented in the next section, respectively 
Eqs. (4) and (5). 

For the near-wall region, a damping function fµ  is used in 

order to improve the prediction in the vicinity of the wall. Therefore, 
the turbulent eddy viscosity is modified as follows: 

 
2 /t C f kµ µν ε=  (2) 

 
In this work, we have chosen the following (see Chien, 1982) 

fµ  expression: 

 

1. exp( 0.0115 )f yµ
+= − −  (3) 

 
where y+  is the dimensionless wall distance based on the friction 

velocity uτ  and the kinematic viscosity v. 

The 2v f−  model 

Hereafter, it is explained how the 2v f−  model was obtained. 
The main idea of this model is to use a new turbulent scale to model 
the eddy viscosity. The scale concerning the normal stress 

component to the wall (2v ) is chosen because it can be used to 
express the anisotropy of the Reynolds stress normal components. 
Manceau et al. (2002) have shown how this choice can improve the 

predictions. The so-called 2v f−  model consists of the transport 

equations for the turbulent kinetic energy, the isotropic dissipation 

rate, the 2v  normal stress component. 
 

t
k

j k j

Dk k
P

Dt x x

νν ε
σ

  ∂ ∂= + + −   ∂ ∂  
  (4) 

 
2

1 2
t

k
j j

D
C P C

Dt x x k kε ε
ε

νε ε ε εν
σ

  ∂ ∂= + + −   ∂ ∂  
  (5) 

 
2 2

2t

j k j

Dv v
kf v

Dt x x k

ν εν
σ

  ∂ ∂ = + + −  ∂ ∂  
 

 

(6) 

 

where /D Dt  is the material time derivative and k i j ijP u u S= −  is the 

turbulent production term. 
The commonly used set of constants is given as: 
 

1 1.44Cε = , 2 1.92Cε = , 1.0kσ = , 1.3εσ =  

 
It is useful to note that f  in Eq. (6) is the solution of an 

auxiliary elliptic equation, which is a modified Helmholtz equation, 
whose solution is close to an exponential decay as well as the wall is 
approached. Durbin (1991) introduced the elliptic relaxation 
approach within the framework of the linear eddy viscosity 
formulation. The f − equation can be written as: 

 

( )

2

2 2
1 2

2
231
3

k

v
Pkf L f C C

T kε

−
− ∇ = − +  (7) 

 
where the time scale T  is /k ε , which is bounded near the wall by 

the Kolmogorov scale /ν ε . The length scale is formulated by 
analogy to the time scale T. Then, the two scales are respectively 
given by: 
 

max , T
k k

T C
ε ε
 

=   
 

 (8) 

 
1/ 43/ 2 3

max ,L
k

L C Cη
ν

ε ε

   =      
 (9) 

 
with 1 1.8C = ; 2 0.6C = ; 6.0TC = ; 0.38LC = ; 85.0Cη = . 

Here, the turbulent eddy viscosity is expressed as: 
 

2
t C v Tµν =  (10) 

 

It should be noted that 2v  is considered as an energy scale 
generalizing the wall-normal Reynolds stress component 
everywhere in the domain. 

The Shih model 

In this model, Shih et al. (1995) developed a general non-
linear constitutive relation for the Reynolds tensor components, 
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starting from the Boussinesq equation. The expression of these 
components is: 

 

uiu j = 2

3
kδij −Cµ

k2

ε
2Sij + 2C2

k3

ε2
−SikΩkj + SkjΩik( )  (11) 

 
The coefficients Cµ  and 2C  are functions of the deformation 

and the rotation rates ijS  and 2C : 

 

*

0

1

S

C
U k

A A
µ

ε

=
+

 

 

C2 =
1− 9Cµ

2(S *k /ε)2

C0 + 6
S *k

ε











Ω*k

ε























 

 

, *
ij ijS S S= , *

ij ijΩ = Ω Ω  

 

0 6.5A = , 6 / 2, 6SA  ∈   , 0 1.0C =  
 

with ( ), , / 2ij i j j iU UΩ = − . 

Results and Discussion 

A priori results 

In this section, the results obtained with the a priori test for the 
three turbulent models are shown and commented. It should be 
noted that the wall normal Reynolds stress is taken from the DNS, 
and in conjunction with Eq. (10), we deduce the turbulent eddy 
viscosity. The dimensionless profiles of the normal stresses	uu�����, 

vv����, ww������ and shear stress uv���� (uiu j

+
= uiu j / uτ

2 ;1≤ i, j ≤ 3)  of the 

Reynolds stress tensor at Reτ=180, 395 and 590 are shown from Fig. 
2 to Fig. 5. 

Figure 2 shows the profiles of normal stress for the streamwise 

direction obtained with the three turbulent models ( k ε− , 2v f−  
and the Shih model) for three different Reynolds numbers. These 
results are compared with the DNS ones. We can see clearly that the 
Shih model gives the better agreement with the DNS, presenting a 
small over-prediction for the maximum value around y+=20. The 
profiles predicted for the component vv���� are presented in Fig. 3. 
The Shih model gives the closest results with the DNS. For this 

component, the k ε−  and the 2v f−  models over-predicted the 
values of about 300%. It should be mentioned that, when using the 

2v f−  model in a posteriori calculation, the vv���� Reynolds stress 
component is obtained from Eq. (6). 

 

(a)

(b) 

(c) 
Figure 2. Streamwise stress uu�����. Comparison of models’ predictions with 

DNS in a channel flow at (a) Re 180τ = , (b) Re 395τ =  and (c) 

Re 590τ = . 

*
ij ij ij ijU S S= + Ω Ω
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(a) 

(b) 

(c) 
Figure 3. wall-normal stress vv����. Comparison of models’ predictions with 

DNS in a channel flow at (a) Re 180τ = , (b) Re 395τ =  and (c) 

Re 590τ = . 
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(b) 

(c) 
Figure 4. Spanwise stress ww������. Comparison of models’ predictions with 

DNS in a channel flow at (a) Re 180τ = , (b) Re 395τ =  and (c) 

Re 590τ = . 

y+

vv
+

0 50 100 150
0

1

2
k-eps
v²-f
shih
DNS

y+

vv
+

0 100 200 300
0

1

2

3

k-eps
v²-f
shih
DNS

y+

vv
+

0 100 200 300 400 500
0

1

2

3

k-eps
v²-f
shih
DNS

y+

w
w

+

0 50 100 150
0

1

2
k-eps
v²-f
shih
DNS

y+

w
w

+

0 100 200 300 400 500
0

1

2

3

k-eps
v²-f
shih
DNS



BenSaid et al. 

474 / Vol. XXXIV, No. 4, October-December 2012   ABCM  

(a) 

(b) 

(c) 
Figure 5. Turbulent shear stress profiles. Comparis on of models’ 

predictions with DNS in a channel flow at (a) Re 180τ = , (b) Re 395τ =  

and (c) Re 590τ = . 

 
Figure 4 depicts the prediction for the spanwise component 

ww������ with the three models and the DNS. The Shih model gives 
the better prediction when compared with the DNS, even though 
with an under-prediction of 50% for the maximum value of ww������ 
for Re 590τ = . In these figures (see Figs. 2, 3 and 4), we observe 

that the k ε−  and the 2v f−  models give the same prediction for 
the three Reynolds numbers. It means that the kinetic energy is 
distributed in the same way for the three normal components. For 
these linear models, the normal components are related to the term 
2k/3 as shown in Eq. (1), as for a fully developed channel flow 

11 22 33 0S S S= = = . The modeling of the eddy viscosity, using or 

not the component vv���� of the Reynolds stress, will not contribute 

to model these components. The better agreement given by the 
Shih model is related to the presence of non-linear terms as shown 
in Eq. (11). 

In order to analyze the behavior of these models for the shear 
stress components, predictions for the three models and the DNS are 

shown in Fig. 5. For this component, we observe that the 2v f−  

gives the best agreement with the DNS results. The k ε−  and the 
Shih models under-predict this component giving an anomalous 
profile. 

We note that the Shih model presents good agreement with the 

DNS data. As for the k ε−  and the 2v f−  models, the streamwise 
stress component uu����� is under-predicted, while the normal stress 
component vv���� and the spanwise stress component ww������ are over-
predicted. 

Figure 5 exhibits the profiles of the normalized shear stress uv����. 
An analysis of this figure allows us to notice that predictions of the 

2v f−  model are in good agreement with the DNS results. Overall, 

for this component, the k ε−  and Shih results do not satisfactorily 
agree with the DNS data. 

A posteriori results 

We call a posteriori test the evaluation of the results using the 
RANS (Reynolds Averaged Navier-Stokes) equations coupled with 
the turbulent model that are being tested. In this case of a posteriori, 
the results given by the numerical code, for the mean quantities 
concerning the velocity field and the second order moments 
(Reynolds stress components) and the dissipation rate are compared 
directly with the results of the DNS. The numerical approximation 
to solve the mass and the momentum conservation (Navier-Stokes 
equations) coupled with the turbulent models was obtained through 
the standard finite volume techniques on a staggered grid, where the 
pressure is defined at the center of very cubical grid and the velocity 
components at the center of every face. The normal Reynolds 
stresses are cell centered, while the off-diagonal terms are located at 
the mid-edges. A number of different upwind approximation 
schemes were used for representing the nonlinear terms, but no 
sensitivity was detected from this part of the algorithm. The solution 
for the equation was obtained by advancing explicitly in time the 
equations of motions until a steady state was reached, while 
enforcing the continuity at each step through the solution of the 
discrete Poisson equation for the pressure. Details of the algorithm 
can be found in Mompean and Thais (2010). 

In this study, computations are achieved using the linear 

standard k ε−  and the model 2v f−  turbulent model. The results 
are then compared with the DNS data of Moser et al. (1999). It is 

worth recalling that for the a posteriori test of the 2v f−  model, 
the turbulent quantities are computed by solving the RANS 
equations in conjunction with Eqs. (1) to (10). 

Figures 6, 7 and 8 depict the turbulent kinetic energy k + , its 

dissipation rate ε + , and the uv
+

 Reynolds tensor component 
respectively, for a turbulent Reynolds number of 180. In Fig. 6, the 

2v f−  model is in a relatively good agreement with the DNS data, 
in the region near and far from the wall. The standard two-equation 
k ε−  model overestimates the level of the turbulent kinetic energy. 
For the dissipation rate (ε ), shown in Fig. 7, we see clearly that the 
corrections added to the new scales of the elliptic relaxation model 
improve the wall behaviour of the dissipation rate, especially near 
the wall. Figure 8 confirms the first results presented in the a priori 

study. The 2v f−  model is in better agreement with the DNS data 
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than the standard k ε−  model, and the profile of the turbulent shear 
stress is relatively well predicted. 

 

 
Figure 6. Turbulent kinetic energy 3� for Re 180τ = . 

 
 

 
Figure 7. Dissipation rate ε +  for Re 180τ = . 

 
 

 
Figure 8. Wall-shear stress component uv���� for Re 180τ = . 

 
In order to generalize the results obtained, computations are 

performed up to Reynolds number of 590. 
In Figs. 9(a) and (b) (log scale), the turbulent kinetic energy and 

the shear stress Reynolds component are presented for a turbulent 

Reynolds number of 395 respectively. The 2v f−  and the k-ε 
models are compared with the DNS data of Moser et al. (1999). The 
profile of these variables shows a noteworthy agreement between 
the elliptic relaxation model and the DNS data. 

 

(a) 

(b) 
Figure 9. (a) Turbulent kinetic energy 3� and (b) shear stress uv���� for 

Re 395τ = . 

 
 

 

Figure 10. Turbulent kinetic energy 3� and its dissipation rate ε +  for 
456 = 590. 
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As for Figs. 10 and 11, the turbulent parameters are presented for 
a turbulent Reynolds number of 590. In Figs. 10 and 11, the turbulent 
kinetic energy 
� and its dissipation rate +�, and the uv���� component 
are presented showing a good agreement with the DNS results. 
 

 
Figure 11. Wall shear stress component uv���� for 456 = 590. 

Conclusions 

Linear and non-linear models of turbulence were studied using 
a priori and a posteriori evaluations. These models were assessed 
by considering the turbulent plan channel flow with a turbulent 
Reynolds number ( /Re uτ τδ ν= ) from 180 up to 590. Comparisons 

with the available Direct Numerical Simulation data of Moser et al. 
(1999) have been presented. For the considered flow, the important 
points emerging from the a priori results are: 

• The level of anisotropy between the normal stresses is well 
captured by the non-linear model of Shih et al. (1995). 
• For the shear stress component of the Reynolds tensor, the 

2v f−  model gives better agreement with the DNS data for 
near wall turbulent flows. 
• Nevertheless, the anisotropy level of the normal stresses is 

poorly predicted by the 2v f−  model. The Shih model predicts 
quite correctly the level of anisotropy, but the profiles of shear 
stress are not in good agreement with the DNS results. 

The a posteriori tests made with the 2v f− , have confirmed 
that this model is an appropriate model for flows dominated by 
shear, as for example the wall boundary layers. However, as 

expected for the a priori test, the 2v f−  model was not able to 
predict correctly the level of anisotropy concerning the normal 
components of the Reynolds stress. This drawback of the model 

should be removed when using the a posteriori calculations, as the 
equation for the vv���� normal component (y-direction) is included in 
the model to predicted turbulent complex flow where the anisotropy 
is important. However, the question about the prediction of the right 
level of the streamwise (x-direction) and spanwise (z-direction) 
Reynolds stress components remains open. This point can be 
improved using non-linear terms to express the Reynolds stress and 
keeping the fluctuation vv���� as a turbulent scale. This topic will be 
considered in a future work. 
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