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On the Evaluation of Linear and Non-
Linear Models Using DNS Data of
Turbulent Channel Flows

In this paper, a priori and a posteriori analyses of algebraic linear and non-linear models
arecarried out in order to compare their ability to predict near wall turbulent flows. Tests
were done using data from a direct numerical smulation (DNS) of a plane channel flow
for three Reynolds numbers, based on the friction velocity, Re, =180, Re, =395 and
Re, =590 . These models include the linear standard k-—¢& model, the linear v2 - f
(Manceau et al., 2002) and the non-linear model of Shih (Shih et al., 1995). The results
obtained are then compared with the DNS data of Moser et al. (1999). The comparisons
are shown for the mean velocity profile, components of the Reynolds stress tensor, the
turbulent kinetic energy (k ), and the dissipation rate (¢ ). The results suggest that the
vZ - f is an efficient model to capture the turbulent shear stress component of the
Reynolds stress near wall flows. However, it is unable to predict correctly the level of
anisotropy between normal components of the Reynolds stress tensor. Furthermore, it is
shown that the presence of non-linear terms in a turbulent model improves the ability to
predict the anisotropy _
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I ntroduction

In the field of turbulence modeling, there is a \ehbierarchy
of models to close the Reynolds stress tensor, viherReynolds
averaged Navier-Stokes equations (RANS) approaciséds. One
of the difficulties the modeler faces when usingnpaitational
fluid dynamics (CFD) numerical codes is on how twaese the
best turbulent model to solve his problem. Theseletw range
from zero up to six differential equations. For ratsdhaving more
than two equations, they are frequently based @nttibulent
kinetic energy k) and its dissipation rateg(). In these models,
an eddy viscosity is also introduced in order wselthe Reynolds
stress tensor. Despite the efforts, it is generafreed that,
presently, there is no dominant turbulent modelt than be
universally used for complex flows. The pursuitasf improved
model, based on the RANS approach, is most likelgdntinue.
The industrial applications of CFD using these ni@dare
numerous: prediction of turbulence level for aemayics and
hydrodynamics fields, forced convection, fluid-sture
interaction, etc. Hines et al. (2009) studied nrcadly a
turbulent flow over a square cylinder with presedb and
autonomous motions using a turbulent model to redtive
excessive production of turbulent kinetic energythie stagnation
region in front of the square cylinder. They wemterested in the
lock-in phenomenon where the effects of the foroedillations
dominate the flow. Goldberg el al. (2009) testee prerformance
of a model, based on transport equationk, @fand an undamped
eddy viscosity for two aerodynamics flow cases.ylfeund that
the model is shown to revert to thke-¢ model in near wall flow
regions.

Durbin (1991, 1993) shows that these models areeffimient
enough to predict turbulent flows near wall, esakégibecause they
need a boundary correction functiof), , since they are unable to

predict the near-wall zone. It should be noted tisaweral
relationships have been proposed for a dampingtifimc To
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overcome these deficiencies, Durbin proposes a himaded on the

normal component of the Reynolds stress, so calfed f model,
in which the correction is implemented via an ¢ilidifferential
equation, suggesting a new scale for the veloatycdpture the
anisotropy in the near wall region. In other worddinear relation
between the Reynolds stress and the deformatian teatsor is
postulated throughout an eddy viscosity based enwtall-normal

component of the Reynolds tensaf ).

The papers of Mompean et al. (1996), and of Nagil €2004),
show the behaviour of some nonlinear models whedigting the
turbulent flow in a square duct. The results cleathow that the
presence of non-linear terms is important to capthe anisotropy
of the turbulent stress, in the case of the sqdact, responsible for
the secondary flow. Moosavi and Grandjalikhan Nag2808) have
conducted a numerical study on the turbulent form®t/ection over
a single inclined forward step in a duct also usiong-lineark - &
model. They found that step length and inclinatemmgle have
important effects on the hydrodynamic behaviouthefflow.

More recently, Thompson et al. (2010) showed hoe ¢tdy
viscosity depends on the kinematic tensors for mhannel and
square duct flows. It is clearly proved that usiogly the
Boussinesq eddy viscosity is not sufficient to jrethe anisotropy
of the Reynolds stress tensor. For this, the im@fusf non-linear
terms seems necessary.

Another kind of approach is used in the paper of €ial. (2011),
presenting a new model based on the analogy betlaggnar flows
of non-Newtonian fluids and turbulent flows of Newian fluids.
This model is based on the first and second nostnass difference,
normally used in viscoelastic (non-Newtonian) faiidhis model is
very promising since it does not use thke-¢ turbulent scales,
making the calculation less expensive.

The main objective of this work is to study the ralsdby a
priori anda posteriori tests, using the DNS data of Moser et al.
(1999). The methodology of thee priori and a posteriori tests is
described in the section concerning the numertcalys
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In this paper, we consider three turbulent modglshe linear

standardk — &£ model,ii) the linearv?> - f (Manceau et al., 2002)
andiii) the non-linear model of Shih et al. (1995). Thedgction
capabilities of these three models are evaluatedobyparison with
the available DNS data (see Moser et al. (1999)).

The results of the tests are presented for a plenrel
turbulent flow at different Reynolds numbers andll vie of
interest to the reader working with turbulence niodg It is also
useful to improve turbulent models and help to dechow to
choose an appropriate turbulent model for numersdaulations
using Reynolds Averaged Navier-Stokes equations.es&h
considerations can depend on the kind of flow benugleled, i.e.
predominant shear flows like boundary layers, andiows
presenting secondary flows where the anisotropywden the
Reynolds stress normal components is important.

This paper is organized as follows. The next secficesents
the numerical study and the details of the testemlais. The
section Results and Discussion presents and commtr
principal results obtained in this work. Conclusicare drawn in
the final section.

Nomenclature

C1,C,,CpC,Cr = f-equation coefficients
Ce1,Cer = dissipation equation coefficients
Cy, turbulent viscosity constant

f = source termof the v2 — equation

fu = damping wall function

k = turbulent kinetic energy (= w;u;/2)
kt = dimensionless turbulent kinetic energy

L = turbulent length scale

P = turbulent production (= 2v.S;;5;;)

Re; = Reynolds number based on friction vel ocity
(Re; = u6/v)

Sij = mean flow strain rate tensor

S* = gtrain rate magnitude

T = turbulent time scale

uu; = Reynolds stress tensor

uu, vv, ww = Reynolds normal stresses

Up = friction velocity (= /Ty /p)

uv,w = mean streamwise, vertical and spanwise
velocity, respectively

u,v,w = fluctuating velocity components

X,z = streamwise, normal and spanwise
coordinate directions

y* = dimensionless normal distance fromwall
(= yur/v)

Greek Symbols

§ = channel half-width

dij = Kronecker delta

£ = turbulent dissipation rate

et = dimensionless turbulent dissipation rate

v = kinematic molecular viscosity

vy = turbulent viscosity

Qj = mean flow rotation rate tensor

Q* = rotation rate magnitude

O(k,e) = appropriate turbulent Prandtl numbers

Ty = shear stress at the wall

Superscripts

+

= quantity normalized by u, and v.
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Numerical Study
A priori study

The methodology of am priori test of turbulence models
consists in using mean field turbulent values carfiom Direct
Numerical Simulation (DNS) of the Navier-Stokes atjans.
The mean velocity component&J(, V and W), the turbulent
kinetic energy k) and its dissipation rates() obtained through
the DNS computations are supplied explicitly in #tgations of
the turbulence models providing predictions for Relgs stress
components. In this way, the model gives explicilg values of
the Reynolds stress components in function of teamvalues
computed by the DNS. These predictions are thenpewed with
the Reynolds stress components evaluated directyn fthe
DNS. Figure 1 illustrates the procedure of thepriori test.
Details of this procedure can be found in Mompe@aal (1996).
The results of the priori analysis will show how the model,
through its algebraic expression, is compatiblehviite Navier-
Stokes equations.

DNS Computations }7

EASMs Models

Y
Comparison
DNS - EASMs

Figure 1. The a priori test.

DNSdata

The DNS data used here are those of Moser et @9{1 This
work concerns a fully developed plane turbulentncigh flow,
which was carried out for three different Reynaldsnbers, namely
Re, =180, Re, =395 and Re, =590 where Re, =u,d/v; u,
and J being the friction velocity and the channel halth,
respectively.

Below are described the characteristics of the mizale
simulations done by Moser et al. (1999) using a Déd8e. The
numerical method uses a Chebychev-tau formulatiothé wall—
normal direction ¥) and a Fourier representation in the horizontal
directions. A low-storage third-order Runga—Kuttaimet
discretization is used for the nonlinear terms.ideéc boundary
conditions are applied in the streamwisg @nd spanwise z|
directions, and the pressure gradient that drives flow was
adjusted dynamically to maintain a constant mass ttrough the
channel. The periodic domain sizes were selectethaothe two-
point correlations in the streamwise and spanwisections would
be essentially zero at maximum separation (halfdtain size),
while the number of Fourier/Chebychev modes (tiseltgion) was
selected so that the energy spectra would be mrffig small at
large wave numbers. For the three different Reynaldmbers

cases, there are 13 or more Chebychev grid pogltswby™ =10,
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showing the boundary layer is well resolved. Moetads can be equations for the turbulent kinetic energy, theriguc dissipation

found in the paper of Moser et al. (1999). rate, the? normal stress component.

Governing equations and turbulence models for the RANS
Iculati gk—i V+£ﬁ +P -¢ (4)

calculations Dt ox, o, )ox k

In order to model the problem of an incompressflie in a
turbulent regime, using the Reynolds Averaged NaStekes )
equations, the mass and momentum conservationieqgsiare used De_0 y+ L 9¢ +C.tp-c & (5)
and coupled with a turbulent model to obtain theRéds stress Dt ox, o, )ox | k¢ TPk
components u; ).

D?_ 0 V, a2 £
The k- & mode ot _%[(V-'-Ukjaxjj-'-kf PA ©

The k-& model retained in this paper is the classical one,

which is based on the Boussinesq approximation @mehthe where D/Dt is the material time derivative arf} = -uu;S; is the
Reynolds stresses: .
turbulent production term.

o, The commonly used set of constants is given as:
uu; ==kg; — 2v,S; 1)

iv] 3 1j tj
C,=144, C,,=192, 0, =10, 0.=13

where 5U. is the Kronecker tensors; =, |+, i)/ 2 is the mean ) ) ) .

' ' It is useful to note thatf in Eq. (6) is the solution of an
auxiliary elliptic equation, which is a modified Heholtz equation,
is its transpose.v, :C#kzls is the so-called turbulent eddy Whose solution is close to an exponential decayedisas the wall is

. . _ . L approached. Durbin (1991) introduced the elliptielaxation
viscosity, whereC,, = 0.09 k is the turbulent kinetic energy aad approach within the framework of the linear eddyscaisity

is its dissipation rate. These two scalesuide) are obtained from ormulation. The f - equation can be written as:
two differential equations, and are used to evalutite eddy
viscosity. These equations are derived from the iddeStokes

rate of the deformation tensay; ; is the velocity gradient and ; ;

equations using the Reynolds decomposition foritiseantaneous g_ﬁ
field (velocity and pressure). In this decompositithe fields are f - 1202%f :(Cl—l) 3 k +EC R @)
decomposed in mean and fluctuating parts and reglacthe mass T 3 2k

and momentum conservation equations. The two difitéal
equations, fok ande, are presented in the next section, respectivelyhere the time scal@ is k/&, which is bounded near the wall by

Egs. (4) and (5). the Kolmogorov scaleJv/e . The length scale is formulated by

For t.he near-wall regloh, E_l damp.ln-g.functldr), 's used in analogy to the time scal€. Then, the two scales are respectively
order to improve the prediction in the vicinitytbe wall. Therefore, gjven by:

the turbulent eddy viscosity is modified as follows

v =C, f#kzlg 2 T= ma){l; CT\/E] (8)

In this work we have chosen the following (see Chien, 1982)

f,, expression: K32 p3 e
U —
L=C, maﬁ{‘g <, s 9)

f,=1.- expt 0.011§" (3)
with C,=1.8; C,=0.6; C; =6.0; C_ =0.38; C, =85.0.
where y* is the dimensionless wall distance based on tlédni Here, the turbulent eddy viscosity is expressed as:
velocity u, and the kinematic viscosity
B v, =C,VT (10)
The v2 - f model

— wa .
Hereafter, it is explained how thé — f model was obtained. It should be noted that” is considered as an energy scale

The main idea of this model is to use a new turitudeale to model gsgfralkllzelpgin tt:ee dovn\:.zlilénormal Reynolds  stress  corepon
the eddy viscosity. The scale concerning the normskss yw ’

component to the wall%) is chosen because it can be used to The Shih model
express the anisotropy of the Reynolds stress nocoraponents.
Manceau et al. (2002) have shown how this choiceim@rove the In this model, Shih et al. (1995) developed a gaheon-

predictions. The so-called® - f model consists of the transport“near constitutive relation for the Reynolds tensomponents,
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starting from the Boussinesq equation. The expoessif these
components is:

PR 2 3
uu =2k3 -C, X o5 +2c K
j 3 | 1j 2:92

i i e g (_Slekj +Skaik) (11)

The coefficientsC, and C, are functions of the deformation
and the rotation rate§; and C,:

C = 1

ca Uk
AT
J1-9C2(S'k/ )2
C,= ﬂ*( .
£ £

STSTRSOHON s =JSS . Q= Q;Q;

A =65, AD[VE/248], =10

with Q; =(U; ; -U;;)/2.

i

Results and Discussion

A priori results

In this section, the results obtained with ¢hpriori test for the
three turbulent models are shown and commentedhduld be
noted that the wall normal Reynolds stress is tdkem the DNS,
and in conjunction with Eq. (10), we deduce théotlent eddy
viscosity. The dimensionless profiles of the normtkssesu®,

.
vt ww' and shear stres&* (uu; =uu,/u?;1<i,j<3) of the

Reynolds stress tensorkRe, =180, 395 and590 are shown from Fig.
2to Fig. 5.
Figure 2 shows the profiles of normal stress far streamwise

direction obtained with the three turbulent modgts- ¢, V- f

and the Shih model) for three different Reynoldsnhars. These
results are compared with the DNS ones. We caclsedy that the
Shih model gives the better agreement with the Dpi€senting a
small over-prediction for the maximum value arowig20. The
profiles predicted for the componem™* are presented in Fig. 3.
The Shih model gives the closest results with tiéSDFor this

values of about 300%. It should be mentioned tlvhgn using the

v? - f model ina posteriori calculation, the/w* Reynolds stress
component is obtained from Eq. (6).
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—<—— k-eps

—&—— shih
—2A—— DNS

50 100 150
y+
@)
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©

Figure 2. Streamwise stress Tu*. Comparison of models’ predictions with

_ DNS in a channel flow at (a)
— 2 _ _ i

component, thek—¢ and thev® - f models over-predicted the Re, =590.

Re, =180, () Re, =395 and (c)
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(@)
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Figure 3. wall-normal stress  ¥v*. Comparison of models’ predictions with Figure 4. Spanwise stress Ww . Comparison of models’ predictions with
DNS in a channel flow at (2) Re =180, () Re; =395 and ()  DNs in a channel flow at () Re, =180, (b) Re, =395 and (o)
Re, =590. Re, =590.
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Figure 5. Turbulent shear stress profiles.
predictions with DNS in a channel flow at (a)

and (c) Re, =590.

Comparis  on of models’

Re, =180, () Re, =395

Figure 4 depicts the prediction for the spanwisengonent
ww? with the three models and the DNS. The Shih magilets
the better prediction when compared with the DN&nethough
with an under-prediction d§0% for the maximum value ovw*

BenSaid et al.

to model these components. The better agreemeendy the
Shih model is related to the presence of non-liteans as shown
in Eq. (11).

In order to analyze the behavior of these modeigtfe shear
stress components, predictions for the three madelshe DNS are

shown in Fig. 5. For this component, we observe the V2 - f

gives the best agreement with the DNS results. Khee and the
Shih models under-predict this component giving aamomalous
profile.

We note that the Shih model presents good agreewidnthe

DNS data. As for the&k —¢ and the? - f models, the streamwise

stress componeniu® is under-predicted, while the normal stress
componen®&v* and the spanwise stress comporient* are over-
predicted.

Figure 5 exhibits the profiles of the normalize@éahstres&v™.
An analysis of this figure allows us to notice tpatdictions of the

v? - f model are in good agreement with the DNS resGlzrall,
for this component, thd — & and Shih results do not satisfactorily
agree with the DNS data.

A posteriori results

We calla posteriori test the evaluation of the results using the
RANS (Reynolds Averaged Navier-Stokes) equationgplsm with
the turbulent model that are being tested. In¢hie ofa posteriori,
the results given by the numerical code, for theammguantities
concerning the velocity field and the second ordeoments
(Reynolds stress components) and the dissipattenare compared
directly with the results of the DNS. The numeriepgbroximation
to solve the mass and the momentum conservatiowigNgtokes
equations) coupled with the turbulent models watsiabd through
the standard finite volume techniques on a staggegrid, where the
pressure is defined at the center of very cubiddl@nd the velocity
components at the center of every face. The norR®lnolds
stresses are cell centered, while the off-diagterats are located at
the mid-edges. A number of different upwind appneadion
schemes were used for representing the nonlinearstebut no
sensitivity was detected from this part of the @lfpon. The solution
for the equation was obtained by advancing expligit time the
equations of motions until a steady state was ®ehclwhile
enforcing the continuity at each step through tbkiten of the
discrete Poisson equation for the pressure. Dethithe algorithm
can be found in Mompean and Thais (2010).

In this study, computations are achieved using lihear

standardk —& and the modek?— f turbulent model. The results
are then compared with the DNS data of Moser ef1899). It is

worth recalling that for thew posteriori test of thev? - f model,
the turbulent quantities are computed by solving tRANS
equations in conjunction with Egs. (1) to (10).

Figures 6, 7 and 8 depict the turbulent kineticrepek™ , its

dissipation rates*, and the w’ Reynolds tensor component
respectively, for a turbulent Reynolds numbed®®. In Fig. 6, the

for Re, =590. In these figures (see Figs. 2, 3 and 4), we ofeser —

v? — f model is in a relatively good agreement with tHéSdata,

that thek - ¢ and thev’ - f models give the same prediction forj, the region near and far from the wall. The staddwo-equation

the three Reynolds numbers. It means that the ikirestergy is

distributed in the same way for the three normahgonents. For

k —& model overestimates the level of the turbulenetienergy.
For the dissipation rates(), shown in Fig. 7, we see clearly that the

these linear models, the normal components aréeteta the term ., rections added to the new scales of the elligtiaxation model

2k/3 as shown in Eq. (1), as for a fully developed cterflow

improve the wall behaviour of the dissipation ragspecially near

Si1=S2,=S5;=0. The modeling of the eddy viscosity, using Orihe wall. Figure 8 confirms the first results preteel in thea priori

not the componerivt of the Reynolds stress, will not contribute
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than the standar#d — & model, and the profile of the turbulent shear
stress is relatively well predicted.
A
i —oe— Wwf
3 — A DNS
B —<—— k-eps
% o[
1t @)
CO““5‘O““1(‘)O““1%O“
y+
Figure 6. Turbulent kinetic energy ~ k* for Re, =180.
—oe— »f N
—4A—— DNS -
k-eps r
-0.2 =, L \\\\\\Il L TR | L L
10 v 10 (b)
Figure 9. (a) Turbulent kinetic energy  k* and (b) shear stress uv™ for
Re, =395.
Figure 7. Dissipation rate  &* for Re, =180.
¥
0.6
0.4
o
| % CD 100 200 300 400 500
y+
0.2
0““5‘0““160““1&0“
y+
Figure 8. Wall-shear stress component Uv* for Re, =180 .
—o— A f
. . . —74A—— DNS
In order to generalize the results obtained, coatpmris are
performed up to Reynolds number580.
In Figs. 9(a) and (b)dg scale), the turbulent kinetic energy and
the shear stress Reynolds component are presemted téirbulent
Reynolds number oB95 respectively. Thev?-f and thek-¢ T Sodlobdodoanad o
models are compared with the DNS data of Mosel. ¢1899). The y*
profile of these variables shows a noteworthy agese between Figure 10. Turbulent kinetic energy ~ k* and its dissipation rate & for

the elliptic relaxation model and the DNS data. Re, = 590.
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As for Figs. 10 and 11, the turbulent parametezpaesented for
a turbulent Reynolds number of 590. In Figs. 10 Ahdthe turbulent
kinetic energyk™ and its dissipation rate", and theav* component
are presented showing a good agreement with theredifts.

100 200 300

y+
Figure 11. Wall shear stress component

400 500

uv* for Re, = 590.

Conclusions

Linear and non-linear models of turbulence werelistli using

BenSaid et al.

should be removed when using #@osteriori calculations, as the
equation for th&v* normal componenty{direction) is included in
the model to predicted turbulent complex flow where anisotropy
is important. However, the question about the tésh of the right
level of the streamwisex{direction) and spanwisez-(irection)
Reynolds stress components remains open. This pmnt be
improved using non-linear terms to express the Blejnstress and
keeping the fluctuatio”v* as a turbulent scale. This topic will be
considered in a future work.
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