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Mixed Convection Heat Transfer in
Rotating Vertical Elliptic Ducts

This paper presents an investigation into the solution of laminar mixed convective heat
transfer in vertical eliptic ducts containing an upward flowing fluid rotating about a
parallel axis. The coupled system of normalized conservation equations are solved
using a power series expansion in ascending powers of rotational Rayleigh Number,
Ra, — a measure of the rate of heating and rotation as the perturbation parameter. The
results show the influence of rotational Rayleigh number, Ra, and modified Reynolds
number, Re,, on the temperature and axial velocity fields. The effect of Prandtl number,
Pr, in the range 1 to 5, and eccentricity, e on the peripheral local Nusselt number are
also reported. The mean Nusselt number is observed to be highest at duct eccentricity,
e=0 for a given Prandtl number. However, results indicate insensitivity of peripheral
local Nusselt number to Prandtl number at eccentricity, e=0.866, which is an important
result to a designer of rotating vertical heat exchanger. The effect of eccentricity on the
friction coefficient is also presented. The parameter space for the overall validity of the
results presented is Ra,Re,Pr<820.
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Introduction

Research works (Holzworth, 1938; Morris, 1964; Morris, 1965;
Morris, 1968; Davies and Morris, 1966; Morton, 1959; Faris and
Viskanta, 1969; Tormcej and Nandakumar, 1986) have been carried
out to study heat transfer and fluid flow in rotating and non-rotating
coolant channels especially of the circular-type geometry while
researches (Bello-Ochende, 1985, Bello-Ochende, 1991; Abdd-
Wahed, Attia and Hifni, 1984) carried out on dliptic geometry is
limited to non-rotating systems. However, recent works (Bello-
Ochende and Lasode, 1995; Lasode, 2004) considered rotating
eliptic geometry of horizontal orientation.

The power output from electrical machines is to some extent
governed by the permissible temperature rise in the insulation
surrounding the rotor conductors. Although the forced circulation of
air commonly achieves cooling of these conductors over the rotor
periphery, there are advantages to be gained if the heat transfer is
effected through a suitable coolant flowing inside the conductors
themselves especially for large electrica generating machines such
asthosein Hydro-Electric Power Stations.

Morris (1981) has demonstrated a number of instances in
practice where the effect of rotation on the hydrodynamic and
thermal characteristics of channel-type flows may have important
consequences on the performance of cooling systems of prime
movers. He also critically reviewed the assorted literature available
on this generalized topic with a view to present it in a form, which
bridges the gap between the academic researchers on the one hand,
and the eventua industrial user on the other hand.

Morris (1965) conducted an investigation into the influence of
rotation on the laminar asymptotic velocity and temperature fields
obtained when fluid flows through a vertical tube, which rotates
about a paralld axis with uniform angular velocity, subjected to
uniform axial temperature gradient. He found out that rotation
induced a secondary free convection flow in the plane perpendicular
to the axis resulting in non-symmetrical axial veocity and
temperature profiles, which modify the resistance to flow and the
rate of heat transfer. The conservation equations are solved using a
series expansion in ascending powers of the rotational Rayleigh
number.

Several experimental works have been carried out to confirm the
theoretical analyses of the flow process and heat transfer in rotating
coolant channels of circular geometry. The earliest reported
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experimental study was undertaken by Morris (1964), and reported
in various forms by Davies and Morris (1965), Morris (1968). These
works, which provided data for water and glycerol respectively,
were originaly undertaken as a study of the performance
characteristics of a particular form of rotating closed-loop
thermosyphon.

Bello-Ochende (1985) has conducted a numerical study of
natura convection in horizonta €eliptic cylinders. The method of
discretization he proposed allows mesh points to fall on the cylinder
boundary so that the problem of irregular boundary is avoided. He
presented results for non-uniform heat flux applications a the
cylinder periphery in graphical forms for heat transfer and flow
regimes for some value of eccentricity and a range of Rayleigh
numbers. In another research work, Bello-Ochende (1991) studied
the thermal problem of transition-point heat transfer for forced
laminar convection in heated horizontal eliptic ducts, using the
concept of scae analysis. Results he obtained indicated that in the
neighborhood of the eccentricity, e=0.866, optimum results are
predicted for the generalized transition-point Nusselt number based
on the mgjor diameter and the corresponding generalized thermal
entrance length for the parameter space, 0.75<e<1.0. Abdel-Wahed
et al (1984) have done an extensive experimental investigation in
the area of laminar developing and fully developed flows and heat
transfer in an horizonta eliptic duct. The working fluid was air and
two thermal situations were considered; the first was when the duct
was having uniform temperature while the other was when the wall
temperature was linear. They presented hydrodynamic and thermal
results.

Bello-Ochende and Lasode (1995) carried out a parameter
perturbation analysis of laminar free and forced convective heat
transfer in rotating horizontal eliptic ducts. They investigated the
influence of Prandtl number and eccentricity on axia velocity and
temperature profiles. They also studied the effect of Prandtl number
and eccentricity on mean Nusselt number. Results they obtained
indicated optimum heat transfer at duct eccentricity, e=0.433.

Morton (1959) did a wonderful job in his study of buoyancy
force due to the earth’s gravitational field but with geometry of e=0
and a dtationary tube. Morton presented radial temperature
distribution, axial velocity and streamfunction, al in power series.

Adegun (1992) investigated laminar forced convective heat
transfer in an inclined eliptic duct using scale and perturbation
techniques. Thermal and hydrodynamic entrance problems were
also investigated using scale approach while perturbation approach
was used to analyze the fully developed region of the duct. Useful
results were obtained among which are that for optimum heat
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transfer a critical aspect ratio of 0.50 (e=0.866) is predicted and that
perturbation results indicate a considerable effect of inclination on
circular ducts and dlliptic geometry of e=0.433 while the effect is
negligible for the configuration for e=0.866.

Faris and Viskanta (1969) studied laminar combined forced and
free convection heat transfer in a horizonta tube using a
perturbation method. They presented approximate analytical
solutions as well as average Nusselt numbers graphically for arange
of Prandtl and Grashof numbers. Tormcg and Nandakumar (1986)
studied mixed convective flow of a power law fluid in horizontal
ducts. Lasode (2004) used parameter perturbation technique for the
analysis of laminar free and forced convection in rotating horizontal
liptic cylinders.

The present study is an investigation of mixed convective heat
transfer for upward flowing fluid in vertical eliptic ducts rotating
about a parale axis. A physica modd for the solution of the
problem is shown in Fig. 1. Particular attention is paid to the fully
developed flow regime in this study where the temperature and axial
velocity are far ahead of axial |ocations along the ducts where entry
effects could be fet. The governing equations of continuity,
momentum and energy transfer are solved using single parameter
perturbation technique. The technique is an approximate analytic
method in which the normalized axial velocity, temperature and
cross-flow stream function are expanded in power series using the
rotational Rayleigh number, Ra,, as the perturbation parameter. For
the dliptic tubes considered, a boundary coordinate,&, is devel oped
from the parametric equations of an dlipse for the solution of the
normalized governing equations to be valid a any boundary
location, for the Dirichlet problem.

Nomenclature

a,b = Semi — mgjor and semi — minor axes respectively

Ci, = Friction coefficient

C, = Specific heat at constant pressure

e = Eccentricity.

F (r,6) = A function specifying the temperature distribution in
the(r, g)-plane

g = Accéleration due to gravity

Ga, = Gravitational Rayleigh number

H = Distance between the axis of rotation and tube axis

i = Order of perturbation solution

K = Therma conductivity of the fluid

Nu (6),Nuy, = Peripheral local and mean Nusselt number
respectively

O =Tube axis.

O’ = Centre of the fixed frame of reference

p,P = Elemental fluid and pressure distribution respectively

P(r,8) = A function specifying the pressure distribution in the
(r,6) —plane

Pr = Prandtl number, u/a

r, rp, = Any radia distance from centre and to boundary,
respectively

R = Dimensionlessradius

Ra, = Rotational Rayleigh number

Re,, = Modified Reynolds number

Ro* = Rossby number

T, T, = Dimensiona loca and dimensional bulk temperature
respectively

T, = Wall temperature

u,v, w = Dimensional veocity in theradial, azimutha and axial
directions respectively

W, Z = Dimensionless axial velocity and distancein the z-
direction respectively
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Greek Symbol

o= Thermal diffusivity

/= Coefficient of thermal expansion

0= Angular velocity of tube

p = Density of fluid

&= Boundary coordinate

A Angle between normal to the tangent and the horizontal

&, = Axes displacement parameter

1,7, = Dimensionless local and dimensionless bulk
temperatures respectively

Hv = Dynamic and kinematic viscosities respectively

6= Anglein degrees

or=Axial pressure and temperature gradients respectively

= Streamfunction

2(6) = A form of the boundary coordinate, \E
V2 = Laplace operator
V* = Bi-harmonic operator

Physical Problem and M athematical Formulations

The physical modd and the cylindrical polar coordinate (r,6,2)

system are shown in Fig.1

For the flow condition, the following assumptions should be

noted.

e Flow islaminar and fully devel oped.

e Theédliptic duct is vertical and rotates in the parallel mode.

e Heated tube is treated and the thermal conductivity of the
tube materia is high enough to smooth out circumferential
variation in wall temperature.

e The fluid temperature distribution can be mathematically
stated as,

Ty=To+Z. 1)

due to the combined assumption of fully developed flow and
uniform axia heating. Equation (1) is applicable at the tube
wall meaning that the wall temperature will increase
uniformly in the direction of flow. At any axia location the
differencein the wall temperature, T,,, and any local value of
temperature in the flow will aso be functionally related to
the axial temperature gradient.

o With the exception of density, the fluid properties are taken
to be constant with temperature.
Because distances well away from inlet influences are being
considered, the pressure distribution is constrained to be of
theform

P=1z+p(r,6). 2

e |t is assumed that there are no chemical reactions, no heat

sources within the fluid, radiation is neglected and viscous
dissipation isignored.

The following non—-dimesionalization parameters are adopted
for the dependent and independent variables:

©)
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Figure 1. Physical model, coordinate axes and regions of the ducts.

The normalized governing equations are as follows:

Normalized Streamfunction Equation
1y Vi
R d(R0) R 06

Bﬂ Ra;Ro" 1 9(n.y) _
Re, RO(RO)

V4l//+
+Ra, €,

Where,

Vi = vz(vzy/) :

The Equation (5) aboveis a Biharmonic Operator.

Normalized Axial Veocity Equation

19y w)

4R 0.
RB(R6)+ =11 =

Normalized Energy Transport Equation

V277+Pr aly ) +W=0
R 9(R0)

The normalization procedure adopted highlights the following
dimensionless groups, which parametrically govern this problem.

2 4
Ra, = L7Hpral Rotational Rayleigh Number
av
Rey = _a_32 9P Modified Reynolds Number
4pv z
2
Ro" =2 %P Rossby Number
2HQpv 0z
4
Ga, = Pom Gravitationa Rayleigh Number
ov
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a ..
Ea= m Axis displacement parameter

Pr = v Prandtl Number
o

The rotationad Rayleigh number, Ra, emerges from the
centripetal buoyancy terms in the momentum equations. This is
similar to the Rayleigh number encountered by Morton (1959) in the
study of buoyancy force due to the earth’s gravitational field but
with the gravitational acceleration replaced by the centripeta
acceleration measured at the center line. The Rossby number, Ro'
has its origin in the coriolis acceleration terms. The modified
Reynolds number, Re, approximates to the usual through-flow
Reynolds number when the buoyancy effects are not included.

Solution Technique

The normalized governing equations are solved using a series
expansion in ascending powers of the rotational Rayleigh number,
Ra, This asymptotic series expansion is truncated at the second-
order, and therefore presents an approximate solution. This
technique was successfully used by Morton (1959); Morris (1965)
as well as Bdlo-Ochende and Lasode (1995). The need for the
satisfaction of the boundary conditions for different polar
coordinates at the boundary of the ellipse requires the consideration
of the eccentricity, e, and the angular position, 6. For the derivation
of the boundary coordinate, & the parametric equations of an elipse
areinvoked and is given as,

1- €2
= IJ—LJ )
1-e?cos? 6

Boundary Conditions

The normalized boundary constrains are as follows:
(i) wW y and 1 are zero when R:\/E, that is, at the

boundary.
(i) wWand n arefinitea R = 0, that is at the core of the
duct.
(iii) oy Loy aezeroa R= \/_ but finite at the centre of
R 'R 96

the eliptic duct.

The parameter perturbation technique adopted in the solution of
the problem gave rise to the power series representation of the
normalized governing equations which is expanded with rotational
Rayleigh Number, Ra,, asfollows:

(i) Stream function

2R Wi = Wo+ Ragy; + Raly, + .. ©)

M:

V=

(ii) Axia Veocity

>

W= ZRa,W Wp + Ra,W + RasWs, + ... (10)
i=0

(i) Temperature Field
n .
1= LRem =10+ Rag + RaZr, + . (11)
i=
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Substituting Egs. (9), (10) and (11) into Egs. (4), (6) and (7)
respectively, it is possible upon integrating the resulting cascade of
differential equations and application of the boundary constraints, to
arrive a the following solutions:

Zeroth-Order Solutions

(i) Zeroth—order Streamfunction

Wo=0 (12)

There can be no flow in the (r,6) — plane when Ra, =0, due to
the absence of circulation or secondary flow. This corresponds to a
no-heating condition.

(i) Zeroth—order Axia Ve ocity

W, = (5 - RZ)Rem (13)

(iii) Zeroth order Temperature

- '%“(352 4R+ RY) (14)
First-Order Solutions
(i) First-order Streamfunction

Re,, siné

RIL0&3 — 21£2R? +12R* - R8
4608 (5 1 R )

Y= (15)

(ii) First-order Axia Velocity

Rem2 cosé
1.843x10°

_Ren [o6 4 2052 3
R 27E°R° -1
576Ra, [ -~ %R+ 270 % ]

(iii) First-order Temperature

W, = R([f - R2‘49§3 ~512R% 1 190R4 — RGB +

(16)

22118400 _ (175+1125Pr )2R7 +(30+ 210Pr )&R® — (1+10Pr )R

__ GaRey 4 aae3n? 20h
ool 04Ra,[21]§ 304£°R? +10852R 1e¢RG+R3]

_ Reﬁwsﬂo{(%H 1325Pr )£°R— 735+ 3000Pr )R + (500+ 2600Pr JE2R® _}

17)

Second-Order Solutions

(i) Second-order Streamfunction

Thefinal solution contain numerical coefficients of an unwieldy
nature, therefore they have been grouped within summations signs
and actual valuestabulated in Table 1 below.

_ Rgysin26
27" 4608

1
2 7=
;l(C(Zr—l) + D(Zr—l) PI‘){K 2 jR(Zr—l) + i:(Qr +Dy Pr)§7_r R

R of 7 -
%LO«QZM) + D(25+1))PI’)§7 RZSH}

_ GaReysing | S (C(m+1) S Ramﬂ

4.42440"Ra, | u=0

RG" Rg,,cosd +
1.843a0* [ (q 2" R lﬂ

(18)
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(it) Second-order Axial Ve ocity (see Table 2 below for actual
values of coefficients)

= R"“'max { 8- rRZri|
(4608 B
. Ren’cos20| 3 [17 S) 2s1) . 10 ( o (o2
13m0 | e s P + 2 (oo g)* Fae ) PIET R
Ga, Re,“cosd| & g .
SO0 (e P I
Rey,” £, cos6 "
m{ 3 B R Pr R
RO’ Rey”sind )R+ _ Ga%Rep [ 5 20
N 9216 L 0(E<2V+1 )5 } 3.686x10°Ra, {Z (E(2x )5

(19)

(iii) Second-order Temperature (see Table 3 below for actual
values of coefficients)

Ren3 | 2 2\eo-r 2?
=—"——| >|Jy + Ky + Ly Pr R
2.123x107 Lo( n KoL Pk

19
Rem cos26 Z ( ( S—l) + K(Zs—l) Pr+ L(ZS—l) Prz),f[ 2 jR(s’3)

2 123x10’ 12
+ Z (Jz(s 3)+ Ko(s-3) Pr+Ly(s_3)Pr )5(12—S)R2(H)

20)
GaT Ren cose{ 7 -0 (2&1)} (
— | 2\ +K Pr R
2 123x10" Ra,? | i= o( (2t+1) T R (2t+1) 3
o eacose[ > 2)g(0-u) (2u+l)j|
—— | ¥ (aus1) + Kausa) Pr+ Lausa) Pr R
2.123x107 |u= 0( (2u+2)  F(2u+1) (2u+1) )§
Ro' Rem2 sing| 8 o v ZVH)}
| 2 Wavin) T Ky Pr
7.373x10* L? (v + Kiawe Pr S
200 2
GaTiRjn{zJ X§6 XRZX:|
3.686x10 RaT

The overall validity range for the solution presented is obtained
by the continuation procedure suggested by Tormceg and
Nandakumar (1986) in which the bisection method is incorporated.

Table 1. y, Coefficients.

s Casy Dezstyy r Cauy Dery
0 1.0315 3.3052 1 13223 4.1400
1 -24913 -8.1719 2 -2.0294 -7.826
2 19842  6.9006 Cy Do
3 -06380 -2.6040 3  0.1097 5.3864
4 0.1302 0.6770 4 0.9581 -2.2647
5 -00182 -0.01172 5 -0.3925 0.519
6 0.0015 0.0104 6 0.0312 -0.0545
7 00000 0.0003 7 -0.0015 0.0017

t Camy u  Cauny

0 0.0432 0 2986.08

1 -0.1125 1 -6365.03

2 0.1042 2 3800

3  -0.0451 3  -450

4 0.0117 4 30

5 -0.0015 5 -1

6 0.0000
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Table 2. W, coefficients .

r E s Epesy F2s1)
0 -0.6148 1 0.3029 1.0359
1 3.0625 2 -0.661 -2.07
2 -6.3406 3 03382 1.3043
3  7.0583 Ez(gz) Fz(gz)
4 -4.5609 4 0.0483 -
5 17125 5 016 -
6 -0.3448 6 -02939 -0.3483
7 0.0286 7 0133 0.915
8 -0.0008 8 -0.0298 -0.0145
9 0.0024 0.0011
10 -0.0001 0.0000
t  Eewy F () u  Eauy Fu+1)
0 -81.4559 79.1229 0 -0.0594 -0.1888
1 27739 159.7988 1 0.1289 0.4131
2 -272.7988 -120.000 2 -0.1038 -0.3405
3 178 52 3  0.0413 0.1438
4 -579 135 4 -0.008 -0.0326
5 705 1.68 5 0.0012 0.0056
6 -0.2857 -0.0571 6 -0.0001 -0.0007
7 0.0000 0.0000
8 0.0000 0.0000
\" E(2v+1) X E2><
0 -0.0024 0 -3651
1 0.0054 1 5275
2 -0.0047 2 -19.0
3 0.0022 3 3.000
4 -0.0006 4 -025
5 0.0001 5 0.001
6 0.0000
7 0.0000
Table 3. n; Coefficients.
s Jesy Kes1 Lesyy t Jewy Kty
1 0.0316 0.1999 0.2548 0 -25242 -6.4092
2 -00505 -0.3930 -0.6900 1 10.182 15.3173
3 0.0275 0.1984 04123 2 -11.5579 -17.036
4  0.007 -0.0483 0.1087 3 5.6833 12.7152
Jos3) Kas3a) Lasa) 4 -2225 -5.924
5 - 0.009 -0.0002 5 04825 1.4275
6 -0.0014 0.0051 0.1827 6 -0.042 -0.0943
7 -0.0025 -0.0006 -0.1168 7 0/0013 0.0042
8 0.003 0.0349 0.1352
9 -0.0009 -0.0054 -0.0466
10 0.0002 0.0002 0.0079
11 -0.0000 -0.0002 -0.0006
10 0.0000 0.0000 0.0000
U Jousy Ku+1) L u+1)
0 -0.0073 -0.0485 -0.0818
1 0.0143 0.107 0.1983
2 -0.0103 -0.0932 -0.1965
3 0.0042 0.0459 0.1096
4 -0.001 -0.0132 -0.0363
5 0.0001 0.0023 0.0079
6 -0.000 -0.0003 -0.0013
7 0.000 0.0000 0.0001
8 -0.000 -0.0000 -0.0000
9 0.000 0.0000 0.0000
v J (2v+1) K(2v+1) X Jx
0 -0.0028 0.0021 0 6.2614
1 0.0024 0.0108 1 -9.0375
2 -0.0002 0.0177 2 32594
3 0.0008 0.0067 3 -0.5278
4 -0.0002 0.0024 4 0.0469
5 0.0000 0.0006 5 -0.0025
6 -0.0000 -0.0001 6 0.0001
7 0.0000 0.0000
8 -0.0000 -0.0000
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Peripheral L ocal Nusselt Number

The Nusselt number is a dimensionless quantity indicative of the
rate of energy convection from the surface. For the conduction
referenced heat transfer with respect to the bulk temperature and
considering the normal temperature gradient, we have the periphera
local Nusselt number, Nu (), as,

_209m

NU(H) = T ﬁ| R=x(6) COS(/?, - 9) (21)
where,
277(9)
[ n(R.6W(R 6)RIRdE
o = 20700) (22)
I m(ROW(R,0)RARIE
00
and
;((6’) = \/E (23)
M ean Nusselt Number
The mean Nusselt Number is obtained from,
N LN (6)do on
n =57 I\ (24)

Thetrapezoidal rule was used to evaluate Eq. (24) above.

Friction Coefficient

The normalized form of the friction coefficient (the parameter
indicating the influence of rotation on the established resistance to
flow using the Blasius friction factor) is given by:

2!_2!
Cor = 47°\1-€e” |Rey

21(6) 2
{ | jWRdeH}

0 0

(29)

Discussion of Results

Figures 2a and 2b present the typical illustrations of temperature
and axial velocity perturbation components respectively, along the
major diameter for e=0.433.

il |51 order
——o——Ind order

Resultant

+, Temperatuge

a) Temperature

Figure 2. Typical illustration of temperature and axial velocity perturbation
components along the major diameter. (Ra,=10, Re,=50, Pr=1, Ro =1,
€,=1/48, €=0.433, Ga~1).
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------ Oth arder
—8—1ist order
e 21l ordar
Resultant

:-. Velocity

-1 0.5

1

theta = 180 theta =0

b) Axial Velocity
Figure 2. (Continued).

The zeroth-order component is parabolic, and it is the one
usually encountered in pure forced convective flows. The first- and
second-order perturbation components are sinusoidal in nature. The
resultant shows the effects of the first- and second-order
components on the zeroth-order component. The sinusoidal nature
of the first- and second-order perturbation components account for
the shift in the maximum loca values of the temperature and axia
velocity profiles.

The effects of rotationa Rayleigh number, Ra, on the
temperature and axial velocity distributions can aso be noticed. The
tendency for the warmer and less dense fluid to move towards the
outer region of the tub€'s cross-section under the influence of
centripetal buoyancy is clearly shown. The centrifugal buoyancy is
what is really responsible for the distortion of the temperature and
axial velocity profiles. At the maximum local temperature value, the
contributions of the zeroth-order, first-order and second-order are
99.23%, 0.41% and 0.36% respectively while at the maximum axial
velocity value; the contributions are 99.72%, 0.25%, and 0.03%
respectively. Considering the rigour involved in obtaining the
second-order coefficients and its percentage contribution to the
entire solution, obtaining higher order terms may not significantly
ater the accuracy of theresults.

However, the first- and second-order perturbation components
are insignificantly small when computed along the minor diameter,
and only the zeroth-order components contribute to the axial
velocity and temperature distributions.

Figures 3a and 3b present the typica effect of eccentricity on
the temperature and axial velocity profiles respectively aong the
minor diameter. The results show a sudden collapse of the
maximum local value of temperature at e=0.866, almost flattens out,
compared to the corresponding axia velocity profile. Moreover, it
can be noticed that the axia velocity profile shows less drastic
response to increase in eccentricity than the temperature field.
While maximum local temperature at e=0.866 collapses to 7.1% of
the corresponding local maximum value at e=0, the maximum loca
value of the axia veocity at e=0.866 collapses to 33.3% of the
corresponding local maximum value at e=0.

J. of the Braz. Soc. of Mech. Sci. & Eng.
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a0

e=0

Temperaturg

0.5 1 1.5

theta = 90
a) Temperature
£0
= E —=
S 3 —a—e=02
% 50 3 — = 0.433
2 —4—e =06

g = 0.866

-1.5 -1 -0.5 0 0.5 1 1.5
theta = 270 theta = 90
b) Axia Velocity
Figure 3. Effect of Eccentricity on temperature and axial velocity
distributions along the minor diameter. (Ra,=10, Re,=50, Pr=1, Ro'=1,
€,=1/48, Gas~1).

Figures 4a and 4b present the effect of Prandtl number, Pr, on
the temperature and axial velocity profiles respectively for the range
of parameter shown. The results show that increase in Prandtl
number, Pr, manifests in a marked shift of the temperature profile
away from the origin and marginal increase in the maximum local
value while the axial velocity profile shows no observable response.
This shows that axia velocity profiles are insensitive to Prandtl
number in the range of Prandtl number considered, that is, Pr = 1 to
5. This may be attributable to the influence of opposing gravitational
field on the upward flowing fluid.

+

—

Temperature

-1.5 A 0.5 0 0.5 1 1.5

theta = 180 theta=0
a) Temperature

Figure 4. Effect of Prandtl number on temperature and axial velocity
distributions. (Ra=5, Rem=20, Pr=1, Ro =1, €,=1/48, €=0.433, Ga=1).
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{1 e Ra =5
z - " Ra, =10
g 20 4 Ra, =15
=
=
4.5 - 0.5 0 0.5 1 1.5
theta = 180 theta=0

b) Axial Velocity
Figure 4. (Continued).

Figures 5a and 5b show the effect of rotationa Rayleigh
number, Ra, on the temperature and axia velocity profiles
respectively along the major diameter for solutions up to the second
order for duct eccentricity, e=0.433. Increase in the rotationa
Rayleigh number, Ra,, which is the measure of heating and rotation,
results in the gradual shift of the points of maximum vaue of the
local temperature away from the origin and pronounced increase in
the maximum value. The secondary flow (convective flow induced
due to rotation) increases correspondingly and the temperature
profiles become digtinctly different from those of pure forced
convection. Figure 5b indicates that as the rotational Rayleigh
Number, Ra,, increases, the deformation of the axia velocity and its
deviation from the parabolic nature for no-heating condition is
margind. This may aso be attributable to the opposing gravitational
field.

Temperature

1.5 -1 -0.5 [ 0.5 1 1.5

theta= 180 theta=0
a) Temperature
......................... Ra =5
Ra, =10

1.5 -1 0.5 0 0.5 1 1.5
theta = 180 theta=0
b) Axial Velocity

Figure 5. Effect of rotational Rayleigh number on temperature and axial
velocity distributions (Re,=20, Pr=1, Ro =1, &,,=1/48, €=0.433, Ga,=1).
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Figures 6a and 6b show the effect of modified Reynolds
number, Re, on the temperature and axia velocity profiles
respectively, along the major diameter up to the second-order
solution for an elliptic tube of eccentricity, e=0.433 respectively.
The genera latera shifts in the temperature and axia velocity
profiles away from the origin, due to the influence of heating and
rotation are noticeable. There are corresponding increases in the
maximum values of the loca temperature and axia velocity as the
modified Reynolds number increases.

Temperature

-1.5 -1 -0.5 0 0.5 1 1.5

theta = 180 theta=0
a) Temperature

eB.

1.5 -1 -0.5
theta = 180
b) Axial Velocity
Figure 6. Effect of modified Reynolds number on temperature and axial
velocity distributions (Ra,;=10, Pr=1, Ro'=1, £,=1/48, e=0.433, Ga,=1).

Figures 7a and 7b show the effect of duct eccentricity on
peripheral local Nusselt number at various angular positions under a
low condition of heating and rotation, Ra,=5, and a higher condition
of heating and rotation, Ra=10 respectively. Figure 7a shows
oscillations of the peripheral local Nusselt number. The highest
occurring at angular positions, 0°, 180° and 360° while the minimum
values are at 90° and 270°. Figure 7b revedls that due to the increase
in heating and rotation, the degree of oscillation of the peripheral
local Nussdlt number reduces. The local value at 0° and 360° jumps
up compared to Fig. 7a while the value at 180° actually reduces.
This may be attributed to the influence of buoyancy forces and
secondary flow effects.
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Figure 8. (Continued).
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Figures 9a, 9b and 9c show the effect of Prandtl number, Pr, on
the peripheral local Nusselt number for eliptic ducts of e=0,
€=0.433 and e=0.866 respectively. Figure 9a (e=0) shows reductions
in peripheral local Nusselt number for all angular positions between
0%nd 360°, where the maximum value occurs for the range of
Prandtl number, Pr, considered (that is, Pr = 1 to 5). Figures 9b
(e=0.433) and 9c (e=0.866) show aform of cosinusoida variation of
peripheral local Nusselt number with angular positions for the range
of Prandtl number, Pr, under consideration. Moreover, Fig. 9c
(e=0.866) revesls that the peripheral local Nusselt number seem to

Local Nusselt Number
o = N W kR OO N OO

0 50 100 150 200 250 300 350 400 be insensitive to changes in the Prandtl number, Pr. This may be an
Angle (degree) important result for designer of rotating vertica dliptic heat
b) Rotational Rayleigh Number, Ra, = 10 exchanger who would like to use any available fluid as the heat

Figure 7. Effect of eccentricity on local Nusselt number (Rem=50, Pr=1, transfer fluid since the Prandtl Number isafluid property.

Ro*=1, ga=1/48, Gat=1). 6
5, 3
Figures 8a and 8b show the plot of mean Nusselt number against E 5 E
duct eccentricity at rotational Rayleigh number, Ra;=5 and Ra,=10 3 43
respectively. Figure 8a indicates that mean Nussdt number is =]
invariant with eccentricity up to e=0.433, beyond which it drops § 3-
sharply. However, for Ra=10 (Fig. 8b), mean Nusset number 3 53
monotonically decreases with eccentricity with a change to higher = 1 Pr=1
gradient of decrease noticeable at e=0.6. The optimum hest transfer s+ o Pr=3
seems to be at e=0. The values of mean Nusselt number is higher for 4 =T TPr=g
Ra,=10 than for Ra,=5 for each eliptic geometry considered. This 0 T
result is different from that of Bello- Ochende and Lasode (1995) in 0 50 100 150 200 250 300 350 400
which optimum heat transfer was indicated at e=0.433 for the Angle (degree)
horizontal configuration they considered. The difference can be a) Eccentricity, e=0
atributed to the effect of gravitational buoyancy included in this Y.
analysis. 7 5
5 2 3
3 53
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£ @ E
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a) Rotational Rayleigh Number, Ra,=5 Figure 9. Effect of Prandtl number on local Nusselt number (Ra;=5,

Ren=30, Ro'=1, £,=1/48, Ga;=1).
Figure 8. Effect of eccentricity on mean Nusselt number (Re,=50, Pr=1,

Ro'=1, £,=1/48, Ga,;=1). Effect of eccentricity on mean Nusselt number

(Ren=50, Pr=1, Ro'=1, £,=1/48, Ga=1).
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Figure 9. (Continued).

Figures 10a and 10b show the effect of modified Reynolds
number and eccentricity on friction coefficient respectively. From
Fig. 10a, it is seen that the increase in modified Reynolds number
results to a decrease in friction coefficient and that the geometry of
the duct has a pronounced effect on the friction coefficient. Figure
10b shows the plot of friction coefficient against the tube
eccentricity for heating, at Ra,=5 and Ra,=10, conditions. The result
indicates monotonic increase in friction coefficient for both
conditions. For the dliptic ducts, the numerical values of the friction
coefficient for Ra,=10 is lower compared to the values for Ra,;=5
showing that heating and rotation reduce friction coefficient, though
the two curves seems to merge.

-
[=;]

-

' e=0

[

o N B OO N A

Friction Coeff. (1x10%

Reynolds Number, Rep,

Figure 10a. Effect of modified Reynolds number on friction coefficient at
various eccentricity (Ra=5, Pr=1, Ro =1, €,=1/48, Ga=1).
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Figure 10b. Effect of eccentricity on friction coefficient at various
rotational Rayleigh number(Re,=50, Pr=1, Ro =1, g,=1/48, Ga,=1).
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Conclusion

This anaysis is valid for low vaues of rotational Rayleigh
number, Ra,. At the fully developed flow region considered, it is
shown that for rotating vertical elliptic ducts, the axia velocity and
temperature profiles as well as Nussdt number and friction
coefficient are functions of rotational Rayleigh number, Ra,
modified Reynolds number, Re,,, and Prandtl number, Pr.

The results show that, for a vertica dliptic duct with upward
flowing fluid rotating about a parald axis, the perturbation
parameter, Ra,, is responsible for the lateral shift of the temperature
and axial velocity profile away from the origin aong the maor
diameter and its deviation from the usua parabolic profile
associated with pure forced convection due to secondary flow
effects and buoyancy forces. Along the minor diameter, these effects
areinsignificant. Axial velocity profiles are insensitive to rotationa
Rayleigh number, Rat and Prandtl number, Pr, changes along the
magjor diameter. Modified Reynolds number increases manifest in
increases in the maximum value of temperature and axia velocity
profiles. The results aso predict that the peripheral local Nussdt
number is insensitive to Prandtl number changes for duct
eccentricity, e=0.866. This is an important result for a designer of
rotating vertical dliptic heat exchanger. For vertical eliptic ducts
rotating about a parallel axis, mean Nusselt number is invariant with
eccentricity up to e=0.433 for low rates of heating and rotation, and
monotonically decreases with eccentricity for high heating rates.
Optimum heat transfer is experienced at duct eccentricity, e=0
(circular duct).

The result is in agreement with the published works of Morris
(1981) and Morris (1965) for rotating circular ducts.
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