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Proper Orthogonal Decomposition for
Model Reduction of a Vibroimpact
System
The application that inspires this work is the percussion drilling. This problemhas impacts
and presents uncertainties. In this first analysis the focus is on the construction of an
efficient reduced-order model to deal with the nonlinear dynamics dueto the impacts. It
is important to have an efficient reduced-order model to perform the stochastic analysis.
The simplified full model is constructed using the finite element method, and three different
bases are used to construct the reduced-order models: LIN-basis (composed by the
normal modes of the associated linear problems), PODdir -basis (obtained through proper
orthogonal decomposition - direct method) and PODsnap-basis (obtained through proper
orthogonal decomposition - snapshot method). The shapes of the elements of LIN-basis,
PODdir -basis, and PODsnap-basis are compared. One important conclusion is that the
information necessary to represent the details of a vibroimpact dynamics, measured by the
proper orthogonal values, is more than the usual 99% recommended.
Keywords: model reduction, proper orthogonal decomposition (POD), Karhunen-Loève
expansion, vibroimpact system, nonlinear dynamics

Introduction

The application that inspires this work is the percussion drilling
(Batako et al. (2003); Wiercigrocha et al. (2001); Aguiar (2010)).
The hard and expensive conditions which is subjected machinery
performing drilling justify its modeling and study. These are systems
with impacts and uncertainties (within the parameters of the system,
for example).

The focus of the present analysis is on the construction of
an effective reduced-order model for a vibroimpact system, and
a simple model of a bar impacting an obstacle is used for this
purpose. It is important to have an efficient reduced-order model for
a future stochastic analysis. There are several approaches concerning
reduced-order modeling; the present work is concerned with model
reduction through the modal basis and through the proper orthogonal
decomposition (POD). The LIN-basis (basis composed by the normal
modes of the system) is the best basis for a linear dynamical system
(Trindade et al. (2005)), but the basis generated by POD has the
capacity to describe the phenomenon of interest (linear or nonlinear
dynamics, for example) in a reduced dimension that is able to capture
most of the phenomenon (Holmes et al. (1996)). It can be used as a
tool for signal analysis, imaging processing, and other applications.
In Mechanical Engineering its first applications were in turbulence
(Lumley (1970)). POD-basis is the best basis of projection for
the Galerkin method in the sense that it minimizes the average
squared distance between the original data and its reduced linear
representation. The group of PUC-Rio has been working on this
subject for a while (Sampaio and Wolter (2001); Wolter (2001);
Trindade and Sampaio (2001); Wolter et al. (2002)). Recently three
works have been published by Bellizzi and Sampaio (2006, 2009a,b).

Vibroimpact systems are relevant (Ibraim (2009)), particulary
for the modeling of percussion drilling (Batako et al. (2003);
Wiercigrocha et al. (2001)). The objectives of this paper are: 1)
to present and compare, in a didactic and detailed form, these
reduction techniques for a simple vibroimpact system, 2) to quantify
which strategy is better to be used in the future for the stochastic
analysis, and 3) to investigate whether the use of 99% (or 99.9%)
of the information in the reduced-order model (suggested by Sirovich
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(1987); Ma et al. (2008); Azeez and Vakakis (2001); Trindade et al.
(2005)) is sufficient to represent the details of the impact.

The article is organized in the following manner. First, the
formulation of the problem is presented, then the dynamical system is
discretized by means of the finite element method (FEM). The model
is reduced using: LIN-basis (direct method and snapshot method).
The numerical results are later discussed, where the efficiency of
the bases used in the Galerkin method is analyzed. Finally, the
concluding remarks are made. Two appendix give more information
about the numerical simulations used for the construction of the POD-
basis.

Nomenclature

A = beam cross sectional area
ai = i-th expansion coefficients
c = damping coefficient
d = beam diameter
e(%) = percent error
E = elasticity modulus of the material
E[·] = expected value
f = excitation force
gap = distance between bar–obstacle
ki = obstacle stiffness
L = length of the beam
M = number of time instants
N = Newton (unit of force), number of test functions, or number

of spatial points, depending on the context
Pimp = impact force
PL = force at the end of the beam
R(x,x′) = autocorrelation
u = longitudinal displacement field of the bar
V = admissible space
f = force vector
u = response vector
[C] = damping matrix
[K] = stiffness matrix
[M] = mass matrix
[R] = autocorrelation matrix
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Greek Symbols

ωi = i-th natural frequency
φ = test function
ρ = volumetric density of the material

Mathematical Model

The simplified model considered in the present analysis is
sketched in Fig. 1.

Figure 1. Scheme of a bar impacting an obstacle.

Let u be the longitudinal displacement of the bar,E the elasticity
modulus of the material,ρ the volumetric density of the material, and
A the beam cross-sectional area. The boundary conditions are given
by

u(x= 0) = 0 (essential)

EA
∂u
∂x

(x= L) = 0 (natural),
(1)

wherex = 0 is the fixed end andx = L is the free end. The initial
conditions are the following:

u(t = 0) = u0
∂u
∂ t

(t = 0) = v0 . (2)

We assume thatA, E and ρ are constants inx. A dissipation
term (viscous damping) and an excitation force are added to the
formulation. The equation of motion for this model is given by

−EA
∂ 2u(x, t)

∂x2 +c
∂u(x, t)

∂ t
+ρA

∂ 2u(x, t)

∂ t2 = f (x, t,u) , (3)

wherec is the damping coefficient andf is the excitation force:

f (x, t,u) = PL(x, t)+Pimp(x, t,u) , (4)

in which PL is an imposed sinusoidal force andPimp is the percussive
force (detailed in the sequence). The bar is excited on its free
extremity and the movement of the bar is limited by an obstacle. The
impact is modeled by an elastic force, proportional to the obstacle
stiffness; and it introduces a nonlinearity into the system. Between
impacts the system is linear and the impact redistributes the energy
in the system among the different modes. The forcesPL andPimp are
written as

PL(x, t) = Pf sin(ω f t)δ(x−xL) , (5)

Pimp(x, t,u) = Pc(u, t)δ(x−xL) , (6)

in which

Pc(u, t) =−γ [ki(u(L, t)−gap)]

{
γ = 0 i f u(L, t)< gap
γ = 1 i f u(L, t)> gap

,

(7)

whereu(L, t) is the displacement atx = L, gap is the distance from
the bar to the obstacle andki is the obstacle stiffness. Observe that the
dependence ofPL onxL is showed by the subscriptL.

Finite Element Method

The element used in the finite element discretization is linear, and
the discretized system is given by:

[M]ü(t)+ [C]u̇(t)+ [K]u(t) = f(u(t), t) , (8)

where[M] is the mass matrix,[K] is the stiffness matrix,[C] is the
proportional damping matrix,u is the response of the system andf is
the force vector that includes the excitation force and the force due to
the impacts. FEM is widely used and it is very effective. Nevertheless,
depending on the problem, one can deal with huge matrices. Besides
that, a nonlinear analysis can be very time consuming. To diminish
these problems, huge matrices and large simulation time, we reduce
the model using appropriate bases of projection.

Reduced-Order Model

Matrices[M], [C] and[K] have dimensionm×m. Considering[Q]
with dimensionm×n (n<m), composed by independent vectors, one
introduces the change of variables:

u(t) = [Q]a(t) . (9)

Then, Eq. (8) becomes:

[M][Q]ä(t)+ [C][Q]ȧ(t)+ [K][Q]a(t) = f([Q]a(t), t) . (10)
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Matrix [Q] is composed bym orthogonal vectors that generate
a reduction subspace into which the dynamics will be projected.
Projecting the dynamics on the subspace generated by the new basis:

[Q]T [M][Q]ä(t)+ [Q]T [C][Q]ȧ(t)+ [Q]T [K][Q]a(t) =

= [Q]T f([Q]a(t), t) ,

(11)

which can be written as

[Mr ]ä(t)+ [Cr ]ȧ(t)+ [Kr ]a(t) = [Q]T f([Q]a(t), t) , (12)

where the reduced matrices are[Mr ] = [Q]T [M][Q], [Cr ] = [Q]T [C][Q],
and[Kr ] = [Q]T [K][Q]. Matrix [Mr ] has dimensionn×n, thus, the size
of the matrices are reduced fromm×m to n×n, wheren< m. One
can expect to solve the time-integration problem much faster with the
reduced-order model, although it is not assured (Ritto et al. (2011)).

Modal basis

The modal basis can be used as trial functions in the Galerkin
method. If a linear system with proportional damping matrix is the
one analyzed, then the basis generated by the normal modes are
the optimum basis (Trindade et al. (2005)). When dealing with a
nonlinear problem one faces a difficulty, because there is no such
thing as normal modes. Of course, one can associate to a nonlinear
model a linear one, and use the normal modes of the linear problem
to construct the reduced-order model.

The normal modes and the natural frequencies can be found by
solving the following characteristic value problem:

(−ω2
i [M]+ [K])φi = 0 , (13)

whereωi is thei-th natural frequency andφi is thei-th normal mode.
LIN-basis is the basis composed by these normal modes. For a bar
fixed at one end and free at the other, they can also be calculated
directly by the analytical expression (Blevins (1993)):

φi(x j ) = sin

[
(2i−1)π

2L
x j

]

, (14)

wherex j are the node points.

Proper Orthogonal Decomposition (POD)

POD can be used as trial functions in the Galerkin method and
it is the optimum basis (in the least square sense, see Holmes et al.
(1996)) to represent a dynamical problem. Hence, fixing the first
N components of the basis, no other linear decomposition (withN
components) will better represent the dynamics than POD. It should
be noticed that not necessarily the time-integration will be solved
faster using POD-basis (Ritto et al. (2011)).

The system response is modeled as a second-order stochastic
process. There are two important assumptions: the process is
stationary in time and ergodic (Holmes et al. (1996)).

POD-basis is sensitive to loads, which means that dynamical
responses must be obtained, for instance, for different ranges of
excitation (e.g., 100N < Pf < 200 N). In this case, POD-basis is

supposedly valid to represent systems which are excited in this force
band.

As shown by Sampaio and Wolter (2001), there are two methods
for constructing POD-basis: the direct method and the snapshot
method.

Direct method

Let u(·, t) be a vector field inΩ ⊂ R
3 andt ∈ R, i.e.,u(x,y,z, t) .

Decomposingu in two parts: one invariant in timeE[u(·, t)] and
another with zero meanv(·, t):

v(·, t) = u(·, t)
︸ ︷︷ ︸

response

−E[u(·, t)]
︸ ︷︷ ︸

mean

, (15)

then, v(·, t) is a stochastic process with zero mean and, as a
consequence, its correlation is equal to its autocorrelation (Papoulis
(1991)). If v is real, then the spatial autocorrelation of two points is
defined by:

R(x,x′) = E[v(x, t)v(x′, t)] . (16)

Using the ergodicity hypothesis, one may write:

R(x,x′) =
1
τ

∫ τ

0
v(x, t)v(x′, t)dt , (17)

where τ is the duration of the analysis. The eigenvalues (or
proper orthogonal values, POVs) and the eigenfunctions (or proper
orthogonal modes POMs) are computed solving the following
eigenvalue problem:

∫

Ω
R(x,x′)ψk(x

′)dx′ = λkψk(x) . (18)

Considering the discretized field:

u(xi ,y j ,zk, t) , (19)

wherei, j,k assume values from 1 toNx,Ny,Nz respectively. For each
instant of time there areN sample values,N = 3×Nx×Ny×Nz. The
number 3 multiplying the expression is due to the three dimensional
field (ux, uy and uz). In the present application there is only one
important dimension and one dimensional field, which arex andu,
therefore,N = Nx.

The sample can be ordered:u(x1, ·),u(x2, ·), ...,u(xN, ·). The
dynamical system displacement is experimentally measured or
numerically calculated inN points andM instants.

[U ] = [u(x1, ·) u(x2, ·) ... u(xN, ·)]=








u(x1, t1) u(x2, t1) ... u(xN, t1)
. . . .
. . . .
. . . .

u(x1, tM) u(x2, tM) ... u(xN, tM)









.
(20)

Using the stationarity and ergodicity assumption, the variation of
the field with respect to the mean value is:
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[V] = [U ]−
1
M














M

∑
i=1

u(x1, ti)
M

∑
i=1

u(x2, ti) ...
N

∑
i=1

u(xN, ti)

. . . .

. . . .

. . . .
M

∑
i=1

u(x1, ti)
M

∑
i=1

u(x2, ti) ...
M

∑
i=1

u(xN, ti)














.

(21)

The autocorrelation matrix is then constructed:

[R] =
1
M

[V]T [V] , (22)

where the matrix [R] is symmetric by construction. The discretized
eigenvalue problem is given by

[R]ψk = λkψk , (23)

which is the discretized version of Eq. (18). The eigenvectorsψk
(POMs) generate the PODdir-basis, and the POVs are the eigenvalues
(λk) of matrix [R]. Note that the dimension of matrix[R] depends
only on the spatial discretization, but not on the time discretization.
Therefore, the direct method is recommended when the spatial mesh
is coarse and many instants are needed in the time-discretization to
capture the system dynamics.

The algorithm to implement this kind of decomposition can be
summarized by the following steps:

• Discretize the displacement field inM instants and inN space
points,[U ]; see Eq. (20).

• Compute the zero-mean response,[V]; see Eq. (21).

• Construct the autocorrelation matrix[R] (N×N); see Eq. (22).

• Solve the eigenvalue problem given by Eq. (23) to get the POMs
and POVs.

Snapshot method

To compute the POMs using the direct method, it is necessary
to solve an eigenvalue problem for matrix[R] (Eq. (22)). This
matrix has dimensionN × N (related to the spatial discretization).
The question that arises is if it is possible to compute the POMs
solving an eigenvalue problem of another matrix ([D]) with dimension
M×M (related to the time discretization). The answer is the snapshot
method.

The goal is to computeψ without usingR directly. For this
purpose, substituting Eq. (17) into Eq. (18):

∫

Ω

1
τ

∫ τ

0
v(x, t)v(x′, t)dtψk(x

′)dx′ = λkψk(x) , (24)

which can be rewritten as:

1
τ

∫ τ

0
v(x, t)

∫

Ω
v(x′, t)ψk(x

′)dx′dt = λkψk(x) . (25)

Therefore,ψk can be written as:

ψk(x) =
∫ τ

0
v(x, t)

1
τλk

∫

Ω
v(x′, t)ψk(x

′)dx′dt . (26)

Now let

Ak(t) =
1
τλk

∫

Ω v(x′, t)ψk(x′)dx′

−→ ψk(x) =
∫ τ
0 v(x, t)Ak(t)dt ,

(27)

which means thatψk(x) is a linear combination ofv(x, t). For a
finite number of instantstm (m= 1,2, ..,M), wheretm = (m− 1)∆t,
a snapshot is defined as:

v(m) = v(·, tm) . (28)

The value ofAk is still unknown. To calculate it, one should
substitute Eq. (27) into Eq. (25):

1
τ

∫ τ
0 v(x, t)

∫

Ω v(x′, t)
∫ τ
0 v(x′, t ′)Ak(t

′)dt′dx′dt

= λk
∫ τ
0 v(x, t)Ak(t)dt .

(29)

which can be rewritten as:

∫ τ

0

∫ τ

0
Ak(t

′)
1
τ

∫

Ω
v(x′, t)v(x′, t ′)dx′dt′dt = λk

∫ τ

0
Ak(t)dt . (30)

Now let

D(t, t ′) =
1
τ

∫

Ω
v(x′, t)v(x′, t ′)dx′ , (31)

thus,

∫ τ

0

∫ τ

0
Ak(t

′)D(t, t ′)dt′dt = λk

∫ τ

0
Ak(t)dt . (32)

Discretizing the above equation, one has

[D]Ak = λkAk . (33)

Hence, the POMs (ψk) can be computed using Eqs. (32) and (27).
Summarizing what has to be done for the construction of the POD-
basis using the snapshot method: first, matrix[D] is computed using
[V] (see Eqs. (31) and (21)):

[D] =
1
M

[V][V]T . (34)

It has dimensionM×M, instead ofN×N as matrix[R] (see Eq. (22)).
The eigenvalues of[D] are the POVs, but the POMs are computed
using the following equation:

ψk = [V]TAk , (35)
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which is the discretized version of Eq. (27), whereAk are the
eigenvectors of matrix[D]. The POMsψk are linear combinations
of the snapshots, which are the lines of matrix[V].

Note that the dimension of matrix[D] depends only on the
number of snapshots; it does not depend on the spatial discretization.
Therefore, the snapshot method is recommended when the spatial
mesh is fine and there are not many instants, as in rapidly decaying
processes.

The algorithm to implement this kind of decomposition can be
summarized by the following steps:

• Calculate matrix[D] (dimensionM×M) using[V]; see Eqs. (21)
and (34).

• Compute the eigenvalues (POVs) and the eigenvectors of matrix
[D]; see Eq. (33).

• Calculate the POMs using the eigenvectors of[D] (which are
Ak) and[V]; see Eq. (35).

Numerical Results

The system of ordinary differential equations is numerically
integrated through the routineode45, which is based on Runge-Kutta
(Butcher (2003)) method of fourth an fifth order. Theode45uses an
adaptive time-step to compute the time response. The maximum error
allowed was 10−6. A ∆t equal to 10−5 is used to visualize the result.

The computer used to run the simulations was a Pentium(R) (32-
bits), 2 GB RAM and 3.2 GHz. Figure 1 represents the bar considered
in the simulations. Table 1 shows the values of the parameters used
for the simulations.

Table 1. Data used in the simulations.
Length,L = 1 m
Diameter,d = 100mm
Elasticity modulus,E = 200GPa
Density,ρ = 7850kg/m3

Damping factor,c= 10000Ns/m2

Obstacle stiffness,ki = 1e11N/m
Distance between bar-obstacle,gap= 0.1µm

Excitation force: Pf sin(ω f t), Pf = 5000 N andω f = 2π260
rd/s. The error analysis is made by using the following norm:

‖u(t)‖=

√
∫

Ω
(u(x, t))2dx+

∫

Ω

(
∂u(x, t)

∂x

)2

dx.

The percent error is calculated by the formula:

e(%) =
100

t1− t0

∫ t1

t0

(
‖u(t)n−u(t)n−1‖

‖u(t)n‖

)

dt , (36)

whereun is the approximation of the response withn elements of the
basis,un−1 is the approximation of the response withn−1 elements,
and[t0, t1] is the duration of the analysis.

General response

The system considered in this paper is simple, but the same
procedure can be performed for more complicated situations as it was
done in Trindade et al. (2005). One motivation to study a vibroimpact

system is its applications on drilling systems. In this section we show
some general aspects of the dynamical response.

Figure 2 shows the dynamical response and the impact forces at
x= L; the forces due to the impact are approximately 5000N (peak).
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Figure 2. (a) Dynamical response at x = L (the dashed line shows the
obstacle position) and (b) force due to impact at x= L.

Figure 3 shows the dynamical response close to the impact region
for two different damping coefficients. Whenc= 105 Ns/m2 one can
see how the reflection waves alter the movement of the bar (steps),
but whenc= 106 Ns/m2 the structure is overdamped.

At this point, we have presented some general aspects of the
vibroimpact dynamics. In the remainder of this section the properties
of each of the methods proposed to construct the reduced-order model
are compared.

FEM, LIN-basis, and POD comparison

The dynamical response was calculated and the error (Eq. (36))
was computed varying the number of elements of the basis. As a
matter of organization, the details on how the POD-bases have been
generated are found in Appendices A and B. It should be noted that the
sample needed to construct a POD-basis does not need to be so large.
For the problem analyzed, an autocorrelation matrix of dimension
1000 x 1000 was good enough (see the Appendices A and B).

Figure 4 shows the convergence of the approximation of the
response. For an error of 2% it is necessary 150 finite elements, 80
normal modes and 40 proper orthogonal modes (POMs) to represent
the problem.
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Figure 3. Impact detail of the response of the system for c= 105 (a) and 106

Ns/m2 (b). The dashed line shows the impact location.
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Figure 4. Convergence comparison for three different reductio n bases: FE,
LIN-basis, and POD-basis.

In Fig. 5 one can notice that the two convergences (direct and
snapshot) look very alike. For an error of 1% it is necessary 50 POMs
from both POD-direct, and POD-snapshots.

A comparison between POMs and normal modes is done in Figs.
6 (PODdir) and 7 (PODsnap). Both POMs and normal modes are
zero atx = 0 and derivatives equal zero atx = L. The modes were
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0

1

2

3

4

5

6

7

Number of empirical modes

pe
rc

en
t e

rr
or

 

 

POD−direct
POD−snapshot

Figure 5. Convergence comparison for POD-direct and POD-snap shots.

normalized to have value one atx = L. POMs are different from
normal modes, but their derivatives are even more different, which
is an important fact since the mode derivatives are used to construct
matrix [K].

The shapes of the normal modes are given by the sinus function.
On the other hand, the shape of the POMs are given by the response of
the nonlinear dynamics. This is the reason why they can capture the
nonlinearities of the dynamics. Note that the fortieth POM represents
a movement where there is more restriction to move close to the
impact region.

The two first POMs obtained by POD-direct (Fig. 6) and POD-
snapshots (Fig. 7) are very close to each other. They are the modes
that have the larger contribution to the dynamics (they are related to
the two highest POVs). But the other POMs are different, as shows
the fortieth POM. The POMs depend on the sample used to construct
the basis. Table 2 shows the first POV (Proper Orthogonal Values)
from both POD-direct and POD-snapshots.

Table 2. Proper orthogonal values (POVs).
POV Direct method Snapshot method
λ1 0.998396 0.998498
λ2 0.001472 0.001385
λ3 0.000054 0.000056
λ4 0.000037 0.000032
λ5 0.000015 0.000014

The sum of the first five POVs, for the direct method as for
the snapshot method, is 0.99998, what represents a high level of
information of the model. This means that 99.998% of the dynamics
are in the five first PODs.

Figure 8 shows the dynamical response atx = L approximated
with five POMs. One can see that the overall dynamics is well
represented. But in the impact region there is a big difference,
especially in the derivatives ofu. Please note that the first derivative
is also taken into account in the error.

Sirovich (1987), Ma et al. (2008), Azeez and Vakakis (2001) and
Trindade et al. (2005) recommend that 99.9% of the energy should
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Figure 6. Normal modes x POM-direct.

be considered to represent the problem; the first POV has more
than 99.9% of the energy and the solution presents a considerable
difference in the impact detail. This means that in the impact region
one do no better, inaccuracies are germane to impact problems. If
the excitation frequency was lower or higher, one should expect the
same kind of results. In this case, the simulations used to construct
POD-basis (see Appendices A and B) should take into account the
new excitation frequency. If the impact stiffness decreases or if the
damping of the system increases, one should expect to represent the
system with less elements of the basis (hence, less information).
Taken the limit where the system is overdamped or if the impact
stiffness is zero, it is clear that the dynamical response of the system
gets much simpler.

Concluding Remarks

Three reduction strategies (using LIN-basis, PODdir-basis and
PODsnap-basis) were presented in detail and compared, for a simple
vibroimpact system. The inspiration for the construction of a reduced-
order model is the stochastic analysis of a percussion drilling system.

The main contributions of this paper are: 1) the comparison
and analysis of the reduction techniques for a vibroimpact system,

2) the conclusion that the POD-basis is the best reduction basis
for the problem (which is not a straightforward conclusion, see
Sampaio and Soize (2007)) and should be used in the future for the
stochastic analysis, and 3) the conclusion that, contrary to previous
recommendation, 99.9% of the information (POV) might not be good
enough to represent the impact details of the dynamical response of
a vibroimpact system, as showed in Fig. 8; though it may be good
enough to reconstruct the overall dynamics.

For a future stochastic analysis, one should note that the basis
constructed through POD is specific for the system analyzed with
specified parameters, boundary conditions and exciting forces. This
means that if a parameter changes significantly, the POD-basis may
not be efficient to represent the system with this new parameter.
To avoid this problem and to construct a more general POD-basis,
many simulations are done with different values for the parameters
(see Appendices A and B) in a way that this basis should be good
to represent different situations. This is especially important for
a stochastic analysis, where some parameters are modeled using
random variables. However, this needs further investigation.

Comparing the different strategies, POD-basis performed better
than LIN-basis, and more elements (150) were necessary to represent
the problem using the FEM. This high number, comparing to the
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Figure 7. Normal modes x POM-snapshots.

approximation of the response using LIN-basis (80 elements) or
POD-basis (40 elements), is due to the disconnection between the
interpolation functions of FEM with the dynamics in analysis. POD
is able to capture the nonlinearities of the dynamical response and,
therefore, it can represent the problem in a reduced manner.
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Appendix A - Numerical Simulations for the Construction
of POD-Basis - Direct Method

The POD-basis is calculated from several dynamical responses.
Ten simulations (t = 0.02s) were performed with different excitation
forces, varying from 4000 N to 6000 N. Two points should be noted:

1. POD-basis computed for a set of parameters may not be good to
represent the system with another set of parameters, as will be showed

later.
2. If data is increased, the sample is better and the POD-basis

is more reliable. But to compute quickly the basis, one searches to
get strictly the necessary information. In the case of POD-direct, the
fewer spatial points as possible and in the case of POD-snapshots, the
fewer instants (snapshots) as possible. This is due to how the bases
are constructed.

Since only the last 0.01 s was considered in the computations and
∆t = 10−5, matrix [U ], Eq. (20), has 10000 lines. To investigate
the generation of the basis through POD-direct method, first one
considers 1000 spatial points (see the convergence in Fig. 5).

In real applications it is not feasible to measure the displacement
in 1000 points. Another POD-basis was generated considering 100
spatial points, see Fig. 9.

The convergence for the POD-basis using 100 points (see Fig.
9) is not as good as the one using 1000. One needs 80 POMs,
instead of the 40 needed before. Considering now 10 spatial points to
generate POD-basis (Fig. 10), the precision decreases considerably.
This means that if one uses ten accelerometers for the measurements,
the basis constructed with this information will not be reliable for the
vibroimpact problem studied.
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(a)

(b)
Figure 8. (a) Approximation of the response with five POMs and (b) de tail of
the impact.

Figure 9. POD-basis convergence (using 100spatial points).

Appendix B - Numerical Simulations for the Construction
of POD-Basis - Snapshot Method

To investigate the generation of the basis through POD-snapshots
method, first one considers 3000 snapshots and 1000 spatial points
(see the convergence in Fig. 5). Then, one tries to reduce the number
of snapshots and still get a good basis; this strategy is different from
POD-direct where one wants to get less spatial points.

Figure 11 shows the convergence analysis for POD-basis

Figure 10. POD-basis convergence (using 10 spatial points).

Figure 11. POD-basis convergence ( 1000snapshots).

generated with 1000 snapshots (0.01 s, ∆t = 10−5s). This
convergence is almost as good as the one using 3000. One needs
now 50 POMs for a precision of 2%.

To reduce the snapshots, but keeping the coherent structure, only
one cycle of the dynamical response will be considered. Figure 12
shows the points in time where the snapshots are taken; only the
snapshots atx = L, but the snapshots are taken for all of the 1000
spatial points.

Figure 13 shows the convergence analysis for POD-basis
generated considering one cycle of the response and 400 snapshots.
This convergence is not as good as the one using 3000, since
one needs 60 POMs, instead of the 50 needed before to represent
the problem. Finally, Fig. 14 shows the convergence analysis for
POD-basis generated considering one cycle of the response and 40
snapshots; now the precision is not so good.
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