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The application that inspires this work is the percussion drilling. This protiamimpacts
and presents uncertainties. In this first analysis the focus is on the caotistrof an
efficient reduced-order model to deal with the nonlinear dynamicstalke impacts. It
is important to have an efficient reduced-order model to perform thehasiic analysis.
The simplified full model is constructed using the finite element method, @eddifferent
bases are used to construct the reduced-order models: LIN-basimposed by the
normal modes of the associated linear problems), BPbasis (obtained through proper
orthogonal decomposition - direct method) and PQig-basis (obtained through proper
orthogonal decomposition - snapshot method). The shapes of thergtenf LIN-basis,
PODyj -basis, and POkharbasis are compared. One important conclusion is that the
information necessary to represent the details of a vibroimpact dynameasured by the
proper orthogonal values, is more than the usual 99% recommended.

Keywords: model reduction, proper orthogonal decomposition (POD), Karmdihegve
expansion, vibroimpact system, nonlinear dynamics

(1987); Ma et al. (2008); Azeez and Vakakis (2001); Trindadd.et a
(2005)) is sufficient to represent the details of the impact.

The application that inspires this work is the percussion drilling  The article is organized in the following manner. First, the
(Batako et al. (2003); Wiercigrocha et al. (2001); Aguiar (2010))formulation of the problem is presented, then the dynamical system is
The hard and expensive conditions which is subjected machinetiiscretized by means of the finite element method (FEM). The model
performing drilling justify its modeling and study. These are systemig reduced using: LIN-basis (direct method and snapshot method).
with impacts and uncertainties (within the parameters of the systemhe numerical results are later discussed, where the efficiency of
for example). the bases used in the Galerkin method is analyzed. Finally, the

The focus of the present analysis is on the construction @oncluding remarks are made. Two appendix give more information
an effective reduced-order model for a vibroimpact system, argboutthe numerical simulations used for the construction of the POD-
a simple model of a bar impacting an obstacle is used for thisasis.
purpose. It is important to have an efficient reduced-order madel f
a future stochastic analysis. There are several approachesmiogcer Nomenclature
reduced-order modeling; the present work is concerned with model
reduction through the modal basis and through the proper orthogoral
decomposition (POD). The LIN-basis (basis composed by the normg|
modes of the system) is the best basis for a linear dynamical systegm = damping coefficient
(Trindade et al. (2005)), but the basis generated by POD has the = beam diameter
capacity to describe the phenomenon of interest (linear or nonline %) = percent error
dynamics, for example) in a reduced dimension that is able to capt
most of the phenomenon (Holmes et al. (1996)). It can be used a%ﬁ
tool for signal analysis, imaging processing, and other applicatio i
In Mechanical Engineering its first applications were in turbulenc
(Lumley (1970)). POD-basis is the best basis of projection fo#2P
the Galerkin method in the sense that it minimizes the averaé%
squared distance between the original data and its reduced lindar = length of the beam
representation. The group of PUC-Rio has been working on thM¥ = number of time instants
subject for a while (Sampaio and Wolter (2001); Wolter (2001)N = Newton (unit of force), number of test functions, or number
Trindade and Sampaio (2001); Wolter et al. (2002)). Recently three  of spatial points, depending on the context
works have been published by Bellizzi and Sampaio (2006, 2009a,18),,, = impact force

Vibroimpact systems are relevant (Ibraim (2009)), particularyy = force at the end of the beam
for the modeling of percussion drilling (Batako et al. (2003);r(x,x’) = autocorrelation
Wiercigrocha et al. (2001)). The objectives of this paper are: 1) = longitudinal displacement field of the bar
to present and compare, in a didactic and detailed form, the = admissible space
reduction techniques for a simple vibroimpact system, 2) to quanti — force vector
which strategy is better to be used in the future for the stochastic
analysis, and 3) to investigate whether the use of 99% (or 99.9%'& = respopse vectpr
of the information in the reduced-order model (suggested by Sirovi = damping matrix

= stiffness matrix

[M]  =mass matrix
= autocorrelation matrix

Introduction

= beam cross sectional area
= i-th expansion coefficients

= elasticity modulus of the material
= expected value

= excitation force

= distance between bar—obstacle
= obstacle stiffness
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Proper Orthogonal Decomposition for Model Reduction of a Vibroimpact System

Greek Symbols wherec is the damping coefficient andis the excitation force:

wj = i-th natural frequency

d) = test fUnCtiOn f(X,t, U) = H_(X7t) + lep(x-,ta U) ) (4)
P = volumetric density of the material

in which P is an imposed sinusoidal force aRghp is the percussive
force (detailed in the sequence). The bar is excited on its free
S . . . extremity and the movement of the bar is limited by an obstacle. The
The s_lmp_llfled model considered in the present analysis 'ﬁnpact is modeled by an elastic force, proportional to the obstacle
sketched in Fig. 1. stiffness; and it introduces a nonlinearity into the system. Between
impacts the system is linear and the impact redistributes the energy

M athematical Model

|<£>| in the system among the different modes. The foReandRy,, are
@ written as
ANNNN
( RL(X.t) = Py sin(wt)s(x—x.), )
x
lep(x-,tvu) = PC(uvt)(S(X_XL)7 (6)
in which

I u(x,t)

vy=0 if u(Lt)<gap
y=1 if u(Lt)>gap’

@)

Ru(u,t) = —y [k (u(L,t) — gap)] {

whereu(L,t) is the displacement at= L, gapis the distance from
the bar to the obstacle akdis the obstacle stiffness. Observe that the
dependence d®_ onx_ is showed by the subscrift

— Finite Element Method
PL(t)I

gap
T The element used in the finite element discretization is linear, and

A the discretized system is given by:
Prog(U); /f

MIii(t) + [Clu(t) + [K]u(t) = f(u(t),t), 8
Figure 1. Scheme of a bar impacting an obstacle. [ } () [ ] () [ ] () ( () ) ( )
- ) .. where[M] is the mass matrix|K] is the stiffness matrix|C] is the
Letu be the Ionglt_udlnal dlsplacement of_the barthe elas_tlcny proportional damping matrixy is the response of the system rid
mor(]julus of the materlap thel volumetkrllc density of the mgterlal, anq the force vector that includes the excitation force and the force due to
A the beam cross-sectional area. The boundary conditions are giMgR impacts. FEM is widely used and itis very effective. Nevertheless,

by depending on the problem, one can deal with huge matrices. Besides
that, a nonlinear analysis can be very time consuming. To diminish
u(x=0)=0 (essential) these problems, huge matrices and large simulation time, we reduce
u (1) the model using appropriate bases of projection.
EA& (x=L)=0 (natural)
Reduced-Order M odel
wherex = 0 is the fixed end and = L is the free end. The initial
conditions are the following: Matrices|M], [C] and[K] have dimensiom x m. ConsideringQ]
with dimensiorm x n (n < m), composed by independent vectors, one
du introduces the change of variables:
ut=0)=up —(t=0)=vw. @)
ot
We assume tha#, E and p are constants irx. A dissipation u(t) = [Qla(t). )
term (viscous damping) and an excitation force are added to the
formulation. The equation of motion for this model is given by Then, Eq. (8) becomes:
2 2
eal O UK p WY e, @) MIQA® + QA + KIQa® = (Qa®.).  (10)
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Matrix [Q] is composed bym orthogonal vectors that generate supposedly valid to represent systems which are excited in this force

a reduction subspace into which the dynamics will be projectedand.

Projecting the dynamics on the subspace generated by the new basis: As shown by Sampaio and Wolter (2001), there are two methods
for constructing POD-basis: the direct method and the snapshot

method.
[QT [M][QJa(t) + [QT[Cl[QJat) + [T [K][Qla(t) = _
T Direct method
= [QI'f([Qla(t),t),
(12) Letu(-,t) be a vector field i) c R® andt e R, i.e.,u(x,y,zt) .
Decomposingl in two parts: one invariant in timg[u(-,t)] and
which can be written as another with zero meaw(-,t):
[M/J&(t) + [Crla(t) + [KeJa(t) = [QTf([Qla(t), 1), (12) V(- ) = u(-t) —EJu(-,t)], (15)
e
where the reduced matrices &ké&] = [Q]" [M][Q], [C] = [Q]T [C][Q], response  mean

—1oT i i i i
and(Ky] = [Q]" [K][Q]. Matrix [] has dimension x n, thus, the size then, v(-,t) is a stochastic process with zero mean and, as a

of the matrices are reduced framx mto n x n, wheren < m. One . L . . .
S . .~ ..consequence, its correlation is equal to its autocorrelation (Papoulis
can expect to solve the time-integration problem much faster with tht

reduced-order model, although it is not assured (Ritto et al. (2011)).?[991))' Ify Is real, then the spatial autocorrelation of two points is
defined by:
Modal basis

The modal basis can be used as trial functions in the Galerkin R, X)) = EV(x,))v(x', )] (16)

method. If a linear system with proportional damping matrix is th% ina th dicity hvoothesi ite:
one analyzed, then the basis generated by the normal modes arand the ergodicity hypothesis, one may write:
the optimum basis (Trindade et al. (2005)). When dealing with a

nonlinear problem one faces a difficulty, because there is no such , g ,

thing as normal modes. Of course, one can associate to a nonlinear R(:X) = ;/0 v(x.Hv(x, tydt, an

model a linear one, and use the normal modes of the linear problem

to construct the reduced-order model. where 7 is the duration of the analysis. The eigenvalues (or
The normal modes and the natural frequencies can be found pyoper orthogonal values, POVs) and the eigenfunctions (or proper

solving the following characteristic value problem: orthogonal modes POMs) are computed solving the following

eigenvalue problem:
(—af M]+[K]) i =0, (13)

[ ROGK ) = Act(x). (18)
wherew is thei-th natural frequency ang; is thei-th normal mode. Q
LIN-basis is the basis composed by these normal modes. For a bar Considering the discretized field:
fixed at one end and free at the other, they can also be calculated

directly by the analytical expression (Blevins (1993)): u(xi,yj,zot) (19)
2i—1)n wherei, j,k assume values from 1 tdy, Ny, N; respectively. For each
¢i(xj) =sin {ij} , (14)  instant of time there arld sample valued\ = 3 x Ny x Ny x N,. The
number 3 multiplying the expression is due to the three dimensional
wherex; are the node points. field (uy, uy.and u.z). In the pre;ent qpplicaj[ion there is only one
important dimension and one dimensional field, whichaendu,
Proper Orthogonal Decomposition (POD) thereforeN = Ny.

The sample can be orderedi(xy,-),u(Xz,-),...,u(Xn,:). The
POD can be used as trial functions in the Galerkin method arynamical system displacement is experimentally measured or
it is the optimum basis (in the least square sense, see Holmes etimerically calculated ilN points andM instants.
(1996)) to represent a dynamical problem. Hence, fixing the first
N components of the basis, no other linear decomposition (With

components) will better represent the dynamics than POD. It should Ul =[ulxq,) ulxz,-) ... u(xn, )=
be noticed that not necessarily the time-integration will be solved u(xp,ty)  u(xg,ty) ... u(xn,tp)
faster using POD-basis (Ritto et al. (2011)). . . . . (20)

The system response is modeled as a second-order stochastic
process. There are two important assumptions: the process is . . . .
stationary in time and ergodic (Holmes et al. (1996)). U(X,tm)  U(X2,tm) .. U(XN,tw)
POD-basis is sensitive to loads, which means that dynamical
responses must be obtained, for instance, for different ranges of Using the stationarity and ergodicity assumption, the variation of
excitation (e.g., 100N < P < 200 N). In this case, POD-basis is the field with respect to the mean value is:
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Therefore can be written as:

rM M N 7
L L N T
2 u(Xq,t) 2 u(xg,ti) ... 2 u(xn,t) W(X) :/ V(X,t)i/ V(X 1) i (X )dX dt. (26)
1= 1= I= 0 TAK Q
1
V=M= Now let
M M M
u(xa,t) u(xa,t) ... u(xn,tj) _ 1 / Ny
2 2 2 ] A(t) = & VX DX )dx o
(21) — Pk = Jo V(X DAL,
The autocorrelation matrix is then constructed: which means thatpy(x) is a linear combination of(x,t). For a
finite number of instantgy (M= 1,2,..,M), wherety, = (m— 1)At,
1 a snapshot is defined as:
Rl = V"IV, (22)

where the matrix [R] is symmetric by construction. The discretized v — V(- tm) . (28)

eigenvalue problem is given by o )
The value ofAy is still unknown. To calculate it, one should

substitute Eq. (27) into Eq. (25):

Ry = Akt (23)
1
which is the discretized version of Eq. (18). The eigenvectpys 7 Jo VOt Jo V(X' ;1) Jo V(X ) A (t)dt'dx'dt (29)
(POMs) generate the PQ[p-basis, and the POVs are the eigenvalues = A J§ V(DA (t)dt.

(Ak) of matrix [R]. Note that the dimension of matri] depends
only on the spatial discretization, but not on the time discretizationvhich can be rewritten as:
Therefore, the direct method is recommended when the spatial mesh
is coarse and many instants are needed in the time-discretization to

. T T T
capture the system dynamics. Ak(t’)i/ v(x’,t)v(x’,t’)dx’dt’dt=)\k/ A(t)dt. (30)
The algorithm to implement this kind of decomposition can be /0 JO TJQ 0
summarized by the following steps: Now let
e Discretize the displacement field M instants and iN space
points,[U]; see Eq. (20). 1
D) = = / VX V(X t)dX (31)
e Compute the zero-mean responsg; see Eq. (21). TJ/Q
e Construct the autocorrelation matfig] (N x N); see Eq. (22). thus,
e Solve the eigenvalue problem given by Eq. (23) to getthe POMs .. . -
and POVs. /0 /O A (t)D(t,t")dt'dt = Ak/o A(t)dt. (32)
Snapshot method Discretizing the above equation, one has

To compute the POMs using the direct method, it is necessary
to solve an eigenvalue problem for matiiR| (Eq. (22)). This D]Ak = AA. 33)
matrix has dimensiomN x N (related to the spatial discretization).
The question that arises is if it is possible to compute the POMs Hence, the POMsif,) can be computed using Egs. (32) and (27).
solving an eigenvalue problem of another mat{iX|j with dimension g, ;marizing what has to be done for the construction of the POD-
M x M (related to the time discretization). The answer is the snapshgt, g using the snapshot method: first, majtEikis computed using

method. . _ . . V] (see Egs. (31) and (21)):
The goal is to compute) without usingR directly. For this

purpose, substituting Eq. (17) into Eq. (18):

1
D)= VIV (34)

1 T

= V(X ) dtg(x)dx' = A 24
/Q T/O VO DV dtyy(X ox k(). (24) It has dimensiom x M, instead oN x N as matrixR] (see Eq. (22)).
) ) ) The eigenvalues ofD] are the POVs, but the POMs are computed

which can be rewritten as: using the following equation:

E i / AV A T
7 Jo V(X 1) QV(X7t)wk(X Jax'dt = Akip(X) . (25) P = V]TA, (35)
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which is the discretized version of Eq. (27), whehkg are the
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system is its applications on drilling systems. In this section we show

eigenvectors of matriYD]. The POMsy are linear combinations some general aspects of the dynamical response.

of the snapshots, which are the lines of mafvix

Figure 2 shows the dynamical response and the impact forces at

Note that the dimension of matri}D] depends only on the x=L,; the forces due to the impact are approximately 5SRQPeak).

number of snapshots; it does not depend on the spatial discretization.

Therefore, the snapshot method is recommended when the spat

mesh is fine and there are not many instants, as in rapidly decayir 0.5

processes. 0
The algorithm to implement this kind of decomposition can be

TN

summarized by the following steps: -0.5¢
e Calculate matriXD] (dimensiorM x M) using[V]; see Egs. (21) -1f
and (34). ? 15l
e Compute the eigenvalues (POVs) and the eigenvectors of matri ol
[D]; see Eq. (33).
-2.5
e Calculate the POMs using the eigenvectorg@f (which are
Ay) and|V]; see Eq. (35). =3 W w W
Numerical Results % 0.005 0.01 0.015 0.02
Time (s) (a)
The system of ordinary differential equations is numerically 6000
integrated through the routireele45 which is based on Runge-Kutta
(Butcher (2003)) method of fourth an fifth order. Thée45uses an
adaptive time-step to compute the time response. The maximum err 5000y 1
allowed was 108. A At equal to 10° is used to visualize the result.
The computer used to run the simulations was a Pentium(R) (32Z 40007
bits), 2 GB RAM and 2 GHz. Figure 1 represents the bar considered g
in the simulations. Table 1 shows the values of the parameters us¢® 3000t
for the simulations.
2000 .
Table 1. Data used in the simulations.
Lgngth,L =1m 1000 |
Diameter,d = 100mm
Elasticity modulusg = 200GPa ‘ ‘ ‘
Density,p = 7850kg/m? % 0.005 0.01 0.015 0.02
Damping factorg = 10000Ns/n? Time (s) (b)

Obstacle stiffness = 1e11N/m
Distance between bar-obstad@p= 0.1 um

Excitation force: Ps sin(wst), P = 5000N and w; = 271260
rd/s. The error analysis is made by using the following norm:

u(t)| = \//Q(u(x,t))zder/Q (‘W)zdx.

The percent error is calculated by the formula:

(%) = 100 /n(Hu(t)n—u(t)“ﬂH)dL (36)

t1—to /iy [Ju®)™]

whereu" is the approximation of the response witielements of the
basisu™ 1 is the approximation of the response with- 1 elements,
and[to,t1] is the duration of the analysis.

General response

Figure 2. (a) Dynamical response at x =L (the dashed line shows the
obstacle position) and (b) force due to impact at x=L.

Figure 3 shows the dynamical response close to the impact region
for two different damping coefficients. When= 10° Ns/m? one can
see how the reflection waves alter the movement of the bar (steps),
but whenc = 10° Ns/? the structure is overdamped.

At this point, we have presented some general aspects of the
vibroimpact dynamics. In the remainder of this section the properties
of each of the methods proposed to construct the reduced-orded mod
are compared.

FEM, LIN-basis, and POD comparison

The dynamical response was calculated and the error (Eq. (36))
was computed varying the number of elements of the basis. As a
matter of organization, the details on how the POD-bases have been
generated are found in Appendices A and B. It should be noted that the
sample needed to construct a POD-basis does not need to be so large.
For the problem analyzed, an autocorrelation matrix of dimension
1000 x 1000 was good enough (see the Appendices A and B).

Figure 4 shows the convergence of the approximation of the

The system considered in this paper is simple, but the samesponse. For an error of 2% it is necessary 150 finite elements, 80
procedure can be performed for more complicated situations as it wasrmal modes and 40 proper orthogonal modes (POMSs) to represen
done in Trindade et al. (2005). One motivation to study a vibroimpac¢he problem.
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—— POD-direct
i 6p - = =POD-snapshot ||

Displacement (m)
percent error

0.0155 0.016 0.0165 0.017
Time (s) (a)

0 i i i

. 10 20 30 40 50
x 10 Number of empirical modes

Figure 5. Convergence comparison for POD-direct and POD-snap shots.

15¢ 1

normalized to have value one at=L. POMs are different from
normal modes, but their derivatives are even more different, which
is an important fact since the mode derivatives are used to construct
matrix [K].

The shapes of the normal modes are given by the sinus function.
On the other hand, the shape of the POMs are given by the response of
the nonlinear dynamics. This is the reason why they can capture the
nonlinearities of the dynamics. Note that the fortieth POM represents
] a movement where there is more restriction to move close to the
impact region.

0,0155 0.616 o.oies 0,617 0.0175 The two first POMs obtained by POD-direct (Fig. 6) and POD-
Time (s) b snapshots (Fig. 7) are very close to each other. They are the modes
Figure 3. Impact detail of the response of the system for ~ ¢=10° (@) and 10°  that have the larger contribution to the dynamics (they are related to
Ns/nr? (b). The dashed line shows the impact location. the two highest POVs). But the other POMs are different, as shows
the fortieth POM. The POMs depend on the sample used to construct
the basis. Table 2 shows the first POV (Proper Orthogonal Values)

10F-

Displacement (m)

or

14 —r | from both POD-direct and POD-snapshots.
12l : = = ~LIN-basis ||
L POD-basis
\ A
or 1
5 \ Table 2. Proper orthogonal values (POVs).
5 gl ' POV Direct method Snapshot method
e A1 0.998396 0.998498
g 6L A2 0.001472 0.001385
& A3 0.000054 0.000056
at A4 0.000037 0.000032
A5 0.000015 0.000014
2
0 i
0 Numbesroof elements of tlt?g basis 150 The sum of the first five POVs, for the direct method as for
Figure 4. Convergence comparison for three different reductio n bases: FE, the snapshot method, is 0.99998, what represents a high level of
LIN-basis, and POD-basis. information of the model. This means that 99.998% of the dynamics

are in the five first PODs.
Figure 8 shows the dynamical responsexat L approximated

In Fig. 5 one can notice that the two convergences (direct anwith five POMs. One can see that the overall dynamics is well
snapshot) look very alike. For an error of 1% it is necessary 50 POMsepresented. But in the impact region there is a big difference,
from both POD-direct, and POD-snapshots. especially in the derivatives of Please note that the first derivative

A comparison between POMs and normal modes is done in Figs.also taken into account in the error.
6 (PODLyy) and 7 (POlgnap. Both POMs and normal modes are  Sirovich (1987), Ma et al. (2008), Azeez and Vakakis (2001) and
zero atx = 0 and derivatives equal zeroat= L. The modes were Trindade et al. (2005) recommend that 99.9% of the energy should
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First Mode First Mode Derivative
1 T . 16 T
——— POD-direct : : 7
09 Normal Mode | ¢ SR 14k
: #
08 : : i : /»’
: : e 12
07 A
: ,// : : etk Tt U : q
» ' H 4 B RS L :
06f : : e : : : ~—wv.u,\,\:,.v.“,|"|:
05 : : [ : L 08 I
P :
B ’/ : : i 1l
04 H // : 0.6
O Y T ST AR SIS SRR SRR p :
: /, : : 04k RTINS PN FESVUEI
N S N PRNIE TS TS NN R M : : :
d H -
(IR S SN PUUPIVEINOIVIN SRPOIE FUPVION POONINS SOPSIISS SOOI NN 02l =~ POD-direct : : 1
& : : — Normal Mode H :
DD a1 02 03 0.4 05 06 07 08 09 1 DD 01 02 03 0.4 05 06 o7 08 04 1
x(m) x(m)
Second Mode Second Mode Derivative
1 : : ] : :
—— ZPOD -direct : / : i
08 :

Normal Mode |~ : : 4
06 i
04

02pF-

02

04

_____

06

aak

———FODrdw.e:t
H Normal Mode
a 01 02 03 0.4 0a 0.6 0.7 08 09 1 1) 01 02 0.3 04 05 06 07 08 09 1
x(m) x(m)
Fourtyth Mode Fortieth Mode Derivative
T 2000 T

— = —POD -direct : :
LI Normal Mate oyl ; : 1
[ | . k 1 1500 R

N :
!l hoa H 1000

? “ l" iy S 1500 ‘I"I

——— POD -direct
Narmal Mode

5 i i i i i i i i i 2000 i i i i i i
0 01 02 03 04 05 06 07 08 D09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 6. Normal modes x POM-direct.

be considered to represent the problem; the first POV has ma2¢ the conclusion that the POD-basis is the best reduction basis
than 99.9% of the energy and the solution presents a considerafde the problem (which is not a straightforward conclusion, see
difference in the impact detail. This means that in the impact regioBampaio and Soize (2007)) and should be used in the future for the
one do no better, inaccuracies are germane to impact problems. stbchastic analysis, and 3) the conclusion that, contrary to previous
the excitation frequency was lower or higher, one should expect thlecommendation, 99.9% of the information (POV) might not be good
same kind of results. In this case, the simulations used to construtough to represent the impact details of the dynamical response of
POD-basis (see Appendices A and B) should take into account thevibroimpact system, as showed in Fig. 8; though it may be good
new excitation frequency. If the impact stiffness decreases or if thenough to reconstruct the overall dynamics.

damping of the system increases, one should expect to represent theFor a future stochastic analysis, one should note that the basis
system with less elements of the basis (hence, less informatiogpnstructed through POD is specific for the system analyzed with
Taken the limit where the system is overdamped or if the impaapecified parameters, boundary conditions and exciting forces. This
stiffness is zero, it is clear that the dynamical response of the systeaneans that if a parameter changes significantly, the POD-basis may

gets much simpler. not be efficient to represent the system with this new parameter.
To avoid this problem and to construct a more general POD-basis,
Concluding Remarks many simulations are done with different values for the parameters

(see Appendices A and B) in a way that this basis should be good
Three reduction strategies (using LIN-basis, RfDasis and to represent different situations. This is especially important for
PODsnapbasis) were presented in detail and compared, for a simpige stochastic analysis, where some parameters are modeled using
vibroimpact system. The inspiration for the construction of a reduce@andom variables. However, this needs further investigation.
order model is the stochastic analysis of a percussion drilling system. Comparing the different strategies, POD-basis performed better
The main contributions of this paper are: 1) the comparisothan LIN-basis, and more elements (150) were necessary to raprese
and analysis of the reduction techniques for a vibroimpact systenhe problem using the FEM. This high number, comparing to the
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Figure 7. Normal modes x POM-snapshots.

approximation of the response using LIN-basis (80 elements) tater.

POD-basis (40 elements), is due to the disconnection between the 2. If data is increased, the sample is better and the POD-basis
interpolation functions of FEM with the dynamics in analysis. PODOs more reliable. But to compute quickly the basis, one searches to
is able to capture the nonlinearities of the dynamical response argkt strictly the necessary information. In the case of POD-direct, the

therefore, it can represent the problem in a reduced manner. fewer spatial points as possible and in the case of POD-snapshots, the
fewer instants (snapshots) as possible. This is due to how the bases
Acknowledgements are constructed.

Since only the last.01 s was considered in the computations and
The authors gratefully acknowledge the supportGinselho At = 1075, matrix [U], Eg. (20), has 10000 lines. To investigate
Nacional de Desenvolvimento Cidiito e Tecndigico (CNPQ), the generation of the basis through POD-direct method, first one
Fundagio de Amparoa Pesquisa do Estado do Rio de Janeiroconsiders 1000 spatial points (see the convergence in Fig. 5).

(FAPERJ), andConsejo Nacional de Investigaciones Ciéinas y In real applications it is not feasible to measure the displacement

TécnicasCAPES-MINCyT. in 1000 points. Another POD-basis was generated considering 100
spatial points, see Fig. 9.

Appendix A - Numerical Simulations for the Construction The convergence for the POD-basis using 100 points (see Fig.

of POD-Basis - Direct Method 9) is not as good as the one using 1000. One needs 80 POMs,

instead of the 40 needed before. Considering now 10 spatial points to
The POD-basis is calculated from several dynamical responsefenerate POD-basis (Fig. 10), the precision decreases considerably
Ten simulationst(= 0.02 s) were performed with different excitation This means that if one uses ten accelerometers for the measurements,
forces, varying from 4000 N to 6000 N. Two points should be notedthe basis constructed with this information will not be reliable for the
1. POD-basis computed for a set of parameters may not be goodvibroimpact problem studied.
represent the system with another set of parameters, as will be showed
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Appendix B - Numerical Simulations for the Construction
of POD-Basis - Snapshot Method
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Figure 10. POD-basis convergence (using 10 spatial points).
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Figure 11. POD-basis convergence ( 1000snapshots).

generated with 1000 snapshots.0D s, At = 10°%s).  This
convergence is almost as good as the one using 3000. One needs
now 50 POMs for a precision of 2%.

To reduce the snapshots, but keeping the coherent structure, only
one cycle of the dynamical response will be considered. Figure 12
shows the points in time where the snapshots are taken; only the
snapshots at = L, but the snapshots are taken for all of the 1000
spatial points.

Figure 13 shows the convergence analysis for POD-basis
generated considering one cycle of the response and 400 snapshots.
This convergence is not as good as the one using 3000, since
one needs 60 POMs, instead of the 50 needed before to represent
the problem. Finally, Fig. 14 shows the convergence analysis for
POD-basis generated considering one cycle of the response and 40
snapshots; now the precision is not so good.
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