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Introduction not accurately known, uncertainties have to be taken into account.
Therefore it is also studied here how the basins of attraction change
In a number of technical applications the behavior of structuregue to small changes in the parameters. |If initial conditions are
is strongly nonlinear and the stationary motions depend on the initishndomly distributed the results can be used to calculate the likelihood
conditions and on a number of parameters. Well known examplésr reaching an attractor.
of such systems are the snap-through of arches and shells, squealing
states in brake systems, self-excited vibrations in paper machingBgtimation of Basins of Attraction Through Lyapunov
and many more. In order to accurately model and predict the behavipynctions
of a structure, itis important to determine possible stationary solutions
and their basins of attraction. A common approach to estimate basins The task of calculating basins of attraction arises for time
of attraction is the use of Lyapunov functions. For autonomousontinuous and time discrete systems. It is well known that basins of
systems, it is well known how to construct Lyapunov functionsattraction can be studied through Lyapunov functions. In this paper
for the linearized system in order to prove stability of the solutionve concentrate on the time continuous case. The underlying theorem
of the nonlinear problem. However, these Lyapunov functiongsan be formulated as:
often only yield crude and technically insufficient estimations of
the basins of attraction. Therefore, the goal of this paper is tbheorem: LetV(x) be a Lyapunov function for the time continuous
develop Lyapunov functions from which the basins of attraction ofystem
solutions can be estimated more accurately. Construction methods for
Lyapunov functions for stability investigations have been developed, X = f(x) @)
for example, by Aizermann and Schultz-Gibson (see Unbehauqﬁnhf(o)
2000) or by Vannelli and Vidyasagar (1985) or Giesl (2007, 2007,
2012). However, it turns out that the procedures are sometimes S= {x € R",0<V(x) < ¢,V(x) < 0}, 2
inconvenient in practice. ) . ) )
In this paper, we use insight gained from center manifold theory t§here c is a positive real constant, which belongs to the basin of
construct Lyapunov functions, making use of the fact that the stabiliftractionG of x =0 (see La Salle, 1967). = _
behavior of a system is often determined on a low dimensional 1he Proofis based on the fact that the conditionsSSeertify that
manifold. Since the behavior of a nonlinear structure strongl?ny solution vector starting i@strictly monotonically approaches the

depends on its initial conditions and on its parameters, which af§igin, as can also be easily visualized by geometric intuition.
It is important to note that the theorem gives only a one-sided

Paper received 11 July 2012. Paper accepted 18 August 2012. estimate and the basin of attraction can be much larger han

= 0. The domain
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The theorem does not say anything on how to choose the functioenter manifold. After substitution into the governing equations the
V. A common, straightforward choice is to construct a quadraticoefficients can be calculated by comparison. In this paper we use
Lyapunov function for the linearized system and then to apply it ta different approach by making use of normal form reduction as
the nonlinear system and check for the basin of attraction. Th@&iggested by Hochlenert (2012). As usual, any time autonomous
procedure is also the basis of Lyapunov’s indirect method in whictlynamical system, as the Van der Pol equation for example, can be
the stability of the origin can be studied through the linearized systemwritten as
However, the standard quadratic Lyapunov functions often yield poor
approximations for the domain of attraction. X =f(X) = Ax+Fox? + Fax + ... (4)

As an example we use the well known Van der Pol equétion o

where

" o, . o
G+ 2(1-a)ata=0 G A~ diaglA.. A 5)

For the parametef = % the corresponding phase diagram is showns a diagonal matrix of the eigenvalues of the system linearized about
in Fig. 1. UsingV (a1, dp) = %q%+Q1q2 +q§ with g = qandag, = g, the trivial solution, which corresponds to the stability boundary. The
the corresponding estimate for the basin of attraction is shown as tgtricesF; are coefficient matrices so that terms of the fofm'
shaded area in the figure. Clearly it is a poor approximation of th@enote polynomials of ordeéin x. In this representation the symbols
exact domain of attraction, which corresponds to the area within thé represent vectors of all monomials of the order

unstable limit cycle. The reason for this is of course that a quadratic

Lyapunov function can only yield an ellipsoid in the phase space,

. . . ) : n
whereas the basin of attraction can have a very different shape. X = xT“xg“z CoxMe | with z Mg =i (6)
=1

47—

and theF; contain the corresponding coefficients. We now try to
simplify equations (4) by a near identity transformation

x=g(y) =y+Goy®+Gay* +... @)

whereG;y' again denotes polynomials of ordén y. The coefficients
of g(y) are chosen such that the resulting equations in normal form

y=h(y) = Ay +Hoy? + Hay> + ... (8)

are as simple as possible, meaning that they contain as few terms as
possible. In order to calculate the coefficientgy6f), we insert (7)
and (8) in (4) and obtain

29(y)
f =—=-h 9
(9(y)) dy (¥), )
J 0 s which is a partial differential equation. Using the expansiongfgy
41 P N N N S andh(y) one can sort for the orders gfand thus obtain
-2 -1 0 1 q 2
Figure 1. Estimate Sof the basin of attraction G with a quadratic Lyapunov Ny = Ny, (10)
function. The stability boundary given by the limit cycle is presented as
thick line. )
9(Gay?)
Hay? = Foy? + AGay? — ——222 Ay, 11
In order to obtain a more accurate estimate of the basin of Y Y Y gy Y )
attraction we need to construct a more suitable Lyapunov function. In 3(Goy?)
the above theorem we observe that in the case of a one-dimensional Hay® = Fay® + 2F[y(Gay?)] — Hay?+
. ; o . . ay
system the basin of attraction coincides exactly with the estimate
S Therefore, the goal is to reduce the number of the states of the AGy3 0(Gsy®) A 12
problem as much as possible. It is well known that in bifurcation - ay 4 (12)

problems of sufficiently smooth systems the long term dynamics
of the system are dominated by a low dimensional center manifold
(Troger and Steindl, 1991). There are different possibilities to
calculate the governing equations for the center manifold. One The fiI’St Of the equations iS tr|V|a“y fUlfl”ed, Since |ineal‘ terms

poss|b|l|ty is to use a p0|ynomiainsatzf0r the expressions of the are not Changed by the near |dent|ty transformation. A Comparison of
the coefficients for the equations of second order yields

1 The Van der Pol equation with < 0 is a well known paradigm for self-
excitation. Changing the sign & corresponds to inverting time and the H v —F; {A- (At A }G- =1 n 13
stability behavior of the attractors. The attractors thdweseare not affected. LK i+ A = et A) g Gjas B (13)
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wherej is the index for the row and the two indick&ndl cover all  here should be considered as a prototype system possibly embedded
quadratic terms. Details can be found in Hochlenert (2012). In ordér a system with many degrees of freedom. The corresponding normal
to simplify (8) as much as possible we try to chod@gq so that form (decoupled from the stable subsystem) in either case reads

Hjk vanishes. This is possible unless the term in the curly bracket

vanishes, which can be written as y1=—08y1+i(1—38%)y1+6y5ya+ ..., (25)

n Vo =—0y2—i(1—38%)y2+Syay5+ ..., (26)

Aj—mMAr+mpAo+...+mMAn =0, j=1,...,n, Zmzz . .
i= where only terms up to order four in,y,, 6 are stated. Introducing

(14)  the polar coordinatese by y; = 3re'?, y, = 3re='¢, the normal form

. . ) . can be written as
and is the so called resonance condition. The resulting coefficients

are P=—or+iord4., (27)
Fik p=1-1824.... (28)

G = , 15
T mA + mpdg .+ MaAn) — A (15)

Considering the normal form in polar coordinates, we can define

Hjx =0. ae 4 Lyapunov function
If the resonance condition is met we cannot eliminate the term V() = r2 (29)
and choose )
V(r)=2ri =2r(—or+ 363+ ..), (30)
Gjx =0, (7) . . . - .
Hixi = Fix. (18) which reproduces exactly the basin of attraction of the trivial solution

up to the order to which the normal form has been calculated.
OnceH; andG, are determined one can continue the same procely agreement with the well known inverse function theorem the
to higher orders. For expressions of ortieone obtains transformation from the physical coordinatgsto the coordinates
y; of the normal form can be inverted in a neighborhood of the
. —F S . equilibrium positiong; = 0.
Pita-dow = Fiko o {AJ (g - +W+AkN)}GJ’k1“'kN ’ For this the key is the inversion of (7). According to the inverse
function theorem we can expand
3 j=1L...n (19) =k(X) =X+ K2 +Kax3+.... (31)
where the tilde is used becausg,, . k, have been obtained from the
manipulation of lower order terms and are not the original coefficientphe coefficientsK; can again be calculated by comparison of
from Eq. (4). By the same reasoning as above we derive the genetakfficients. Substitution of (31) in (7) yields

resonance condition
7K2X2 — K3X3+ ...=Go[x+ K2X2+ .. .]er

n
Aj =MAL+MpAr 4 ...+ MpAp, Zm:N. (20)
i=
Ga[x+Kax®+..3+... (32)
If the resonance condition is not met we obtain
e and hence
G _ j.ka...kn : 21
b= (m A oA+ + MAn) — A (21) Kox2 = —Gpx? (33)
Hj,kl...kN =0 (22) K3X3 = —G:.;X3 — ZGz[X(K 2X2)} (34)
and otherwise :
Gjk..ky =0, (23) The physical coordinates are then recovered by inverting the
Hikd = 'fj,kl.“kw (24) diagonalization of the linear system matrix.

Using this procedure, the Lyapunov function (29) and the stability

At the bifurcation point where the system (3) loses stability, a pafpoundary can be transformed back to physical coordinates. If we
of complex conjugate eigenvalues has a zero real part and all ot useV(r(qi,q)) in the above theorem, we obtain the basin
eigenvalues have a negative real part. From the resonance conditifrattraction shown in Fig. 2 by the shaded area. Of course, it is
(20), as found in Hochlenert (2012), one can see that the critical conservative estimate, meaning the basin of attraction cannot be
equations corresponding to rows with critical eigenvalues, i.e. thog¥erestimated. The approximation of the stability boundary obtained
with zero real parts, decouple from the rest of the equations of tHeom inverting the stability boundary in the normal form equations
normal form to arbitrary order. Therefore these equations represedlmost coincides with the exact one. So far the method proposed is
the behavior of the system on the center manifold. This dimensiotlid for differential equations of which only the initial conditions
reduction of the system due to the normal form transformation impliedre of interest. If we are to study variations and uncertainties of the
that the following procedure for the construction of a Liapunowarameters, this can be easily done by considering them as states. An
function can be used for systems with an arbitrary number of degre@guation of the type
of freedom undergoing a codimension one bifurcation with a purely

imaginary pair of eigenvalues. The Van der Pol equation (3) studied q="*(a,p), (35)
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Figure 2. Estimate Sof the basin of attraction G with a Lyapunov function
from normal form theory. The stability boundary given by the limit cycle is

presented as black line.

whereq is the state vector arglare the parameters can be written as

p=0,
q:f(Qap)7

where [p',q"|T is the augmented state vector.

augmentation is sometimes referred to as “suspension trick”. The

o
T T T T T [ T T T T [ T T T T [ T T T T [ T T

Pn(d10. G20) =

2 -1 0 1 g

Figure 3. Estimates of the basin of attraction from § =0.05to § = 0.6.

Pu(Q10,d20) = {

Spelsberg-Korspeter et al.

The procedure described above can be performed for time discrete
systems in an analogous manner (Spelsberg-Korspeter et al., 2011)
the following we describe how the proposed method can be used to
calculate the likelihood of systems to reach an attractor under random
initial conditions.

Systemswith Stochastic Initial Conditions

In this section we use the method proposed for the estimation of
basins of attraction in order to calculate the likelihood of the solution
to reach a certain attractor assuming different random distributions
for the initial conditions. For simplicity, we use on the one hand
a normal distribution, which is often used as a first approximation
to describe real-valued random variables and on the other hand a
uniform distribution, where the initial conditions are equally probable
within a specified region. Nevertheless, in the following calculation,
any other distribution could also be used.

The normal distribution of the initial conditions of the Van der Pol
equation (3) is described by the probability density function (jpdf)

(38)

Figure 4. Normal distribution p, of the initial conditions.

The parameterg; and o, are the standard deviations of the
initial condition of the state variableg g andgpg. Here, the initial
conditions are normally distributed around the origin, so that the
mean of both initial conditions is zero. Figure 4 shows the normal
distribution pp in the g10-0p0 Space. Of course, in real systems the
initial conditions are bounded and cannot reach infinite values. A
distribution, which fulfills this requirement is the uniform one. It can
be described by the probability density functioy which we defined

%g’ for g2(0) +05(0) < RZ,

. (39)
0, otherwise.

parameter now occurs in the equations of the center manifold. For @he region, where the probability density of the initial conditions
variation of the parameteyfrom 0.05 to 06, which can for example is constant and different from zero, is assumed to be circular and is
be caused by an uncertainty, the basins of attraction are shown in Féparacterized by the radilg. Figure 5 shows the probability density

3. At this point we note that the stability of the augmented systerfunction py in theqio-g20 Space.

is defined only with respect to the physical coordinates and not with The random distributions of the initial conditions described above

respect to the augmented state variables.
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Pu(l10: G20)

Figure 5. Uniform distribution p, of the initial conditions. R T

-2 -1 0 1 2 quo
any distribution described by the probability density funct';mthe Fi_gure 7. Exagt (solid line) and estimated (dashed line) basin of attraction
. . . . . with contour lines of py for 6 =0.19.
probability P of a solution to start in the domain of attractiGof the
trivial solution is defined as
parameteb using the exact basin of attraction as integration boundary
P= / / P(d10,920)dG, (40) as well as the estimated probability using the estimated basin of
¢ attraction.
where the integration is performed over the basin of attracBorf
instead of the exact domain of attracti@hthe integration in (40) P
is performed over the estimated dom&n< G, then an estimate
for this probability is obtained. In Figs. 6 and 7 the exact and the
estimated basin of attractioB and S are plotted together with the
contour lines of the probability density function. Since the calculated
estimate for the basin of attraction is conservative, it will always be
smaller than the exact basin of attraction. This also means that the 0.5
probability, calculated by using the estimate of the basin of attraction,
is conservative and therefore a lower bound for the exact probability
(Pexact > Pestimatd-

Figure 8. Probability of initial conditions being inside the exact (solid line)
and estimated (dashed line) basin of attraction for normal distribution of the
initial conditions (o1 = 02 = 0.8, u3 = pp =0).
\‘ Perr
! 0.0%
\
]
A 0.04 Lt
1 . °
] 0.03 R
7"\““\““\““\““\“7 ° 25
-2 -1 0 1 2 o 0 06 12
Figure 6. Exact (solid line) and estimated (dashed line) basin of attraction ) )
with contour lines of p, for 6 =0.19. Figure 9. Error of probability estimate.

Since the estimate of the basin of attraction depends on the In Fig. 8 the probabilityP is plotted over the parametérin
parameters in equation (3), which is not accurately known, anythe range from @5 to Q6 for a normal distribution of the initial
small changes in this parameter will cause changes in the probabiliponditions with a standard deviation of = o> = 0.8, described
Therefore, we calculate the exact probability for each possibley (38). Due to a better approximation of the basin of attraction

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2012 by ABCM Special Issue 2, 2012, Vol. XXXIV / 637
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for smaller values ob, a better approximation of the probability is P
observed. The error between the exact and the estimated probability 1
is shown in Fig. 9. The maximum error for the investigated range of

the paramete$ is about 41%.

For a uniform distribution of the initial conditions described by
(39) with R, = 1.95, the exact and estimated probability is plotted in 0.5¢
Fig. 10. The estimate for the probability is quite poor since regions

P

Figure 12. Probability of initial conditions being inside the exact (solid line)
and estimated (dashed line) basin of attraction for uniform distribution with
R,=109.
Perr
0.15
. ~
Figure 10. Probability of initial conditions being inside the exact (solid line) . :
and estimated (dashed line) basin of attraction for uniform distribution with L
R, = 1.95. .
0.05 .
exist, which are not included in the estimated basin of attraction, Ve
see Fig. 7. The probability error reaches its maximum o8%3for 0 . ‘ 25
5 = 0.6, shown in Fig. 11. If we use a different uniform distribution 0.6 1.2
P Figure 13. Probability error for uniform distribution with R, = 1.9.
err
0.15 P
0.0% L 0.5
Figure 11. Probability error for uniform distribution with R, = 1.95. O 0‘ 6 1 2

with R, = 19, the estimated probabilty approximates the exacf"e 1% Frebabily otiniia condions beng nece e exct colc 1ne

probability much better for smaller values of the paramétesee R, —13.

Fig. 12. For larger values of the parametehe probability error still

reaches 18%, which is shown in Fig. 13. The good approximation

for smaller values ob is due to the fact that in this parameter regionConclusion

all initial conditions lie inside both the approximate and the exact

basins of attraction, in the exact as well as in the estimated one. In this paper we propose a method to construct Lyapunov

When the paramete¥ reaches a certain limit the probability error functions for the estimation of basins of attraction. Whenever

starts to increase slightly. Here, it seems to be necessary to increaseertainties have to be taken into account, a purely linear stability

the order of the approximation of the basin of attraction to achievanalysis is not sufficient but has to be checked for its range of

better results for the probability. applicability. Since parameters can be interpreted as states of
For certain distributions of the initial conditions it is possible thatan augmented system, these questions can be answered by the

for any parameter variation all possible initial conditions lie insidecalculation of basins of attraction. This is often done through

both basins of attraction. This is possible for example, if we use the study of Lyapunov functions, for which, however, systematic

uniform distribution withR, = 1.3. Here, the estimated probability construction approaches are rare. In this paper we used center

corresponds to the exact probability, see Fig. 14. Due to this fact tieanifold and normal form theory in order to construct improved

probability error is always equal to zero. Lyapunov functions to calculate estimates of the basins of attraction.
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Using normal form theory, every system can be transformed to a
reduced one in the vicinity of a hopf bifurcation. Additionally, system
parameters can be taken into account by adding trivial differential
equations, or for "dynamical parameters” non-trivial differential
equations. Thus, the analysis of uncertainties in parameters is
reduced to an initial value problem and an estimation of basins of
attraction. The construction method should also be valuable for
control problems.

Using this construction method we also performed a stochastic
analysis to analyze the effect of randomly distributed initial conditions
on the reachability of attractors. The quality of the results depended
on the calculated estimate for the basin of attraction, which can be
improved by increasing the approximation order in the construction
method. For further investigations it is possible to include not only
uncertainties in the initial conditions, but also in system parameters.
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