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Construction of Lyapunov Functions for
the Estimation of Basins of Attraction
Technical systems are often modeled through systems of differential equations in which the
parameters and initial conditions are subject to uncertainties. Usually, special solutions of
the differential equations like equilibrium positions and periodic orbits are of importance
and frequently the corresponding equations are only set up with the intent todescribe the
behavior in the vicinity of a limit cycle or an equilibrium position. For the validity ofthe
analysis it must therefore be assumed that the initial conditions lie indeed in thebasins
of attraction of the corresponding attractors. In order to estimate basins of attraction,
Lyapunov functions can be used. However, there are no systematic approaches available
for the construction of Lyapunov functions with the goal to achieve a good approximation
of the basin of attraction. The present paper suggests a method for defining appropriate
Lyapunov functions using insight from center manifold theory. With this approach, not only
variations in the initial conditions, but also in the parameters can be studied. The results
are used to calculate the likelihood for the system to reach a certain attractor assuming
different random distributions for the initial conditions.
Keywords: Lyapunov functions, basins of attraction, center manifold theory

Introduction

In a number of technical applications the behavior of structures
is strongly nonlinear and the stationary motions depend on the initial
conditions and on a number of parameters. Well known examples
of such systems are the snap-through of arches and shells, squealing
states in brake systems, self-excited vibrations in paper machinery
and many more. In order to accurately model and predict the behavior
of a structure, it is important to determine possible stationary solutions
and their basins of attraction. A common approach to estimate basins
of attraction is the use of Lyapunov functions. For autonomous
systems, it is well known how to construct Lyapunov functions
for the linearized system in order to prove stability of the solution
of the nonlinear problem. However, these Lyapunov functions
often only yield crude and technically insufficient estimations of
the basins of attraction. Therefore, the goal of this paper is to
develop Lyapunov functions from which the basins of attraction of
solutions can be estimated more accurately. Construction methods for
Lyapunov functions for stability investigations have been developed,
for example, by Aizermann and Schultz-Gibson (see Unbehauen,
2000) or by Vannelli and Vidyasagar (1985) or Giesl (2007, 2007,
2012). However, it turns out that the procedures are sometimes
inconvenient in practice.

In this paper, we use insight gained from center manifold theory to
construct Lyapunov functions, making use of the fact that the stability
behavior of a system is often determined on a low dimensional
manifold. Since the behavior of a nonlinear structure strongly
depends on its initial conditions and on its parameters, which are
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not accurately known, uncertainties have to be taken into account.
Therefore it is also studied here how the basins of attraction change
due to small changes in the parameters. If initial conditions are
randomly distributed the results can be used to calculate the likelihood
for reaching an attractor.

Estimation of Basins of Attraction Through Lyapunov
Functions

The task of calculating basins of attraction arises for time
continuous and time discrete systems. It is well known that basins of
attraction can be studied through Lyapunov functions. In this paper
we concentrate on the time continuous case. The underlying theorem
can be formulated as:

Theorem: Let V(x) be a Lyapunov function for the time continuous
system

ẋ = f(x) (1)

with f(0) = 0. The domain

S= {x ∈ Rn
,0<V(x)< c,V̇(x)< 0}, (2)

wherec is a positive real constant, which belongs to the basin of
attractionG of x = 0 (see La Salle, 1967).

The proof is based on the fact that the conditions onScertify that
any solution vector starting inSstrictly monotonically approaches the
origin, as can also be easily visualized by geometric intuition.

It is important to note that the theorem gives only a one-sided
estimate and the basin of attraction can be much larger thanS.
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The theorem does not say anything on how to choose the function
V. A common, straightforward choice is to construct a quadratic
Lyapunov function for the linearized system and then to apply it to
the nonlinear system and check for the basin of attraction. This
procedure is also the basis of Lyapunov’s indirect method in which
the stability of the origin can be studied through the linearized system.
However, the standard quadratic Lyapunov functions often yield poor
approximations for the domain of attraction.

As an example we use the well known Van der Pol equation1:

q̈+2δ(1−q2)q̇+q= 0. (3)

For the parameterδ = 1
2 the corresponding phase diagram is shown

in Fig. 1. UsingV(q1,q2) =
3
2q2

1+q1q2+q2
2 with q1 = q andq2 = q̇,

the corresponding estimate for the basin of attraction is shown as the
shaded area in the figure. Clearly it is a poor approximation of the
exact domain of attraction, which corresponds to the area within the
unstable limit cycle. The reason for this is of course that a quadratic
Lyapunov function can only yield an ellipsoid in the phase space,
whereas the basin of attraction can have a very different shape.
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Figure 1. Estimate S of the basin of attraction G with a quadratic Lyapunov
function. The stability boundary given by the limit cycle is presented as
thick line.

In order to obtain a more accurate estimate of the basin of
attraction we need to construct a more suitable Lyapunov function. In
the above theorem we observe that in the case of a one-dimensional
system the basin of attraction coincides exactly with the estimate
S. Therefore, the goal is to reduce the number of the states of the
problem as much as possible. It is well known that in bifurcation
problems of sufficiently smooth systems the long term dynamics
of the system are dominated by a low dimensional center manifold
(Troger and Steindl, 1991). There are different possibilities to
calculate the governing equations for the center manifold. One
possibility is to use a polynomialansatzfor the expressions of the

1 The Van der Pol equation withδ < 0 is a well known paradigm for self-
excitation. Changing the sign ofδ corresponds to inverting time and the
stability behavior of the attractors. The attractors themselves are not affected.

center manifold. After substitution into the governing equations the
coefficients can be calculated by comparison. In this paper we use
a different approach by making use of normal form reduction as
suggested by Hochlenert (2012). As usual, any time autonomous
dynamical system, as the Van der Pol equation for example, can be
written as

ẋ = f(x) = Λx+F2x2+F3x3+ . . . (4)

where

Λ = diag
[

λ1, . . . ,λn
]

(5)

is a diagonal matrix of the eigenvalues of the system linearized about
the trivial solution, which corresponds to the stability boundary. The
matricesFi are coefficient matrices so that terms of the formFixi

denote polynomials of orderi in x. In this representation the symbols
xi represent vectors of all monomials of the orderi

xi =









...
xmk1

1 xmk2
2 · · ·xmkn

n
...









with
n

∑
l=1

mkl = i (6)

and theFi contain the corresponding coefficients. We now try to
simplify equations (4) by a near identity transformation

x = g(y) = y+G2y2+G3y3+ . . . (7)

whereGiyi again denotes polynomials of orderi in y. The coefficients
of g(y) are chosen such that the resulting equations in normal form

ẏ = h(y) = Λy+H2y2+H3y3+ . . . (8)

are as simple as possible, meaning that they contain as few terms as
possible. In order to calculate the coefficients ofg(y), we insert (7)
and (8) in (4) and obtain

f(g(y)) =
∂g(y)

∂y
h(y), (9)

which is a partial differential equation. Using the expansions forg(y)
andh(y) one can sort for the orders ofyi and thus obtain

Λy = Λy, (10)

H2y2 = F2y2+ΛG2y2−
∂ (G2y2)

∂y
Λy, (11)

H3y3 = F3y3+2F2[y(G2y2)]−
∂ (G2y2)

∂y
H2y2+

ΛG3y3−
∂ (G3y3)

∂y
Λy, (12)

....

The first of the equations is trivially fulfilled, since linear terms
are not changed by the near identity transformation. A comparison of
the coefficients for the equations of second order yields

H j,kl = Fj,kl +
{

λ j − (λk+λl )
}

G j,kl , j = 1, . . . ,n, (13)
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where j is the index for the row and the two indicesk andl cover all
quadratic terms. Details can be found in Hochlenert (2012). In order
to simplify (8) as much as possible we try to chooseG j,kl so that
H j,kl vanishes. This is possible unless the term in the curly bracket
vanishes, which can be written as

λ j −m1λ1+m2λ2+ . . .+mnλn = 0, j = 1, . . . ,n,
n

∑
i=1

mi = 2

(14)

and is the so called resonance condition. The resulting coefficients
are

G j,kl =
Fj,kl

(m1λ1+m2λ2+ . . .+mnλn)−λ j
, (15)

H j,kl = 0. (16)

If the resonance condition is met we cannot eliminate the term
and choose

G j,kl = 0, (17)

H j,kl = Fj,kl . (18)

OnceH2 andG2 are determined one can continue the same process
to higher orders. For expressions of orderN one obtains

H j,k1...kN
= F̃j,k1...kN

+
{

λ j − (λk1 +λk2 + . . .+λkN
)
}

G j,k1...kN
,

j = 1, . . . ,n, (19)

where the tilde is used becauseF̃j,k1...kN
have been obtained from the

manipulation of lower order terms and are not the original coefficients
from Eq. (4). By the same reasoning as above we derive the general
resonance condition

λ j = m1λ1+m2λ2+ . . .+mnλn,
n

∑
i=1

mi = N. (20)

If the resonance condition is not met we obtain

G j,k1...kN
=

F̃j,k1...kN

(m1λ1+m2λ2+ . . .+mnλn)−λ j
, (21)

H j,k1...kN
= 0 (22)

and otherwise

G j,k1...kN
= 0, (23)

H j,k1...kN
= F̃j,k1...kN

. (24)

At the bifurcation point where the system (3) loses stability, a pair
of complex conjugate eigenvalues has a zero real part and all other
eigenvalues have a negative real part. From the resonance condition
(20), as found in Hochlenert (2012), one can see that the critical
equations corresponding to rows with critical eigenvalues, i.e. those
with zero real parts, decouple from the rest of the equations of the
normal form to arbitrary order. Therefore these equations represent
the behavior of the system on the center manifold. This dimension
reduction of the system due to the normal form transformation implies
that the following procedure for the construction of a Liapunov
function can be used for systems with an arbitrary number of degrees
of freedom undergoing a codimension one bifurcation with a purely
imaginary pair of eigenvalues. The Van der Pol equation (3) studied

here should be considered as a prototype system possibly embedded
in a system with many degrees of freedom. The corresponding normal
form (decoupled from the stable subsystem) in either case reads

ẏ1 =−δy1+ i(1− 1
2δ

2)y1+δy2
1y2+ . . . , (25)

ẏ2 =−δy2− i(1− 1
2δ

2)y2+δy1y2
2+ . . . , (26)

where only terms up to order four iny1,y2,δ are stated. Introducing
the polar coordinatesr,ϕ by y1=

1
2reiϕ, y2=

1
2re−iϕ, the normal form

can be written as

ṙ =−δr + 1
4δr3+ . . . , (27)

ϕ̇ = 1− 1
2δ

2+ . . . . (28)

Considering the normal form in polar coordinates, we can define
a Lyapunov function

V(r) = r2 (29)

V̇(r) = 2r ṙ = 2r(−δr + 1
4δr3+ . . .), (30)

which reproduces exactly the basin of attraction of the trivial solution
up to the order to which the normal form has been calculated.
In agreement with the well known inverse function theorem the
transformation from the physical coordinatesqi to the coordinates
yi of the normal form can be inverted in a neighborhood of the
equilibrium positionqi = 0.

For this the key is the inversion of (7). According to the inverse
function theorem we can expand

y = k(x) = x+K2x2+K3x3+ . . . . (31)

The coefficientsKi can again be calculated by comparison of
coefficients. Substitution of (31) in (7) yields

−K2x2−K3x3+ . . .= G2[x+K2x2+ . . .]2+

G3[x+K2x2+ . . .]3+ . . . (32)

and hence

K2x2 =−G2x2 (33)

K3x3 =−G3x3−2G2[x(K2x2)] (34)
....

The physical coordinates are then recovered by inverting the
diagonalization of the linear system matrix.

Using this procedure, the Lyapunov function (29) and the stability
boundary can be transformed back to physical coordinates. If we
now useV(r(q1,q2)) in the above theorem, we obtain the basin
of attraction shown in Fig. 2 by the shaded area. Of course, it is
a conservative estimate, meaning the basin of attraction cannot be
overestimated. The approximation of the stability boundary obtained
from inverting the stability boundary in the normal form equations
almost coincides with the exact one. So far the method proposed is
valid for differential equations of which only the initial conditions
are of interest. If we are to study variations and uncertainties of the
parameters, this can be easily done by considering them as states. An
equation of the type

q̇ = f(q,p), (35)
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Figure 2. Estimate S of the basin of attraction G with a Lyapunov function
from normal form theory. The stability boundary given by the limit cycle is
presented as black line.

whereq is the state vector andp are the parameters can be written as

ṗ = 0, (36)

q̇ = f(q,p), (37)

where [pT ,qT ]T is the augmented state vector. This state
augmentation is sometimes referred to as “suspension trick”. The
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Figure 3. Estimates of the basin of attraction from δ = 0.05 to δ = 0.6.

parameter now occurs in the equations of the center manifold. For a
variation of the parameterδ from 0.05 to 0.6, which can for example
be caused by an uncertainty, the basins of attraction are shown in Fig.
3. At this point we note that the stability of the augmented system
is defined only with respect to the physical coordinates and not with
respect to the augmented state variables.

The procedure described above can be performed for time discrete
systems in an analogous manner (Spelsberg-Korspeter et al., 2011). In
the following we describe how the proposed method can be used to
calculate the likelihood of systems to reach an attractor under random
initial conditions.

Systems with Stochastic Initial Conditions

In this section we use the method proposed for the estimation of
basins of attraction in order to calculate the likelihood of the solution
to reach a certain attractor assuming different random distributions
for the initial conditions. For simplicity, we use on the one hand
a normal distribution, which is often used as a first approximation
to describe real-valued random variables and on the other hand a
uniform distribution, where the initial conditions are equally probable
within a specified region. Nevertheless, in the following calculation,
any other distribution could also be used.

The normal distribution of the initial conditions of the Van der Pol
equation (3) is described by the probability density function (pdf)pn

of the form

pn(q10,q20) =
e

1
2 ((

q10
σ1

)2+(
q20
σ2

)2)

2πσ1σ2
. (38)

pn(q10,q20)

q20

q10

Figure 4. Normal distribution pn of the initial conditions.

The parametersσ1 and σ2 are the standard deviations of the
initial condition of the state variablesq10 andq20. Here, the initial
conditions are normally distributed around the origin, so that the
mean of both initial conditions is zero. Figure 4 shows the normal
distribution pn in the q10-q20 space. Of course, in real systems the
initial conditions are bounded and cannot reach infinite values. A
distribution, which fulfills this requirement is the uniform one. It can
be described by the probability density functionpu, which we defined
as

pu(q10,q20) =

{

1
πR2

u
, for q2

1(0)+q2
2(0)< R2

u ,

0, otherwise.
(39)

The region, where the probability density of the initial conditions
is constant and different from zero, is assumed to be circular and is
characterized by the radiusRu. Figure 5 shows the probability density
function pu in theq10-q20 space.

The random distributions of the initial conditions described above
can be used to calculate the likelihood for reaching an attractor. For
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pu(q10,q20)

q20

q10

Figure 5. Uniform distribution pu of the initial conditions.

any distribution described by the probability density functionp the
probabilityP of a solution to start in the domain of attractionG of the
trivial solution is defined as

P=
∫∫

G
p(q10,q20)dG, (40)

where the integration is performed over the basin of attractionG. If
instead of the exact domain of attractionG the integration in (40)
is performed over the estimated domainS< G, then an estimate
for this probability is obtained. In Figs. 6 and 7 the exact and the
estimated basin of attractionG and S are plotted together with the
contour lines of the probability density function. Since the calculated
estimate for the basin of attraction is conservative, it will always be
smaller than the exact basin of attraction. This also means that the
probability, calculated by using the estimate of the basin of attraction,
is conservative and therefore a lower bound for the exact probability
(Pexact≥ Pestimate).

2 1 0 1 2

2

1

0

1

2

q20

q10
Figure 6. Exact (solid line) and estimated (dashed line) basin of attraction
with contour lines of pn for δ = 0.19.

Since the estimate of the basin of attraction depends on the
parameterδ in equation (3), which is not accurately known, any
small changes in this parameter will cause changes in the probability.
Therefore, we calculate the exact probability for each possible

2 1 0 1 2

2

1

0

1

2

q20

q10
Figure 7. Exact (solid line) and estimated (dashed line) basin of attraction
with contour lines of pu for δ = 0.19.

parameterδ using the exact basin of attraction as integration boundary
as well as the estimated probability using the estimated basin of
attraction.

0.6 1.2
0

0.5

1
P

2δ

Figure 8. Probability of initial conditions being inside the exact (solid line)
and estimated (dashed line) basin of attraction for normal distribution of the
initial conditions (σ1 =σ2 = 0.8, µ1 = µ2 = 0).
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0

0.01

0.02

0.03

0.04

0.05
Perr

2δ

Figure 9. Error of probability estimate.

In Fig. 8 the probabilityP is plotted over the parameterδ in
the range from 0.05 to 0.6 for a normal distribution of the initial
conditions with a standard deviation ofσ1 = σ2 = 0.8, described
by (38). Due to a better approximation of the basin of attraction
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for smaller values ofδ, a better approximation of the probability is
observed. The error between the exact and the estimated probability
is shown in Fig. 9. The maximum error for the investigated range of
the parameterδ is about 4.1%.

For a uniform distribution of the initial conditions described by
(39) with Ru = 1.95, the exact and estimated probability is plotted in
Fig. 10. The estimate for the probability is quite poor since regions

0.6 1.2
0

0.5

1
P

2δ

Figure 10. Probability of initial conditions being inside the exact (solid line)
and estimated (dashed line) basin of attraction for uniform distribution with
Ru = 1.95.

exist, which are not included in the estimated basin of attraction,
see Fig. 7. The probability error reaches its maximum of 13.3% for
δ = 0.6, shown in Fig. 11. If we use a different uniform distribution

0.6 1.2
0

0.05

0.1

0.15
Perr

2δ

Figure 11. Probability error for uniform distribution with Ru = 1.95.

with Ru = 1.9, the estimated probability approximates the exact
probability much better for smaller values of the parameterδ, see
Fig. 12. For larger values of the parameterδ the probability error still
reaches 11.4%, which is shown in Fig. 13. The good approximation
for smaller values ofδ is due to the fact that in this parameter region
all initial conditions lie inside both the approximate and the exact
basins of attraction, in the exact as well as in the estimated one.
When the parameterδ reaches a certain limit the probability error
starts to increase slightly. Here, it seems to be necessary to increase
the order of the approximation of the basin of attraction to achieve
better results for the probability.

For certain distributions of the initial conditions it is possible that
for any parameter variation all possible initial conditions lie inside
both basins of attraction. This is possible for example, if we use a
uniform distribution withRu = 1.3. Here, the estimated probability
corresponds to the exact probability, see Fig. 14. Due to this fact the
probability error is always equal to zero.

0.6 1.2
0

0.5

1
P

2δ

Figure 12. Probability of initial conditions being inside the exact (solid line)
and estimated (dashed line) basin of attraction for uniform distribution with
Ru = 1.9.
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Figure 13. Probability error for uniform distribution with Ru = 1.9.

0.6 1.2
0

0.5

1
P

2δ

Figure 14. Probability of initial conditions being inside the exact (solid line)
and estimated (dashed line) basin of attraction for uniform distribution with
Ru = 1.3.

Conclusion

In this paper we propose a method to construct Lyapunov
functions for the estimation of basins of attraction. Whenever
uncertainties have to be taken into account, a purely linear stability
analysis is not sufficient but has to be checked for its range of
applicability. Since parameters can be interpreted as states of
an augmented system, these questions can be answered by the
calculation of basins of attraction. This is often done through
the study of Lyapunov functions, for which, however, systematic
construction approaches are rare. In this paper we used center
manifold and normal form theory in order to construct improved
Lyapunov functions to calculate estimates of the basins of attraction.
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Using normal form theory, every system can be transformed to a
reduced one in the vicinity of a hopf bifurcation. Additionally, system
parameters can be taken into account by adding trivial differential
equations, or for ”dynamical parameters” non-trivial differential
equations. Thus, the analysis of uncertainties in parameters is
reduced to an initial value problem and an estimation of basins of
attraction. The construction method should also be valuable for
control problems.

Using this construction method we also performed a stochastic
analysis to analyze the effect of randomly distributed initial conditions
on the reachability of attractors. The quality of the results depended
on the calculated estimate for the basin of attraction, which can be
improved by increasing the approximation order in the construction
method. For further investigations it is possible to include not only
uncertainties in the initial conditions, but also in system parameters.
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