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The Boundary Element Method 
Applied to Incompressible Viscous 
Fluid Flow 
An Integral equation formulation for steady flow of a viscous fluid is presented based on 
the boundary element method. The continuity, Navier-Stokes and energy equations are 
used for calculation of the flow field. The governing differential equations, in terms of 
primitive variables, are derived using velocity-pressure-temperature. The calculation of 
fundamental solutions and solutions tensor is showed. Applications to simple flow cases, 
such as the driven cavity, step, deep cavity and channel of multiple obstacles are 
presented. Convergence difficulties are indicated, which have limited the applications to 
flows of low Reynolds numbers. 
Keywords: Boundary elements, fundamental solution, integral equations 
 
 
 

Introduction 

The need of solution of the system of partial differential 
equations which model the flow of a fluid in channels such as pipes, 
blade passages, nozzles and others appeared the very first day the 
fluid flow was modeled. The difficulties involved in obtaining 
closed solutions, even for very simple flows, required the 
development of clever techniques, but only with the application of 
numerical solutions to that system of equations, some flows of 
practical interest were calculated. 

Several computational techniques have been used: finite 
difference, finite element, finite volume and boundary element to 
name the most known. As new algorithms were discovered and 
faster computers were produced, each of those methods evolved in 
all areas in the past years. Finite difference methods have been, 
implemented to solve flow problems. Finite elements gained 
attention in the past decades; in the seventies it was still crawling. 
Both are bases for commercial codes for the solution of flows of 
almost every kind. Computer effort has been limiting the application 
of the numerical methods in the sense that every new discovered 
method of solution claims reduction in CPU time and storage 
requirements. 1 

The boundary element method, nevertheless, has progressed 
differently depending on the areas where it has been applied. It has 
been developed fastest in areas related to solid mechanics and 
acoustics problems, (Brebbia and Walker 1980; Brebbia, Telles and 
Wrobel 1984; Banerjee and Butterfield 1981) and slowest in the 
fluid mechanics. 

A didactical approach is used in this work. The method of the 
boundary elements is applied to fluid problems, aiming also at 
introducing the methodology to new users. The computational 
implementation is based on the Kakuda and Tosaka (1988) reports. 
There, the boundary element method  uses a reformulation of the 
unsteady Navier Stokes equations in terms of velocity components 
only, by making use of the penalty function method, an approach 
successfully applied to flow analysis with finite element. The 
effectiveness of this method was illustrated by several numerical 
examples. Tosaka and Onishi (1985, 1986) proposed new integral 
representations for the Navier Stokes equations for both steady and 
unsteady flow problems. The workability and validity of the 
methodology developed therein were shown with several numerical 
results for steady problems (Tosaka, Kakuda and Onishi (1985); 
Tosaka and Kakuda (1986); Tosaka (1986)). 
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Although integral methods were available many decades ago for 
the application to flow problems of practical interest, a 
comprehensive study of the formulation and application to flow 
problems are still being considered more recently, as they are 
expected to alleviate sensibly the storage and hopefully CPU time,  
Despite this apparent advantage, requiring less computational effort 
when volume integrals are transformed into surface integrals, some 
disadvantages arise, such as higher mathematical complexity in 
order to get an usable computational formulation; the need for the 
calculation of singular integrals; dense matrices whose inversion is 
more time consuming when comparable with the banded matrices in 
the finite difference and finite element schemes. 

In the section Application below the application of the 
boundary element method to the following fluid problems are 
shown: a) stepped channel, b) box with moving lid, c) channel flow 
with multiple obstacles, d) deep cavity flow e) channel flow with 
heat transfer. 

Nomenclature 

ρ = density  
µ = dynamic viscosity  
P = pressure  
T = temperature 
ν = absolute viscosity 
k = thermal conductivity 

vc  = specific heat at constant volume  

pc  = specific heat at constant pressure 

Statement of the Problem 

Let Ω be a domain in 2R  and Γ its closed boundary; ni be the 
outer  normal vector to the boundary; the fluid be a perfect gas, 

incompressible and viscous; (x,y) be a point of Ω in 2R . The steady 
state conservation equations in cartesian co-ordinates can be written 
as: 

Conservation of Mass: 
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Conservation of Momentum: 
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y-direction 
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Conservation of Energy: 
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Let the following change of variables take effect in the 

conservation equations: 
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where ∞ refers to the far stream condition; and Re and Pr are the 
Reynolds and Prandtl numbers, respectively. 

Then, the conservation equations become:  

Conservation of Mass 
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Conservation of Momentum 
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y-direction 
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Conservation of Energy 
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For the sake of simplicity, the asterisk will be dropped in what 

follows. 
The independent variables of the problem are u, v, T and P. It is 

possible to rewrite the conservation equations in matrix form as 
 

 [L] { U} ={ B} (7) 
 

where [L] is a linear partial differential operator, {U}= 

{ }TPTvu is the vector of the unknowns  and {B} the vector 

of nonlinear convected terms. Depending on the assumptions made, 
[L] and {B} can take different forms. For instance, vector {B} can 
be linearised and the linear terms included in [L]. 

Let, for the moment, all non-linear terms are included into {B}. 
Then 
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(I, J=1, 2, 3, 4) 
 

Where: 
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The Method 

Equation (7) has no known solution. Let JU
~

 be an approximate 

solution in the sense of 0
~ ≅=− RBUL IJIJ , that is, JU

~
 differs 

from JU  very little but it is not equal to JU . 

In order to derive the integral equation for steady-state problem, 
the method of weighted residual is applied. The weighted residual 
statement for Eq. (7) can be expressed as  
 

 ( )∫
Ω

=Ω− 0dWBUL IKIJIJ   (10) 

 
A possible solution can be obtained provided theIKW as an 

appropriate weight function. It will be shown later that IKW is 

chosen as the fundamental solution tensor for the adjoint of IJL . 

Hörmander´s (1965) (Banerjee, 1994) method is used for the 
calculation of the weight functionIKW tensor and fundamental 

solution. Although it does not provide IKW  directly, it allows, as a 

first step, the combination of several partial differential operators 

IJL  into a single differential operator, from which the tensor IKW  

is calculated. The weight tensor IKW or the fundamental solution 

may be determined as a solution of steady Stokes problem with heat 
transfer: 
 

0)( =−δδ+ yxWL IKJKIJ  (11) 
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where )( yx −δ  is the Dirac delta function and IJL  is the adjoint 

operator of IJL . 

Hörmander’s method is simultaneously applied to the 
continuity, Navier Stokes and energy equations for steady, 
incompressible flow: 
 

)(][]][[ yxIWL −δ−=  (12) 
 

Multiplication of equation (12), to the left, by 1][ −L  results: 
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whose terms are ij
ji

ij mx )()1( +−= ; ijm are the minors of [L], and 
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Thus, 
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whose solution *φ  is: 
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where yxr −=  denotes the distance between x and y (Tosaka, 

1989). 
Therefore, the fundamental solution tensor JKW can be 

determined explicitly from equations (16) and (18) in conjunction 
with (19) as follows: 
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Important to notice that, the tensor JKW calculation is only 

determined analytically, this way, it is important to be careful in the 
obtaining of these equations.  

Discretization 

Let the Green-Gauss theorem be applied to equation (10) so that 
the domain integral is transformed into an integral over the 
contourΓ , divided into ne boundary elements. Then, 
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which tells that the system of differential equations has been 
transformed into a system of algebraic equations (21) that involves 
the values of the variables at each boundary element. If one finds the 
values of the variables at the elements in the boundary, the solution 
in the boundary is then obtained. 

After the application of the Green-Gauss theorem and 
integrating by parts over Ω, one arrives at the following equation 
that holds for every boundary element as well: 
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where summation is implied by repeating indices. 

It is work mentioning that right hand side of equation (22) 
comprises integrals over the boundary and over the domain, these 
due to the non-linear convective terms,IB . 

In equation (22), IKC is the tensor coefficient dependent on the 

geometry of the boundary. Its value is ½, 1 or 0, provided the point 
y lies over a locally regular boundary, within the domain or outside 
the boundary, respectively. If y lies at a corner of Γ its value is 

πα 2 , where α  is the angle formed by the left and right tangents 

to Γ . Also, 
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where coma (,) stands for derivative with respect to the following 
index and summation is implied by repeating indices. 

From equation (24) the values of IK∑  are calculated: 
 

( ) ( )






















 −−
+











 −−
π

=Σ 24

2

14

2

21
)()(1

n
r

yyxx
n

r

yyxx iiii  

( ) ( )






















 −−
+











 −−
π

=Σ 24

2

14

2

21
)()(1

n
r

yyxx
n

r

yyxx iiii  

( )






















 −
+













 −−
π

=Σ 24

3

14

2

22
)()(1

n
r

yy
n

r

yyxx iii  

( ) ( )
























 −−
+













 −
π

=Σ 24

2

14

3

11
)(1

n
r

yyxx
n

r

xx iii  

( )
















 −
−

−
+














 −−−
−

π
=Σ 244

2

1424
)()()(2

Re

1
n

r

yy

r

xx
n

r

yyxx iiii

( ) ( )













 −−−







+












 −+−−
π

=Σ 2414

2

4

2

14
)()(2

Re

1
n

r

yyxx
n

r

yy

r

xx iiii  (26) 

 
For constant boundary element, one has 
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Substituting the indicated expressions into equation (22): 
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Equation (28) can be rewritten after substitution for the constant 

terms listed in equation (27), from what results a system of algebraic 
equations. 

Numeric Implementation 

Boundary: Let Γ  be the boundary, divided into m constant 
elements, with the collocation points (nodes) located at mid position 
of each element. Application of equation (28) to m nodes gives a set 
of 4m equations with 4m unknowns. For the solution of this system 
of equations two auxiliary matrices are assembled, for each element: 
 

( ) ( )yx
n

W
yxYXG K

iK ,
Re

1
,)( 3

∂
∂

−Σ=−βα  (29) 

 

 ( ) ( ) ( )yxWyxWYXH KiK ,
Re

1
, 3−=−βα  (30) 

 
from which 
 

 ( )∫
Γ

βα Γ−=
αβ

e

e
e dYXGYg )(  (31) 

 

( )∫
Γ

βα Γ−=
αβ

e

e
e dYXHYh )(  (32) 

 
Integrals (31) and (32) are carried out numerically, using one-

dimensional Gaussian quadrature, if X≠Y. When X=Y, the integrands 
of (31) and (32) become singular, requiring the calculation in the 
sense of Cauchy principal value. Among several techniques 
available to perform these calculations, in this work the method of 
Telles (1987) was chosen. 

Domain: To calculate the integrals over Ω, the domain is 
subdivided into M elements by an appropriate net. Triangular cells 
will be used in this work. Let ωj  be the Gauss weight function at 
point j, SΩe the area of element e, and J the number of Gauss 
integration points. Then 
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Gauss quadrature with seven integration points in each 

triangular cell of the sub domain, and the Hammer technique, as 
described by Partridge et al (1992), are used to determine the 
domain integral. 

In equation (28) the values ui and T are known; iτ  and iq  are 

unknown gradients of velocity and temperature. 
Defining 
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Boundary conditions: For the application of the boundary 
conditions to equation (37), it is worth noting that elements of δ and 
of τ have some prescribed values. It is therefore convenient to 
rearrange δ and τ in such a way that the unknowns come first and 
then the prescribed values, that is, 
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Rearrangement of matrices ][H , [G] and {D} accordingly, results in 
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Rearrangement of equation (39) such that only the unknowns are in 
the left hand side of the equation, gives 
 

}{ }{ ][}]{[ DPBXA +=  (40) 
 

Matrix [A] is dense so that inversion is time consuming. The 
inversion is carried out using the Gauss elimination algorithm. 
Solution of equation (40) gives the values of the unknowns at the 
boundary. 

Computer Program: A modular computer program has been 
developed that is able to handle geometries composed of rectangles, 
written in FORTRAN and run in a 2.0 GHz personal computer. 

The computer program implementation was carried out with the 
following steps: 

- Definition of the geometry by a combination of rectangles. 
- Boundary discretization using elements of same size. 
- Domain grid generation using triangular elements. 
- Numbering elements counterclockwise. 
- Imposition of the boundary conditions and initialization of 

domain variables (velocity, temperature and pressure) using 
reasonable guesses according to the problem being solved. 

- Assembly of matrices egαβ  and ehαβ  for each element e. 

- Assembly of matrices [G] and [H] for all elements on the 
boundary. 

- Numeric evaluation of domain integrals (equation (33)). 
- Solution of equation (40) for the determination of the 

variables at the boundary. 
- Solution of equation (22) at internal nodes, with KIC =1. 

More details about computational implementation can be found 
in the Santos (1998) and Ramirez  et al (2004) 

Application 

For the demonstration of applicability of the method, five 
problems were chosen: 

a) the recirculating flow in a square cavity driven by a lid sliding    
at uniform velocity; 

b) the flow facing a forward step; 
c) the flow over a deep cavity and 
d) the flow over a deep cavity with the upper surface at a higher 

temperature; 
e) the flow in a channel with multiple obstacles. 
Driven cavity flow: The flow in the box is depicted using 

streamlines, as shown in Fig. 1. The boundary conditions are the no-
slip in the box boundaries, that is, zero at the non moving surfaces 
and the velocity of the moving slid at the upper surface. Constant 
temperature was set on the boundary. Grid for Fig. 1a is 40x40 and 
for Fig. 1b is 30x30. Criteria of convergence were based on the 
difference ε of the previous and the actual calculated values for 
velocities, pressure and temperature. Convergence was achieved up 
to Reynolds number of 400. Recirculation is detected at the bottom-
right of the cavity. 

Flow in a stepped channel: Streamlines of the flow in a forward 
facing step is shown in Fig. 2a. Boundary conditions are: parabolic 
distribution of velocities at inlet, no-slip condition on the walls and 
constant wall temperature. The results shown are for a grid of 
26×30. The predicted reattachment point is in agreement with other 
predicted numeric methods such as the finite volume methods (Fig 
2.b), (Rocamora F, 2002) 
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Figure 1a. Streamlines in the driven cavity flow Re = 300, grid 40××××40, 
εεεε=0.0001. 
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Figure 1b. Streamlines in the driven cavity flow Re = 400, grid 30××××30, 
εεεε=0.001. 
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Figure 2a. BEM. Streamlines in the channel flow Re = 30, grid 26××××30, 
∈∈∈∈=0.0001. 
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Figure 2b. FVM. Streamlines in the channel flow Re = 30, grid 26××××30. 
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Deep cavity flow: The streamlines for Re=10, grid 40×40 and 
ε=0.0001, are shown in Fig. 3a, which is a good result. In Fig. 3b 
one can also see satisfactory results with a moderately refined mesh 
with a grid of 20×20 and ε=0.00001, so that it is possible to obtain 
good results in shorter processing time. For methodology validation, 
the finite volume method was used 40×40 elements with refined grid 
in the corner regions (Figure 3c). The CPU time for the method of 
boundary elements is smaller for the boundary element method. In 
Fig. 4 are shown the velocities at the middle of the cavity, obtained 
from BEM and FVM. It is important to notice that the Boundary 
Element Method with a grid of 20×20 gives good result when 
compared to the Method of Finite Volumes. Since convergence is 
achieved only for low Reynolds number, this formulation is not 
appropriate for the study of flow in turbomachines, one of our goals. 
Therefore, research is being carried out order to linearize {B} 
(Eq.10) and to incorporate those non-linear terms to the linear 
operator [L]. This method may become very attractive since it is 
expected to sensible reduce computational cost. 
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Figure 3a. Streamlines in the deep cavity flow Re = 10, grid 40x40, 
εεεε=0.0001. 
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Figure 3b. Streamlines in the deep cavity flow Re = 10, grid 20x20, 
εεεε=0.00001. 

 

 
Figure 3c. MFV Streamline in deep cavity flow. 
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Figure 4. Velocities distribution u in medium section of deep cavity flow. 
Re=10, grid 20××××20, εεεε= 0.0001. 
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Figure 5. Channel flow temperature contour Re = 10, grid 40X40, εεεε=0.0001. 
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Figure 6. Streamlines in the channel flow with multiple obstacles Re = 20 - grid 26x96, εεεε=0.0001. 

 
Deep cavity flow (heated upper surface): Although the energy 

equation had been used in the four previous applications, they were 
constant temperature applications. In this example, it is shown the 
variation of fluid temperature in Fig. 5, that shows the temperature 
contours when the top surface temperature is higher than the 
temperature of the other surfaces. Again, good results were obtained 
and no additional CPU time, compared to the previous application, 
was required. 

Channel flow with multiple obstacles: Figures 6 show the 
streamlines of the flow in a channel with multiple obstacles, for  
Reynolds numbers 20. 

Conclusion 

The boundary element method can be applied to the calculation 
of incompressible viscous flows as demonstrated above. Although 
coarse grids were used, the results are quite satisfactory, capturing 
regions of reverse flows. Comparison of CPU times for the BEM 
and for FVM indicates that the BEM calculations are much faster. It 
is therefore important to investigate other applications, such as the 
flow in blade passages, which is the ultimate goal for the research 
under way. Flow in blade passages require a method that converges 
for much higher Reynolds number. Such a method is being 
developed, using linearization of the convective terms to allow the 
convective information to be incorporated into the fundamental 
solution and therefore achieve convergence for higher Reynolds 
numbers. 
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