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The Boundary Element Method
Applied to Incompressible Viscous
Fluid Flow

An Integral eguation formulation for steady flow of a viscous fluid is presented based on
the boundary element method. The continuity, Navier-Sokes and energy equations are
used for calculation of the flow field. The governing differential equations, in terms of
primitive variables, are derived using velocity-pressure-temperature. The calculation of
fundamental solutions and solutions tensor is showed. Applications to simple flow cases,
such as the driven cavity, step, deep cavity and channel of multiple obstacles are
presented. Convergence difficulties are indicated, which have limited the applications to
flows of low Reynolds numbers.
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Introduction

The need of solution of the system of partial défdial
equations which model the flow of a fluid in chalsrguch as pipes,
blade passages, nozzles and others appeared thdéirseday the
fluid flow was modeled. The difficulties involved iobtaining
closed solutions, even for very simple flows, reegdi the
development of clever techniques, but only with sipplication of
numerical solutions to that system of equationsnesdlows of
practical interest were calculated.

Several computational technigues have been usette fi
difference, finite element, finite volume and boand element to
name the most known. As new algorithms were disesa/eand
faster computers were produced, each of those metbeolved in
all areas in the past years. Finite difference pmdhhave been,
implemented to solve flow problems. Finite elememained
attention in the past decades; in the seventiead still crawling.
Both are bases for commercial codes for the salutibflows of
almost every kind. Computer effort has been lingitihe application
of the numerical methods in the sense that evewy discovered
method of solution claims reduction in CPU time astdrage
requirements.

The boundary element method, nevertheless, hasrgaseg
differently depending on the areas where it has laggplied. It has
been developed fastest in areas related to solidhamécs and
acoustics problems, (Brebbia and Walker 1980; Begbkelles and
Wrobel 1984; Banerjee and Butterfield 1981) andwvskt in the
fluid mechanics.

A didactical approach is used in this work. The hodt of the
boundary elements is applied to fluid problems, iagmalso at
introducing the methodology to new users. The cdatmnal
implementation is based on the Kakuda and Tosa®@8)1reports.
There, the boundary element method uses a refationl of the
unsteady Navier Stokes equations in terms of viglammponents
only, by making use of the penalty function methad, approach
successfully applied to flow analysis with finitdement. The
effectiveness of this method was illustrated byesalvnumerical
examples. Tosaka and Onishi (1985, 1986) proposed integral
representations for the Navier Stokes equationddtin steady and
unsteady flow problems. The workability and valdiof the
methodology developed therein were shown with s¢vasmerical
results for steady problems (Tosaka, Kakuda andst®r(iL985);
Tosaka and Kakuda (1986); Tosaka (1986)).
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Although integral methods were available many desajo for
the application to flow problems of practical imst, a
comprehensive study of the formulation and appticato flow
problems are still being considered more recerdly, they are
expected to alleviate sensibly the storage andfhthpeCPU time,
Despite this apparent advantage, requiring lespuatational effort
when volume integrals are transformed into surfategrals, some
disadvantages arise, such as higher mathematicaplegity in
order to get an usable computational formulatitre; need for the
calculation of singular integrals; dense matricé®se inversion is
more time consuming when comparable with the bamdtgices in
the finite difference and finite element schemes.

In the sectionApplication below the application of the
boundary element method to the following fluid pesbs are
shown: a) stepped channel, b) box with movingd)dgchannel flow
with multiple obstacles, d) deep cavity flow e) chal flow with
heat transfer.

Nomenclature
p = density
M= dynamic viscosity
P = pressure
T = temperature
v= absolute viscosity
k = thermal conductivity
¢, = specific heat at constant volume

Cp = specific heat at constant pressure

Statement of the Problem

Let Q be a domain inRR? andr its closed boundary; be the
outer normal vector to the boundary; the fluid gerfect gas,

incompressible and viscous) be a point of2 in R2.The steady
state conservation equations in cartesian co-aelnzan be written
as:

Conservation of Mass:

—+—=0 Q)
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Conservation of Momentum:

x - direction
vl 0%u+ 6 @+6v aP =p ud_u+vd_u (2a)
x| ax ay X ox oy
y-direction
sl Dz +i ﬂ aV aP =p uﬂ+ ﬂ (2b)
dy | 0x ay 6y ox oy
Conservation of Energy:
2 oT oT
kD“T=pc, | U—+V— 3
P V{ ax ay} ®)

Let the following change of variables take effect the
conservation equations:

« W, s« P-P, . « Yy
t =—— = > P _L y ==
L PV P L
* * * * \Y
u :i Vv :L Vo, = |_/|02°+\/°2o M :L vV = —
Voo Voo I-'loo Voo

whereo refers to the far stream condition; and Re anduBrthe
Reynolds and Prandtl numbers, respectively.
Then, the conservation equations become:

Conservation of Mass

Lo @
ox oy
Conservation of Momentum
x-direction
ST RN i P e e
ox \ox oy 0X 0X ay
y-direction
o2y + O[] o0 _pdyt M N (e
oy ox’ Oy ay ox’ oy

Conservation of Energy

N Y al+ (6)
o

« 0T
V *
Re dy
For the sake of simplicity, the asterisk will bepiped in what
follows.
The independent variables of the problemiwane T andP. It is
possible to rewrite the conservation equationsatrimform as

[L]{U}={B} 7
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where L] is a linear partial differential operator, U=

{u v T P}T is the vector of the unknowns anB}{the vector

of nonlinear convected terms. Depending on theragsans made,
[L] and {B} can take different forms. For instance, vect8} £an
be linearised and the linear terms included.in [

Let, for the moment, all non-linear terms are ided into {8}.
Then

02+D,D; DD, 0 -ReD
D,D; O2+D,D, 0 -ReD,
Ly = ;
. 0 0 N
Re
D, D, 0 0
Rdu 4y
ox oy
u
{ av avj
Y R u—+v—
UJ:T ;B = ox oy (8)
P pludl 49T
0x oy
L 0 -
(1,3=1, 2,3, 4)
Where:
0 2 2
Dl:i, D, =—; 2:6_4.6_ (9)
ox oy ox2  ay?
The Method

Equation (7) has no known solution. LlEtJ be an approximate

solution in the sense af, JJ -B, =ROO, that is, JJ differs

from U 5 very little but it is not equal t&J ; .

In order to derive the integral equation for steathte problem,
the method of weighted residual is applied. Theghted residual
statement for Eq. (7) can be expressed as

J(Luy -8 Wid =0
Q

(10)

A possible solution can be obtained providedWheas an
appropriate weight function. It will be shown latdrat Wy is
chosen as the fundamental solution tensor for diwrd of L ; .

Hormander’s (1965) (Banerjee, 1994) method is deedhe
calculation of the weight function, tensor and fundamental

solution. Although it does not providd, directly, it allows, as a

first step, the combination of several partial elifintial operators
L,; into a single differential operator, from whictettensorw,y

is calculated. The weight tens or the fundamental solution

may be determined as a solution of steady Stok@sem with heat
transfer:

LisWyk +88(x—y) =0 (11)
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whered(x —y) is the Dirac delta function andT,J is the adjoint

operator ofL,; .

Hormander's method is simultaneously applied to
continuity, Navier Stokes and energy equations &ieady,
incompressible flow:

[LIW]=-[118(x - y) 12)

Multiplication of equation (12), to the left, ] 1 results:

W] =~[L]78(x ~ y) =~[115(x - y) (13)
where,[L] ™ = Adj[L]/ Det[L Jand Adj[L]=CofT[L]
D302 -D,D,0? 0 -p,0%02
-D;D,02 D02 0 -D,0%02
i = 14
co=| o Rer?0? o 14)
iDlmZDZ iDZDZDZ 0 2 2022
Re Re Re

whose terms areg; = (—1)(i+i)mj ; my; are the minors ofl]], and

defL]=02(02(02) (15)
Thus,
[W] =[L]715(x~y) =Cof T[L] (detL) {I118(x-y)  (16)
Let
¢ =(det[L]) "8(x~y) (17)
then
def[L] ¢ =3(x-y) (18)
whose solution’ is:
¢ (0y)=mrtinr (19)

where r =|x~y| denotes the distance betweerandy (Tosaka,
1989).
Therefore, the fundamental solution tensi, can be

determined explicitly from equations (16) and (18)conjunction
with (19) as follows:

Wy =%{In(r)+1+—(y rz') }

:_L{M}

21 r2

1 (x=x)(y-vi)
Wog=—m—— | — 7= 7 W2 =WoHe =W,
21 4 |: r2 13 23 43

R
W3l:0 W33:4—_§(3+2|n r)
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_ 1 (x=x) _ 1 (x=x)
W4l_§[|: r2 i| WlA_ZnRe{ r2 :|

- (y-vi)
Was = 2TrRe{ r2 }

2
XZX) Wa, =W
2 34 =Wyq
r

W32 =0 (20)

Important to notice that, the tensdW, calculation is only

determined analytically, this way, it is importdatbe careful in the
obtaining of these equations.

Discretization

Let the Green-Gauss theorem be applied to equéti®nso that
the domain integral is transformed into an integoaler the
contourl” , divided inton, boundary elements. Then,

j(L,JUJ -B, )W, dQ=0 (,J,K=1,2,3,4) 1)

Q

which tells that the system of differential equatiohas been
transformed into a system of algebraic equatiod$ (Rat involves
the values of the variables at each boundary elertiene finds the
values of the variables at the elements in the danyn the solution
in the boundary is then obtained.

After the application of the Green-Gauss theorend an
integrating by parts ove®, one arrives at the following equation
that holds for every boundary element as well:

Cra (U1 () = [{100Zic 0 3) = e Wi (9 +
r

+ ! Rie{T(x) ‘;‘;%XK) (%Y) =GOV (% y)}dr 00 (@22)

+ [ B 9Wi (x y) 40
Q

where summation is implied by repeating indices.

It is work mentioning that right hand side of eqoat(22)
comprises integrals over the boundary and overdtiteain, these
due to the non-linear convective terrBg,

In equation (22)C,k is the tensor coefficient dependent on the

geometry of the boundary. Its value is ¥, 1 orr@yjgled the point
y lies over a locally regular boundary, within thenehin or outside
the boundary, respectively. ¥ lies at a corner ofl its value is
o/2m, wherea is the angle formed by the left and right tangents

to I'. Also,

0T (X)

ax) = 3 (23)
Zik (%, Y) = (-Wak jj +Wi,j + Wi i)N; (24)
Ti(X):(—Repéij +ui,j +uj’i)nj (25)
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where coma (,) stands for derivative with respecthie following 9® ()= IGBa (X —Y)dre (31)
index and summation is implied by repeating indices ap r
From equation (24) the values df,x are calculated:

e

h® (V)= [Hpa (X -Y)dre (32)

r r Integrals (31) and (32) are carried out numerigallsing one-

2 _ Y dimensional Gaussian quadratures#Y. WhenX=Y, the integrands

221:1 M n + M n of (31) and (32) become singular, requiring thecwaialtion in the
s ré ré sense of Cauchy principal value. Among several riegles
available to perform these calculations, in thigkvihe method of

S0y = 1 {(X—xi) (y-vi )2 :|n1 _{ (y-vi )3 }nz} Telles (1987) was chosen.

4 4 Domain: To calculate the integrals oveR, the domain is
subdivided intoM elements by an appropriate net. Triangular cells

1 ][ (x=x)? (x=x 2 (y-yi) will be used in this work. Lety be the Gauss weight function at
le=; ! h + ! L 1n, point j, S the area of elemerg, and J the number of Gauss

rf ré integration points. Then
5o b [[_m2x=x)ly=y ] L] x=x0® =y | M 3
247 Ren r4 1 4 r4 2 jB| (MWik (x y)da(x)=>" z‘*)j(BI\NIK(XvY))j So, (33)
Q e=]f j=1
x=x P (y=wP | ,[-26=x)(y-y)
214= Renﬂ_( r?) +( r4|) ”1{ :'4 ' }“2 (26) Gauss quadrature with seven integration points &cthe
triangular cell of the sub domain, and the Hamneshnique, as
described by Partridge et al (1992), are used terohne the
For constant boundary element, one has domain integral.
u(re)=u In equation (28) the values andT are known;T; and g, are
e _ ‘e unknown gradients of velocity and temperature.
5i(e)=1, 27) Defining
T(re):Te
q(re)=qe 6:[ul VviTy -+ UmpVy Tm]T (34)
Substituting the indicated expressions into equa22): 1= [T11 To1 G - Tym Tom Qm] T (35)
n . .
Cia ()1 ) = 5 i ey, 09 ~Wie b )i 0} or (0 + equation (29) can be rewritten as
e=1r
Q{3 +[H]{&} =[G {1} +{D} (36)
N1 (g [
+Z %{WE —Wak (X, Y)Qe}dre"' (28)
e=1r Defining
+ By (i (x y)da(x) _
Q [H]=[C]-[H]

Equation (28) can be rewritten after substitutionthe constant gne arrives at
terms listed in equation (27), from what resulsystem of algebraic

equations. [H]{& =[G {1} +{D} (37)

Numeric Implementation Boundary conditions. For the application of the boundary
Boundary: Let I be the boundary, divided intm constant conditions to equation (37), it is worth notingttieéements ob and

elements, with the collocation points (nodes) ledait mid position Of T have some prescribed values. It is therefore auewe to

of each element. Application of equation (28ntmodes gives a set rearranged andt in such a way that the unknowns come first and

of 4m equations with # unknowns. For the solution of this systemthen the prescribed values, that is,

of equations two auxiliary matrices are assemiteadeach element:

1 W, o= [6“ ° p] '
— 3K
Gpa (X =Y) = Zik (x, y)_R_eT(X' y) (29) T:[Tu Tp]T (38)
l - - . .
Heg (x _Y) =W|K(X, Y)‘%WsK (X, y) (30) Rearrangement of matricd ] , [G] and {D} accordingly, results in
from which l:ﬂuu Eup :l{au :| _ |:Euu Eup :|{[u :| + |: Dy :| (39)
Hou Hpp [ O] |Gpu Gpp | Tp| [Pp
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Rearrangement of equation (39) such that only theowns are in 1
the left hand side of the equation, gives

[A{ X} =[B] {P} +{D} (40)
. . . o . 0.75 f+
Matrix [A] is dense so that inversion is time consuming. The ;
inversion is carried out using the Gauss elimimatadgorithm.
Solution of equation (40) gives the values of tmknowns at the
boundary.

Computer Program: A modular computer program has been
developed that is able to handle geometries condpafeectangles,
written in FORTRAN and run in a 2.0 GHz personahpater.

The computer program implementation was carriedwatit the
following steps:

- Definition of the geometry by a combination of weagles.

- Boundary discretization using elements of same size

- Domain grid generation using triangular elements.

- Numbering elements counterclockwise. 0

- Imposition of the boundary conditions and initialion of

domain variables (velocity, temperature and pregsusing Figure la. Streamlines in the driven cavity flow Re = 300, grid 40x40,
reasonable guesses according to the problem beliveds £=0.0001.

- Assembly of ma\tricegﬁB and hﬁB for each element e.

05

0.25

- Assembly of matrices@] and H] for all elements on the
boundary.

- Numeric evaluation of domain integrals (equatiod))3

- Solution of equation (40) for the determination tife
variables at the boundary.

- Solution of equation (22) at internal nodes, wt, =1.

More details about computational implementation barfound
in the Santos (1998) and Ramirez et al (2004)

0.75 [+

0.5~

Application

For the demonstration of applicability of the meathdive
problems were chosen:

a) the recirculating flow in a square cavity drivgna lid sliding
at uniform velocity;

b) the flow facing a forward step;

0.25

c) the flow over a deep cavity and 0
d) the flow over a deep cavity with the upper stefat a higher . b S y i the dri it flow Re = 400. arid 30x30
temperature; igure 1b. Streamlines in the driven cavity flow Re = , gri %30,

. . . =0.001.
e) the flow in a channel with multiple obstacles. &

Driven cavity flow: The flow in the box is depicted using
streamlines, as shown in Fig. 1. The boundary d¢immdi are the no-
slip in the box boundaries, that is, zero at the nmving surfaces
and the velocity of the moving slid at the upperfate. Constant
temperature was set on the boundary. Grid for Fagis 4640 and
for Fig. 1b is 3@30. Criteria of convergence were based on the
differencee of the previous and the actual calculated valwes f  °°
velocities, pressure and temperature. Convergemaseachieved up
to Reynolds number of 400. Recirculation is detetethe bottom-
ngh;g\:}ﬁ ;as\xlggped channel: Streamlines of the flow in a forward I;E(L)JronOZ:La. BEM. Streamlines in the channel flow Re = 30, grid 26x30,
facing step is shown in Fig. 2a. Boundary condiane: parabolic S
distribution of velocities at inlet, no-slip conidit on the walls and
constant wall temperature. The results shown areafagrid of
26x30. The predicted reattachment point is in agre¢méh other
predicted numeric methods such as the finite volume¢hods (Fig
2.b), (Rocamora F, 2002)

o
o

Figure 2b. FVM. Streamlines in the channel flow Re = 30, grid 26x30.
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Deep cavity flow: The streamlines for Re=10, grid >#® and
€=0.0001, are shown in Fig. 3a, which is a good ltefu Fig. 3b
one can also see satisfactory results with a maslgnefined mesh
with a grid of 220 ande=0.00001, so that it is possible to obtain
good results in shorter processing time. For medtogy validation,
the finite volume method was usedx40 elements with refined grid
in the corner regions (Figure 3c). The CPU timetfa method of
boundary elements is smaller for the boundary eirmeethod. In
Fig. 4 are shown the velocities at the middle ef ¢avity, obtained
from BEM and FVM. It is important to notice thatettBoundary
Element Method with a grid of 2@0 gives good result when
compared to the Method of Finite Volumes. Sinceveogence is
achieved only for low Reynolds number, this forntiola is not
appropriate for the study of flow in turbomachinese of our goals.
Therefore, research is being carried out orderirteatize {B}
(Eq.10) and to incorporate those non-linear termsthie linear
operator []. This method may become very attractive sinces it
expected to sensible reduce computational cost.

LA LI L A L L L LA B

0

0

Figure 3a. Streamlines in the deep cavity flow Re
€=0.0001.

10, grid 40x40,

4.0

3.5

3.0

2.5

2.0

15

1.0

0.5

=Y BLELLL LN L BN L

0.%.

Figure 3b.
€=0.00001.

Streamlines in the deep cavity flow Re 10, grid 20x20,
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4.0
3.0
20—
[ — - — FV40X40, F. Rocamola (2002)
——=a—— BEM, 40 X 40, eps=0.0001
1.0 — =+ — BEM, 20 X 20, eps=0.00001
0o O S Y
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Velocities distribution u in medium section of deep cavity flow.
Re=10, grid 20x20, &= 0.0001.

111314151618192021232425262829
T=3.0

1 2

3

4

Figure 5. Channel flow temperature contour Re = 10, grid 40X40, €=0.0001.
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Figure 6. Streamlines in the channel flow with multiple obstacles Re = 20 - grid 26x96, €=0.0001.

Deep cavity flow (heated upper surface): Although the energy
equation had been used in the four previous agjuits they were
constant temperature applications. In this exanipls, shown the
variation of fluid temperature in Fig. 5, that stethe temperature
contours when the top surface temperature is highan the
temperature of the other surfaces. Again, goodtesiere obtained
and no additional CPU time, compared to the previapplication,
was required.

Channel flow with multiple obstacles. Figures 6 show the
streamlines of the flow in a channel with multigibstacles, for
Reynolds numbers 20.

Conclusion

The boundary element method can be applied toatoailation
of incompressible viscous flows as demonstrated/@bdlthough
coarse grids were used, the results are quitefasatisy, capturing
regions of reverse flows. Comparison of CPU timasthe BEM
and for FVM indicates that the BEM calculations amech faster. It
is therefore important to investigate other appiices, such as the
flow in blade passages, which is the ultimate doalfthe research
under way. Flow in blade passages require a methatdconverges
for much higher Reynolds number. Such a method émgb
developed, using linearization of the convectiventeto allow the
convective information to be incorporated into thumdamental
solution and therefore achieve convergence for drigReynolds
numbers.
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