
Hazem A. Attia 

/ Vol. XXIX, No. 2, April-June 2007   ABCM168

Hazem A. Attia 
Dept. of Math., College of Science 

Al-Qasseem University 
P.O. Box 237, Buraidah 81999, KSA 

On leave from: 
Dept. of Eng. Math. and physics 

Fac. of Eng., El-Fayoum University 
El-Fayoum, Egypt 

Rotating Disk Flow and Heat Transfer 
of a Conducting Non-Newtonian Fluid 
with Suction-Injection and Ohmic 
Heating 
The steady hydromagnetic flow in a porous medium of an incompressible viscous 
electrically conducting non-Newtonian fluid above an infinite rotating porous disk is 
studied with heat transfer.  An external uniform magnetic field is applied perpendicular to 
the disk and a uniform injection or suction is applied through the surface of the disk.  
Numerical solutions of the nonlinear governing equations, which govern the flow and 
energy transfer, are obtained.  The effect of the magnetic field, the suction and injection 
velocity and the characteristics of the non-Newtonian fluid on the velocity and temperature 
distributions are considered.  . 
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Introduction 

The pioneering study of fluid flow due to an infinite rotating 
disk was carried by von Karman (von Karman 1921).  von Karman 
gave a formulation of the problem and then introduced his famous 
transformations which reduced the governing partial differential 
equations to ordinary differential equations.  Asymptotic solutions 
were obtained for the reduced system of ordinary differential 
equations by Cochran (Cochran 1934).  Their analysis was much 
simpler and valuable information was gained from it.  This gave the 
problem significant theoretical value and invited many researchers 
to add to it new features.  Benton (1960) improved Cochran's 
solutions and solved the unsteady problem and proved that the 
steady state solution can be obtained via a time-dependent process. 

In recent years, considerable interest has been shown in mass 
addition to boundary layer flows, especially in connection with the 
cooling of turbine blades and the skins of high speed aero-vehicles.  
Such a cooling process, frequently termed transpiration, might 
utilize a porous surface through which a coolant, either a gas or 
liquid, is forced.  It is of interest to study the effect of the magnetic 
field  as well as the non-Newtonian fluid behavior on the heat 
transfer and, in turn, on the cooling process of such devices.  These 
results are needed for the design of the wall and the cooling 
arrangements.1

The problem of heat transfer from a rotating disk maintained at 
a constant temperature was first considered by Millsaps and 
Pohlhausen (1952) for a variety of Prandtl numbers in the steady 
state.  Sparrow and Gregg (1960) studied the steady state heat 
transfer from a rotating disk maintained at a constant temperature to 
fluids at any Prandtl number.  Later Attia (1998) extended the 
problem discussed in (Millsaps et al. 1952, Sparrow et al. 1960) to 
the unsteady state in the presence of an applied uniform magnetic 
field where a numerical solution has been obtained for the 
governing equations.   

The steady flow of Reiner-Rivlin non-Newtonian fluid due to a 
rotating disk with uniform suction was considered by Mithal (1961).  
The solutions obtained were valid for small values of the parameter 
which describes the non-Newtonian behavior.  Then, Attia (2003) 
extended the problem to the transient state with heat transfer and 
obtained a numerical solution for the governing non-linear equations 
which is valid for the whole range of the non-Newtonian parameter. 

The hydromagnetic flow due to a rotating disk was studied in 
the presence of an external uniform magnetic field (El-Mistikawy et 
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al. 1990, 1991).  Steady state asymptotic solutions for strong (El-
Mistikawy et al. 1990) and weak (El-Mistikawy et al. 1991) 
magnetic fields were obtained.  Aboul-Hassan and Attia (1997) 
studied the steady hydromagnetic problem taking the Hall effect into 
consideration and a numerical solution for the governing equations 
was obtained.  The effect of the ion slip on the steady 
hydromagnetic flow with heat transfer was studied by Attia (2003). 

The effect of a uniform suction or injection through a rotating 
porous disk on the steady hydrodynamic flow induced by the disk 
was investigated (Stuart 1954, Ockendon 1972, Kuiken 1971).  
Stuart (1954) introduced suction through the disk and solved the 
governing equations with zero rotation at infinity.  Ockendon (1972) 
used asymptotic methods to determine the solution of the problem 
for small values of the suction parameter and in the case of rotation 
at infinity.  The effect of uniform injection through a rotating porous 
disk on the flow induced by the disk was studied by Kuiken (1971).  
Later Attia extended the problem to the case of an unsteady 
hydromagnetic flow in the presence of an external uniform magnetic 
field without considering the Hall effect (1998).  The effect of 
uniform suction or injection on the flow of a conducting fluid due to 
a rotating disk was studied in the presence of a uniform magnetic 
field with the Hall current (Attia et al. 2001). 

In the present work, the steady hydromagnetic laminar flow with 
heat transfer of an incompressible viscous electrically conducting 
non-Newtonian fluid due to the uniform rotation of a porous disk of 
infinite extent in an axial uniform steady magnetic field is studied 
considering the Ohmic heating.   A uniform injection or suction is 
applied through the surface of the disk.  The temperature of the disk 
is maintained at a constant value.  The governing nonlinear 
differential equations are integrated numerically using the finite 
difference approximations.  The effect of the magnetic field, the 
characteristics of the non-Newtonian fluid and the suction or 
injection velocity on the steady flow and heat transfer is presented 
and discussed. 

Nomenclature 

Bo = magnetic flux density  
i
je  = strain tensor 

Ec = Eckert number 
(F, G, H)  = non-dimensional velocity components,  
k = thermal conductivity, 
K = non-Newtonian parameter, 
p = pressure gradient, 
P = non-dimensional pressure, 
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Pr = Prandtl number 
M = magnetic parameter 
T = temperature of the fluid 
Tw = temperature of the disk, 

∞T  = temperature of the ambient fluid, 

S = Suction parameter, 
wo = vertical velocity at the disk, 
(u, v, w)  = velocity components, 
(r, ϕ , z)  = cylindrical coordinates, 

θ  = non-dimensional temperature, 
�  = viscosity of the fluid, 

cµ  = coefficient of cross viscosity, 
�  = density of the fluid, 
σ  = electrical conductivity of the fluid, 
ω  = angular velocity of the disk, 

i
jτ  = stress tensor,  

ζ  = non-dimensional distance. 

Basic Equations  

Let the disk lie in the plane z=0 and the space z>0 is occupied by 
an incompressible viscous Reiner-Rivlin non-Newtonian fluid as 
shown in Fig. 1.  The motion is due to the rotation of an insulated 
disk of infinite extent about an axis perpendicular to its plane with 
constant angular speed ω .  Otherwise the fluid is at rest under 
pressure ∞p .  The disk is maintained at a constant temperature Tw.  

An external uniform magnetic field is applied in the z-direction and 
has a constant flux density Bo.  The magnetic Reynolds number is 
assumed to be very small, so that the induced magnetic field is 
negligible (Sutton et al. 1965).  A uniform injection or suction is 
applied at the surface of the disk for the entire range from large 
injection velocities to large suction velocities.  

The constitutive equation for the Reiner-Rivlin non-Newtonian 
fluid is given by Mithal (1961): 
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where i
jτ  is the stress tensor, i

je  is the strain tensor, p is denoting 

the pressure, �  is the coefficient of viscosity, ( ) 2/eec i
j

i
jc ∑∑+= αµ

is the coefficient of cross viscosity, c=const., and α  is a sufficiently 
small parameter (constant).  The Reiner-Rivlin model is 
comparatively simple, but it provides a somewhat intuitive 
prediction of flow parameters and heat transfer performance of a 
viscoelastic fluid above a rotating disk. 

Figure 1. Flow configuration. 

The equations of steady motion, using Eq. (1), are given by 
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where u, v, w are velocity components in the directions of increasing 
r, ϕ , z respectively, ρ  is the density of the fluid, and σ  is the 
electrical conductivity of the fluid.  We introduce von Karman 
transformations (von Karman 1921), 

Pvpp,/vz,Hvw,Grv,Fru ωρζωωωω −=−==== ∞

where ζ is a non-dimensional distance measured along the axis 

of rotation, F, G, H and P are non-dimensional functions of ζ , and 

ν  is the kinematics viscosity of the fluid, ρµν /= .  With these 
definitions, Eqs. (2)-(5) take the form 
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where ρωσ /BM o
2=  is the magnetic interaction number (Sutton et 

al. 1965) and K is the parameter which describes the non-Newtonian 
behavior, K=� c/� � (Mithal 1961). 

The boundary conditions for the velocity problem are given by 

,SH,G,F, ==== 100ζ  (10a) 

,P,G,F, 000 →→→∞→ζ  (10b) 

where ων/wS o= is the uniform suction or injection parameter, 

which takes constant negative values for suction and constant 

positive values for injection, and ow  is the vertical velocity 

component at the surface.  Equation (10a) indicates the no-slip 
condition of viscous flow applied at the surface of the disk, but due 
to the uniform suction or injection, the vertical velocity component 
takes a constant non-zero value at z=0.  Far from the surface of the 
disk, all fluid velocities must vanish aside the induced axial 
component as indicated in Eq. (10b).  The above system of Eqs. (6)-
(8) with the prescribed boundary conditions given by Eq. (10) are 
sufficient to solve for the three components of the flow velocity.  
Equation (9) can be used to solve for the pressure distribution if 
required. 

Due to the difference in temperature between the wall and the 
ambient fluid, heat transfer takes place.  The energy equation, by 
neglecting the viscous dissipation, takes the form [4-5]; 
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where T is the temperature of the fluid, cp is the specific heat at 
constant pressure of the fluid, and k is the thermal conductivity of 
the fluid.  The last term in Eq. (11) represents the Ohmic heating.  
The boundary conditions for the energy problem are that, by 
continuity considerations, the temperature equals Tw at the surface 
of the disk.  At large distances from the disk, T tends to T�  where T�
is the temperature of the ambient fluid.  In terms of the non-
dimensional variable 

�
=(T-T� )/(Tw-T� ) and using von Karman 

transformations, Eq. (11) takes the form; 
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where Pr is the Prandtl number given by, Pr=cp� /k and 

)TT(c/rEc wp ∞−= 22ω  is the Eckert number. 

The boundary conditions for the temperature field are expressed 
as 

010 =∞= )(,)( θθ  (13) 

The system of non-linear ordinary differential equations (6)-(8) 
and (12) is solved under the conditions given by Eq. (10) and (13) 
for the three components of the flow velocity and temperature 
distribution, using the Crank-Nicolson method (Ames 1977).  The 
resulting system of difference equations has to be solved in the 
infinite domain 0<� <� .  A finite domain in the � -direction can be 
used instead with �  chosen large enough to ensure that the solutions 
are not affected by imposing the asymptotic conditions at a finite 
distance.  The independence of the results from the length of the 
finite domain and the grid density was ensured and successfully 
checked by various trial and error numerical experimentations.  
Computations are carried out for �

�
=12 and step size � � =0.04 which 

are found adequate for the ranges of the parameters studied here.  
Larger finite distance or smaller step size do not show any 
significant change in the results.  Convergence of the scheme is 
assumed when every one of the variables F, G, H, 

�
, dF/d� , dG/d� , 

and d
�
/d�   for the last two approximations differs by less than 10-6

for all values of �  in 0<� <12.  

Results and Discussion  

Figures 2a,b,c,d present the steady state velocity components 
and temperature, F, G, H, and θ , respectively, for various values of 
K and for M=0 and 1. In these figures,  S=0, Pr=0.7 and Ec=0.2.  It 
is clear from Fig. 2b that increasing K increases G for all ζ .  Figure 
2b shows also the damping effect of the magnetic field which results 
in a reduction in the velocity component G for all ζ . Figure 2a 
indicates that, for M=0, increasing the parameter K decreases F for 
small and moderate values of ζ .  This can be attributed to the fact 
that increasing K decreases the axial flow towards the disk (see Fig. 
2c) which, in turn, decreases the radial flow since the axial flow is 
diverted into radial flow.  However, for larger values of ζ  a 
crossover point that depends on K appears and an increment in K
increases F.  This may result from the increase in the velocity 
component G with increasing K which becomes more effective at 
larger values of ζ , as shown in Fig. 2b, and consequently result in 
an increase in F in this region.   Figure 2a presents an interesting 
effect for the magnetic field in the suppression of the crossover 
points that appear with the variation of K.  This is actually due to the 

reduction in G with increasing M.  Also, it is shown in Fig. 2a the 
influence of the magnetic field, for large values of K, in reversing 
the direction of the velocity component F with S=0.  The magnetic 
field has the effect in reducing the magnitude of F for all ζ  and for 
various values of K.  Figure 2c shows that increasing the parameter 
K or M increases the resistance for the incoming axial flow and 
consequently reduces the axial velocity towards the disk H for all 
ζ .  For large values of K, due to the reversal of the direction of F
which is the source for H, a resistance is imposed on the axial flow 
towards the disk and consequently the direction of H is reversed.  
Figure 2d indicates that increasing K or M increases θ  for all ζ
due to the effect of K or M in damping the axial flow towards the 
disk and, consequently, prevents bringing the fluid at a near-ambient 
temperature towards the surface of the disk.  It is noticed that, for 
large values of K, the combined effect of K and M results in the 
diminishing of the effect of the term ζθ d/Hd  in Eq. (12) and then 

leads to a linear dependence of θ  on ζ . 
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Figure 2. Effect of the porosity parameter M and the non-Newtonian 
parameter K on the profile of: (a) radial velocity F; (b) azimuthal velocity 
G; (c) axial velocity H; (d) temperature � . (S=0, Pr=0.7). 
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Figure 2. (Continued). 

Figures 3a and 4a present the influence of the axial flow at the 
surface of the disk (the suction parameter S) on the steady state 
radial and axial velocity components F and H, respectively, with 
K=0 and M=0.  Consider first the case of impermeable surface, S=0.  
The rotating disk acts as a fan, drawing fluid axially inward from the 
surroundings toward the surface of the disk.  However, because the 
surface of the solid, the inflowing fluid finds its path blocked, and it 
must reroute into a radial direction where there is no obstruction.  
Therefore, we see in Fig. 4a that the negative velocity of inflow,  
starting from its largest value at large ζ , decreases steadily as we 

approach the disk (decreasing ζ ) due to fluid escape into the radial 
direction.  Now, consider the application of a suction at the surface 
of the disk (S<0).  Then, besides the fanlike pumping of the rotating 
disk, there is the additional pumping due to the suction.  Therefore, 
the quantity of fluid drawn in from the surroundings increases.  
Now, the inflowing fluid has two possible paths.  It may continue its 
inflow through the suction holes of the disk, or, it may reroute into 
radial direction.  The path chosen will, of course, be that of least 
resistance.  As the wall suction increases, escape through the wall 
becomes easier and easier.  Therefore, with S  becoming 
increasingly negative, more and more of the inflow goes directly 
into the porous disk.  As a consequence, H  tends to be almost 
constant with z.  Next, consider the case of injection at the surface of 
the disk (S>0).  In this instance, the fluid drawn in by the fan action 
of the disk finds itself actively retarded by the outflowing stream of 
injected flow.  The greater the injection velocity, the more strongly 
is the inflow opposed.  The result is a decrease in the magnitude of 
H with increasing  S.  There is, in a real sense, a battle between the 
two streams; and as S increases, the outflow penetrates to greater 
distances from the disk surface.  As a consequence, the crossover 
point between positive and negative H is pushed farther outward.  It 
is seen also that the fluid injection gives rise to the familiar 
inflection-point profiles, especially for high values of the injection 
parameter S.  Then, high injection velocities are expected to 
destabilize the laminar flow and lead to transition to turbulence. 

These events are reflected by the radial velocity distribution.  
Representative profiles are given in Fig. 3a.  Since the radial 
velocity is zero both at the disk surface and in the ambient fluid, 
there must be a maximum value somewhere between.  The 
maximum is positive since the radial flow is always outward along 
the disk.  For the impermeable disk (S=0), all the axial inflow is 
ultimately diverted into radial flow.  With increasing suction, more 
and more of the inflowing fluid passes directly into the porous wall; 
therefore, the radial velocities decrease as S  becomes more 
negative.  Further, since less fluid makes the turn from axial to 
radial flow, it can be accomplished closer to the surface, and hence 
the maximum value of F occurs at smaller distance from the disk. 

  When injection is applied (S>0), the radial velocity must carry 
away not only the incoming axial flow, but also the injected fluid.  
Therefore, the general level of the radial velocity is raised with 
increased injection. 

Figure 3b presents the steady state radial velocity profile F for 
various values of suction or injection velocities and for K=0.5 and 
M=0.  A comparison between Figs. 3a and 3b shows that, for the 
whole range of injection velocities and small suction velocities, 
increasing K decreases F for all ζ .  When the suction velocity is 
large, increasing the parameter K reverses the direction of F.  With 
K=0.5 increasing the suction velocity leads to an increment in the 
magnitude of F for small ζ  while decreases its magnitude as ζ
increases which results in the appearance of crossover points with 
ζ .  The distances from the disk at which the crossover appears 
decreases with increasing the suction velocity.  This is due to the 
fact that increasing the suction velocity pumps the reversed flow in 
the negative radial direction near the disk and increases its velocity.  
At a greater distances from the disk, increasing suction helps the 
axial flow towards the disk which stops the reversed radial flow and 
then decreases its velocity.  The influence of the magnetic field on 
the steady state profiles of F is shown in Fig. 3c with K=0 and M=1 
and for various values of the parameter S.  The magnetic field effect 
is to sustain the flow in the radial direction for all values of the 
suction or injection velocities.  However, its effect is more 
pronounced in the case of injection more than that in the case of 
suction. 

Figure 3d presents the steady state radial velocity profile F for 
various values of suction or injection velocities and for K=0.5 and 
M=1.  Increasing the two parameters leads to a great reduction in F
for all values of the injection velocities.  In the case of suction, the 
parameters K and M result in reversing the direction of F and 
increasing its magnitude for all values of the suction velocity.  The 
figure also presents the appearance of the crossover points in F  
profiles due to change in the parameter S. 

Figure 4b shows the steady state axial velocity profile H for 
different values of the parameter S with K=1 and M=0.  Increasing 
the parameter K decreases the axial flow towards the disk for all 
values of the parameter S.  In the case of suction, for K=1, the 
magnitude of the axial velocity at infinity is smaller than that at the 
disk.  The crossovers points appear in H profiles are pushed further 
in the  ζ -direction with increasing K.  Figure 4c presents the steady 
state axial velocity profile H  for various values of the parameter S
with K=0 and M=1.  The magnetic field effect is to sustain the flow 
in the axial direction.  It leads to a reduction in the axial flow 
towards the disk for small suction velocities and its effect becomes 
negligible for larger suction velocities.  With injection applied at the 
disk, increasing the magnetic field decreases the azimuthal and 
radial flows and, consequently, the injection stream sustains its axial 
motion towards the disk.  It is also seen in the figure, the influence 
of the magnetic field in the suppression of the crossover of the axial 
component of velocity and then the reversal of the direction of the 
axial motion.  It is clear that the magnetic field has a marked effect 
in changing the shape of the inflection-point profiles in the case of 
high injection velocities.  Consequently, the porosity works to 
stabilize the laminar boundary layer and prevents the transition to 
turbulence.  Figure 4d presents the steady state axial velocity profile 
H for different values of the parameter S with K=1 and M=1.  
Introducing the two parameters K and M results in the reversal of 
the direction of the axial flow for S=0 and in the suppression of the 
crossover points of H  profiles in the case of injection. 
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Figure 3. The radial velocity profile vs. S. 
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Figure 4. The axial velocity profile vs. S. 
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Conclusions 

In this study the steady hydromagnetic flow of a conducting 
non-Newtonian fluid induced by a rotating disk with heat transfer 
was studied in the presence of uniform suction and injection.  The 
effect of the magnetic field of the medium, the non-Newtonian fluid 
characteristics and the uniform suction or injection velocity on the 
velocity and temperature distributions was considered.  An 
interesting result is the effect of the parameter K in reversing the 
direction of the radial velocity for large suction velocities in the 
non-magnetic case.  It is also of interest to see the influence of both 
parameters K and M in reversing the direction of the radial flow for 
all suction velocities and even in the case of zero suction velocity.  
One more effect for the magnetic field is to suppress the crossover 
occurs in the radial velocity profiles due to the variation of K.  The 
magnetic field works to stabilize the flow while the non-Newtonian 
fluid characteristics tends to destabilize the flow. 

The magnetic field has a more pronounced effect on the flow in 
the case of injection than suction and its effect can be neglected for 
large suction velocities.  On the other hand, the non-Newtonian 
characteristics has an apparent effect on the flow for all values of 
suction or injection velocities while its effect on the flow in the case 
of suction is more pronounced than the case of injection.  Therefore, 
the two parameters K and M together have an apparent effect on the 
flow for the whole range of the axial velocity at the surface of the 
disk.  The non-Newtonian fluid characteristics leads generally to a 
reduction in the heat transfer from the disk for all suction or 
injection velocities, while the effect of the magnetic field on the heat 
transfer can be neglected.   
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