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A Fast Algorithm for Inverse Airfoil 
Design Using a Transpiration Model 
and an Improved Vortex Panel Method 
A fast algorithm for inverse airfoil design using an efficient panel method for potential 
flow calculation is presented. The method employs linear vortex distributions on the panels 
and a consistent procedure for imposing the Kutta condition, thus eliminating the spurious 
aerodynamic loading that usually appears at a cusped trailing edge. The algorithm 
searches the airfoil ordinates attending to a given surface velocity distribution with fixed 
abscissas. It begins with a guessed starting shape and successively modifies it by an 
iterative process, such that the normal velocity vanishes and the calculated velocity 
distribution gradually approaches the required one. Each iteration is performed in two 
main steps: 1) the flow calculation step; 2) the geometrical marching step, where the 
calculated velocity distribution is compared with the required one and a transpiration 
model is applied to modify the current shape towards another one more close to the target 
shape. The geometrical marching is conducted by varying the panel slopes as a function of 
the normal velocity excess induced by the difference between the required and calculated 
velocities. A scheme is applied in order to close the body shape. Various test cases were 
carried out and are presented for the efficiency and robustness validation of the proposed 
inverse algorithm. 
Keywords: inverse method, panel method, airfoils, vortex distributions 
 
 
 

Introduction 
1Inverse methods are useful tools for aerodynamic shape design 

by virtue of their great flexibility. Airfoil shapes are constructed for 
attending each specific design situation, thus overcoming the relying 
on standard families of wing sections like the NACA series (Abbott 
and Doenhoff, 1959). 

The inverse methods for aerodynamic shape design can be 
implemented in various manners. They also compete with other 
design methods. There is no general accepted classification for 
airfoil design procedures. For instance, Yiu (1994) classifies them in 
four broad categories: (1) inverse methods (including iterative 
correction and nonlinear system approaches); (2) iterative 
modification methods (including here the very important 
optimization approach); (3) transformed plane method (including 
conformal mapping techniques); (4) special methods (including 
panel methods for incompressible potential flows). There is some 
superposition and mixing in this classification: for example, pure 
inverse methods can actually be implemented by means of both 
conformal mapping and integral equation formulations (for whose 
solution the panel method represents a classical numerical 
approach). 

The pure inverse methods search a unique body shape solution 
(if it exists) for attending a specified velocity or pressure 
distribution on the body contour. On the other hand, optimization 
methods normally search a best solution regarding to a specified 
global objective (like minimum drag or maximum lift) and taking 
into account some restrictions upon the final geometry or flow 
conditions. Generally, the computational cost of the inverse 
approach tends to be a small fraction of the optimization approach 
cost. Thus, the inverse approach is indicated for the earlier stages of 
the aerodynamic design when some prospective shapes are 
delineated for later refinements by means of the optimization 
approach. 

For ideal flows, pure inverse methods can be efficiently 
implemented by means of conformal mappings, streamline 
coordinate-based transformations or boundary integral formulations, 
particularly the panel method. In the conformal mapping method, 
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the body shape is searched in a transformed plane where it usually 
approaches a circle by a suitable construction of parametric mapping 
functions. This procedure allows a rigorous geometric control 
during the iterative process. Selig and Maughmer (1992a, b) 
proposed an inverse airfoil design method based on the multi-point 
approach due to Eppler (1990). It is possible to adapt the basic 
procedure for including geometric restrictions such as maximum 
thickness and camber as well as boundary layer growth criteria upon 
the required velocity distributions. The procedure was also extended 
by Selig (1994) to the inverse design of cascade of airfoils. 

The great advantage of conformal mapping methods is their 
ability to express conditions of closeness and geometrical 
uniqueness in a natural manner. However, they also have some 
drawbacks: They are not generally extensible to the three-
dimensional case, rely on rather sophisticated mathematical 
techniques and require a prior knowledge of a suitable mapping 
function in order to handle each particular problem.  

Some limitations of conformal mapping techniques can be 
overcome by using streamline coordinate-based transformations. In 
this context, Barron (1990) has proposed an elegant non-iterative 
method for airfoil design in potential incompressible flows. The 
method is based on a previously developed formulation employing a 
von Mises coordinate transformation (Barron, 1989). This approach 
was extended to general ideal steady flows (Latypov, 1993; Yiu, 
1994), but it is also restricted to two-dimensional configurations. 

Boundary integral formulations represent a flexible alternative 
in developing inverse airfoil design procedures, in especial when 
they are numerically implemented by means of panel methods. A 
procedure of this type was proposed by Shigemi (1985) for single 
and multi-element airfoils. In this procedure, straight panels with 
linear vortex distributions are employed and the Neumann boundary 
condition is applied in control points. In this case the final vortex 
distribution is known a priori since it is equivalent to the required 
contour velocity. The unknown airfoil ordinates are determined by 
applying the Newton-Raphson method for solving the system of 
nonlinear algebraic equations that arises. In order to assure the 
airfoil closeness and also to fix the body edges, Shigemi (1985) 
applied a least square technique. 

Petrucci et al. (1998) proposed an inverse methodology with a 
modified version of the Hess-Smith method (Hess and Smith, 1967) 
for the flow calculation step. The method employs straight panels 
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with uniform source distributions of unknown intensities and a 
vortex distribution of sinusoidal shape with an unknown maximum 
intensity at the leading edge and a vanishing intensity at the trailing 
edge. This vortex distribution alleviates spurious aerodynamic loads 
that usually occur at a cusped trailing edge. The source intensities 
and the maximum vortex intensity are calculated by applying the 
Neumann boundary condition at the control points and the Kutta 
condition at the trailing edge. The geometric marching step is 
conducted by altering the panel slopes according to a procedure 
suggested by Murugesan and Railly (1969). Due to the low order of 
the singularity distributions and also the poor performance of the 
source distributions in controlling curvature effects, Petrucci (1998) 
has verified some convergence difficulties in the case of airfoils 
with very cusped trailing edge and high camber. It was concluded 
that a higher order panel method would be really necessary in order 
to overcome these difficulties.  

In this paper, one proposes an improved algorithm for inverse 
airfoil design with basis on the panel method. In the flow calculation 
step one employs a linear vortex panel method with the Neumann 
boundary condition and a new scheme for applying the Kutta 
condition consistently in the case of a cusped trailing edge (Petrucci 
et al., 2001). In the geometrical marching step, one applies the 
transpiration model of Muregesan and Railly (1969) with 
modifications for fixing the trailing edge point and the airfoil 
abscissas during the iterative process and also for assuring the body 
closeness. 

The effectiveness and robustness validation of the proposed 
inverse algorithm is carried out by means of some case studies for 
which analytical results are available in the literature (circular 
cylinder and Joukowski airfoils). 

Nomenclature 

a = circle radius 
CD = drag coefficient 
Cp = pressure coefficient  
 ft  = accelerating factor 
 jst = index of point closest to leading edge stagnation point 
m = number of panels  
me = eccentricity magnitude 
l = chord length  
s = natural coordinate along the body contour 
S = normalized natural coordinate along the body contour 
sl = total countour length  
Wa = calculated (analyzed) velocity 
Wcn = calculated normal velocity 
Wn = effective normal velocity  
Wr = required velocity  
Wt = tangential velocity  
Wbf = trailing edge velocity 
Wnbf = normal velocity at trailing edge 
Wtbf = tangential velocity at trailing edge 

jynW  = y-projection of the effective normal velocity of the j-th 

panel   

W  = conjugated complex velocity   

∞W  = conjugated complex velocity of the onset uniform flow at 

infinity  
x = abscissa 
X = normalized abscissa 
y = ordinate of actual body shape 
Y = ordinate of new body shape 

Y
~

 = effective new ordinate 
z = complex coordinate 

Greek Symbols 

α  = angle of attack between the onset flow direction and the 
chord axis 

β*  = angle of camber 
χj   = angle between the j-th panel and the x direction 
δy  = ordinate variation  
∆S  = panel length 
∆y  = ordinate difference of current body shape 
∆Y  = ordinate difference of new body shape 
εst  = stopping tolerance 
γ   = vortex intensity 

fictγ  = fictitious vortex intensities 

fictγ~  = fictitious vortex intensities with acceleration  

λ = filter computed as the mean value of the normal velocity 
modulus 

θ  = panel angle 
ζ(s) = integration point on the body contour 

Subscripts 

bf = relative to trailing edge  
 j = relative to panel j 
n = relative to normal velocity 

t = relative to tangential velocity 
st = relative to stagnation point 

Algorithm Description 

Given a required velocity distribution at the airfoil contour and a 
starting body shape, the inverse design algorithm searches the 
required body shape by an iterative process. Each iteration is 
subdivided into two main steps: 1) the flow calculation step; 2) the 
geometrical marching step. At the end of each iteration one finds a 
new body shape that is presumably more close to the target shape. 
The iterative process is repeated until the differences between the 
ordinates of the current and last iterations stay within a prescribed 
tolerance. In what follows, these iterative steps are described in 
more detail. A flow chart of the algorithm is shown in Fig. 1. 

 

 
Figure 1. Flow chart of the proposed algorithm. 
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Flow Calculation Step 

In this work, the corresponding flow field for each iterative 
body shape is computed by means of an efficient panel method 
based on linear vortex distributions. The flow is assumed to be two-
dimensional, steady, potential and incompressible. The body 
contour is approximated by m straight panels with z1, z2,..., zm, zm+1 
denoting the panel nodes and z1= zm+1 representing the trailing edge 
(Fig. 2). In each panel, the central point is designated as a control 
point for applying the Neumann boundary condition (of zero normal 
velocity). Linear vortex distributions are placed on the panels such 
that the vortex intensity associated with the j-th node is γj. This 
value is equivalent to the required velocity at the j-th node. 

 
(a) 

 
(b) 

Figure 2. (a) Panel definition and vortex intensity  for two contiguous 
panels. (b) Scheme for Kutta condition implementati on. 

 
The conjugated complex velocity )(zW  in a generic point z = x 

+ iy of the complex plane, i = (−1)1/2, is expressed by means of a 
Cauchy integral on the boundary contour C: 
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where ∞W  represents the conjugated complex velocity of the onset 

uniform flow at infinity, α being the angle of attack between the 
onset flow direction and the chord axis; ζ(s) represents an 
integration point on the body contour. The integral is calculated by 

summation of each sub-integral value )(zWj  corresponding to the 

contribution of the panels joined by the node zj (Fig. 2a). Assuming 
straight panels with linear vortex distributions, this contribution can 
be calculated analytically, resulting the following expression for j = 
2, ..., m (χj is the angle between the j-th panel and the x direction) 
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The panels joined by the trailing edge z1 = zm+1 receive a special 
treatment (Fig. 2b). A regularization condition 11 γγ −=+m  is 

imposed to make the trailing edge velocity finite. Thus the equation 
system resulting from application of the Neumann boundary 
condition in each panel becomes determined (m × m). However, the 
regularization condition is not sufficient for satisfying the Kutta 
condition consistently in the case of a very cusped trailing edge. 
Thus one further requires the total velocity at the trailing edge to be 
equal to the vortex intensity there, as it should theoretically be, i. e., 

1γ−=
bftW . In this way, the system of equations becomes over-

determined (m + 1 equations with m unknowns γ1, ..., γm) being 
solved by least squares (Petrucci et al, 2001).  

 

 
Figure 3. Pressure coefficient for a symmetrical Jo ukowski airfoil. 
Conformal mapping parameters: ββββ* = 0°°°°, a/me = 12.5;  αααα = 5º. 

 

 
Figure 4. Pressure coefficient for a cambered Jouko wski airfoilConformal 
mapping parameters: ββββ* = 12°°°°, a/me = 4.5; αααα = 4º. 

 
The tests made up to now have demonstrated the versatility and 

good precision of this procedure for airfoils with very cusped 
trailing edges, even with a relatively low number of panels. Figures 
3 and 4 show some coefficient pressure results for Joukowski 
airfoils with and without camber, respectively, using m = 16 panels 
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only. The abscissas are normalized with respect to the airfoil chord. 
The airfoils were generated by conformal mappings from the circle 
with the following parameters: angle of attack, α, angle of camber, 
β*, eccentricity ratio, a/me, a being the radius of the circle and me 
the eccentricity magnitude (Karamcheti, 1980). The results are 
compared with the low order panel method of Hess-Smith modified 
by Petrucci (1998). 

One can see that the low order panel method is not able to 
represent adequately the pressure distribution with this low number 
of panels, mainly for the cambered airfoil (Fig. 4). On the other 
hand, the present method leads to satisfactory results in both cases. 
It is important to mention that increasing the number of panels m  
as in fact becomes necessary in applications  will produce results 
that converge rapidly to the analytical results. Drag coefficients 
CD(m) were computed to be compared with the zero analytical 
value. Some results are CD(16) = 0.01077, CD(32) = 0.00117, 
CD(64) = 0.00011, CD(128) = 0.00000 for the symmetrical airfoil 
and CD(16) = 0.01896, CD(32) = 0.00415, CD(64) = 0.00097, 
CD(128) = 0.00009 for the cambered airfoil. For the Hess & Smith 
method with m = 128 one has CD(128) = 0.00143 for the 
symmetrical airfoil and CD(128) = 0.00114 for the cambered airfoil. 

Geometrical Marching Step 

At the end of the flow calculation step one has obtained a new 
vortex distribution. This could be compared with the required vortex 
(velocity) distribution in order to decide if one has attained 
convergence or not. However, before verifying the convergence, one 
proceeds directly with a geometrical marching step by constructing 
another shape that is more close to the target shape. 

Here one applies a modified version of the transpiration model 
due to Murugesan and Railly (1969). In this model, a vortex-only 
boundary method is employed and the transpiration effects are 
represented by normal velocities induced by fictitious vortex 
representing the difference between current and target velocities. 
The introduced modifications were first presented by Petrucci 
(1998). They do not significantly alter the basic transpiration model 
and were mainly proposed for maintaining the trailing edge fixed 
during the iterative process and also for assuring a closed body 
shape at the end of the geometrical marching step. In the original 
model, the leading stagnation point of the iterated shape must be 
found and a re-paneling of the intrados and extrados is required in 
any iteration, starting from the stagnation point towards the trailing 
edge. Further, the body closeness issue is not apparently addressed 
by Muregesan ans Raily (1969). Another modification is also 
applied for fixing the body abscissas between iterations and so 
facilitating the global convergence. With these modifications, the 
angle of attach of the onset flow do not need to be given since the 
iterative process is able to set the correct body attitude relative to the 
onset flow at convergence by itself. This issue can be very useful for 
design purposes. Also, a re-paneling of the body surface becomes 
unnecessary. 

Basically, the geometrical marching step is as follows: firstly, 
one calculates a fictitious vortex distribution in terms of the 
difference between the required and calculated velocities (vortex 
intensities) at the panel nodes. Then one calculates a normal velocity 
excess (transpiration) induced by this fictitious vortex distribution. 
Finally, one conducts a suitable variation of the panel slopes trying 
to annul this normal velocity excess. A straightforward scheme is 
further applied in order to assure the body closeness. In what 
follows, the whole procedure will be described in more detail. 

 

Calculation of the Fictitious Vortex Distribution 

The intensity of the fictitious vortex distribution depends upon 
the difference between the calculated (analyzed) velocity Wa(s) and 
the required (target) velocity Wr(s). However, one must be careful 
about the velocity signal relative to the adopted path orientation 
around the body. Here the path starts and ends at the trailing edge, 
and its orientation is such that the interior of the body remains at the 
right side (Fig. 5). Normally one has a stagnation point next to the 
leading edge. Thus, the velocity is negative on the bottom portion of 
the body (starting from the trailing edge up to the stagnation point) 
and positive on the top portion (following from the stagnation point 
back to the trailing edge.) 

 

 
Figure 5. Adopted path orientation around the airfo il. 

 
Initially, one finds the nodal point jst closest to the stagnation 

point corresponding either to the calculated velocity or to the 
required velocity, that one which first occurs.  That is, we take the 
first point where these velocities have different signals or at least 
one of them is null (with exception of the trailing edge) and use this 
point to divide the boundary into two branches: 

 
vary j;   if 0≤⋅ ra WW     then  jst = j  (3) 
 
Then one computes the fictitious vortex intensities at the panel 

nodes by the following expressions: 
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)()()( sWsWs rafict −=γ       for  j = jst+1, ..., m+1  (5) 

Acceleration of the Iterative Process 

Some providence can be taken at this point in order to accelerate 
the global iterative process. First, it was verified that a constant 
accelerating factor ft can be applied on the fictitious vortex 
distribution without altering its basics characteristics. Tests have 
indicated that this factor must lie in a conservative range, 1 ≤ ft ≤ 
3.5. Values much above 3.5 may produce catastrophic oscillations in 
the iterative process while retarding factors ft <1 have not needed to 
be applied. One writes: 

 

ftss fictfict ⋅= )()(~ γγ  (6) 

Calculation of the Induced Normal Velocities 

The fictitious vortex distribution will induce a normal velocity 
distribution on the body contour which is calculated using the 
current influence matrix or preferably the starting influence matrix 
(this issue will be later discussed in detail). It was observed that this 
normal velocity may suffer severe variations especially near the 
leading edge where the fictitious vortices may also vary intensely. In 
producing a new shape, these variations would cause the appearance 
of spurious bumps or concavities at the leading edge region which 
impair the convergence process. For avoiding these drawbacks, one 
applies an automatic filter λ  to the calculated normal velocities 
Wcn(s) by bounding their excessive values and maintaining those 
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that are sufficiently mild. The filter is automatically computed as the 
mean value of the normal velocity modulus:   

 

dssWc
sl

sl

n∫=
0
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where sl represents the total contour length. The filter acts as an 
upper bound to the modulus of the effective normal velocities Wn(s) 
such that 
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Generation of a New Geometrical Shape 

Using the effective normal velocity in each control point, a 
scheme was conceived in order to alter the panel slopes, i. e., the 
body ordinates, without varying the body abscissas. For the current 
body shape the ordinate difference between the nodal points of j-th 
panel is ∆yj = yj+1 – yj. For the new body shape the corresponding 
ordinate difference ∆Yj is calculated by adding a suitable ordinate 
variation δyj as follows 

 

jjj yyY δ+∆=∆   (10) 

 
According to Fig. 6a, a relation should exist between the 

ordinate variation, the required velocity and the normal velocity 
calculated in the current iteration. Since one seeks for a new body 
shape with zero normal velocity on it, the dashed line on bottom of 
Fig. 6a represents an approximation to the new tangential direction. 
But this direction is also geometrically represented by the new panel 
slope which is related to the current panel slope and the ordinate 
variation. Thus, a similarity exists between the cinematic and 
geometric triangles in Fig. 6a, from which the required ordinate 
variation follows 
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Starting from the first panel, a cumulative summation of 

ordinate variations calculated in Eq. (11) is performed for the nodal 
points j = 2, ..., m+1. Thus, the new ordinates becomes  
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Procedure for Closing the New Body Shape 

The application of Eq. (12) does not assure that the resulting 
shape is closed as required. The ordinate of the last node m+1 do not 
necessarily coincides with that of the first node, m =1. To overcome 
this drawback, one divides the difference Y1 – Ym+1 by the number of 
panels and adds this remaining value to the nodal points 
cumulatively, starting with the 2nd node and ending with the node 
m+1. This scheme assures the body closeness (Fig. 6b). Thus the 

effective new ordinates jY
~

 becomes 
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Stopping Criteria for the Iterative Process 

At least two kinds of stopping criterion can be applied. One is 
based on the difference between the calculated and required 
velocities at the end of the flow calculation step. Normally such type 
of criterion is not adequate for the present algorithm, since the 
velocity distribution may exhibit a very large variation at the leading 
edge region for very small geometrical variations. The same may 
occur with a criterion based on the velocity difference between 
successive iterations. 

A more adequate and realistic criterion can be formulated using 
the geometric marching itself. In this paper one defines the stopping 
criterion using the mean quadratic error of the differences between 
the ordinates of the current iteration and those of the last iteration. 
The iterative process stops when this value becomes smaller than a 
prescribed tolerance, εst. At convergence, the calculated velocities 
approach the required ones, the fictitious vortices and induced 
normal velocities approach zero and the current shape approaches 
the target shape. 

 
(a) 

 

 
 (b) 

Figure 6. (a) Modification of j-th panel slope. (b) Procedure for closing the 
body. 
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Use of the Starting Influence Matrix during the 
Geometrical Marching Step; Further Discussion about 
the Computations 

Some tests have raised another important convergence issue: in 
calculating the normal velocities induced by the fictitious vortex 
distribution, convergence improvements can be attained if one uses 
the influence matrix of the starting shape instead of the current 
iterated shape. At first glance, this may sound strange because the 
final and starting shapes may be very different from each other and 
the influence matrix is strongly connected to the shape of the airfoil.  

For explaining this situation, it is important first to note that the 
current matrix is always used in the flow calculation step. The 
normal velocities induced by the actual vortex distribution must 
counterbalance the normal effect of the uniform onset flow. 
Roughly speaking, being [A] the current influence matrix (of the 
current shape) and (W∞∞∞∞n) the vector of onset flow normal velocities, 
the corresponding vector (γγγγ) of actual vortex intensities (equal to 

tangential velocities) is calculated by solving the system [A](γγγγ) = − 
(W∞∞∞∞n) in the flow calculation step. Due to the Kutta condition 
treatment, the original system of equations is modified and it is 
solved by least squares, as already discussed before. But in 
synthesis, the current influence matrix must somehow be retained in 
order to obtain a well calculated flow field that indeed represents the 
current airfoil shape.  

On the other hand, in the geometrical marching step, a vector 
)( fictγ

~  of fictitious vortex intensities is calculated, as previously 

explained. Now, the actual uniform onset flow is not present and the 
vector (Wn) of induced normal velocities is calculated by a simple 

matrix multiplication: (Wn) = [A] )( fictγ
~ . Here, it is easy to see that 

the use of the current matrix is not strictly necessary, provided the 
algorithm is convergent. Indeed, in this case both vectors )( fictγ

~  and 

(Wn) will converge to zero and the matrix [A] will eventually 
become irrelevant during the iterative procedure. 

 

 
Figure 7. (a) and (b): Condition number of the infl uence matrix for 24 and 50 panels, respectively; (c ) and (d): Mean value of normal velocity modulus fo r 
24 and 50 panels, respectively. 

 
The reason why the use of the starting matrix instead of the 

current matrix has been shown advantageous is more subtle. One 
hypothesis is that the successive shape alterations would impair the 
conditioning properties of the influence matrix with resulting error 
propagation. Some tests were made for showing that this hypothesis 
is really appealing. For these tests, one has chosen as the target 
shape a Joukowski airfoil with conformal mapping parameters β* = 

12°, a/me = 4.5, α = 4º, and as the starting shape an ellipse with 
aspect ratio equal to 0.1. The stopping tolerance was taken as εst = 
10−4. Tests were made for m = 24 panels and m = 50 panels, with the 
accelerating factor ft set equal 2.2. 

Figures 7 (a) and (b) show that the condition number of the 
current matrix increases rapidly and exhibits some oscillations 
during the first iterations. This behavior is intensified when the 
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number of panels is increased. These results serve to explain why 
the use of the starting influence matrix helps to accelerate the 
convergence process: Even more important than the smaller 
condition number of the starting matrix, the constancy of its spectral 
properties implies a faster shape evolution in comparison with the 
use of the current matrix. More specifically, the oscillations in the 
condition number of the current matrix impart oscillations in the 
normal velocities induced by the fictitious vortex distribution which 
in turn generate oscillations in the iterated shape and finally a 
relative delay in the convergence process. This delay can be clearly 
observed in Figs. 7 (c) and (d) where it is shown the iterative 
evolution of the mean value of the normal velocity modulus λ (the 
filter defined in Eq. 7). The “convergence points”, corresponding to 
the iteration for which the stopping tolerance is achieved, are 
indicated by black circles. When using the starting matrix, the 
convergence is attained in 18 iterations for m = 24 panels and in 30 
iterations for m = 50 panels; on the other hand, when using the 
current matrix the number of iterations for convergence practically 
doubles  to 34 and 68, respectively.  As now expected from Figs. 
7 (a) and (b), it is also clear from Figs. 7 (c) and (d) that the starting 
matrix leads to smoother convergence behavior in comparison with 
the current matrix. 

Some Remarks about the Generality of the Proposed 
Inverse Algorithm 

In this work, the vortex panel method was applied for the whole 
iteration process. Nevertheless, it is important to note that the flow 
calculation step is independent of the geometrical marching step. It 
is conceivable the application of other flow models in the first step, 
while maintaining the proposed approach for modifying the body 
geometry in the second step. It is possible to use viscous or 
compressible flow solvers in the first step as long as one applies a 
consistent procedure for defining an equivalent velocity at the 
boundary contour. For example, suppose that a viscous 
incompressible method based on primitive variables is being 
applied. It is possible to use the Bernoulli theorem for converting 
the target and calculated pressure distributions into “equivalent 
potential velocities distributions” for computing the fictitious vortex 
distribution required in the geometrical marching step.  

Further, the vortex-only panel method here used can be 
extended to three dimensions using a dipole-only panel method 
(Morino and Kuo, 1974): The dipole intensity is equivalent to the 
potential function on the boundary and its tangential derivative is 
equivalent to the boundary velocity (which in turn is equal to the 
vortex intensity in two dimensions). The use of vortex-only (2D) or 
dipole-only (3D) formulations can advantageously replace the 
source-based formulations used in direct solutions (Hess and Smith, 
1967) and inverse design (Malone, 1982) since the addition of 
vortex or dipoles to the source distribution is always necessary for 
representing lifting-bodies like airfoils and wings. 

Implementation and Validation of the Methodology 

Computer Implementation Issues 

For implementing the previously described algorithm, a Fortran 
double precision program was developed using the MS Fortran PS 
4.0® compiler. The least square subroutine DLSQRR of the IMSL® 
library was called for solving the equation system in each flow 
calculation step. For the condition number calculations presented in 
Figs. 7 (a) and (b), the subroutine DLFCRG of the same library was 
called. The running tests were made on an IBM PC-like computer 
with a 350 MHz Pentium II® processor and 64 Mb RAM. Using 50 
panels, the average CPU time per iteration was about 45 ms.  

Case Studies 

Some case studies were carried out in order to validate the 
proposed methodology and to evaluate its characteristics of 
convergence and robustness.  The circular cylinder and the 
Joukowski airfoil were chosen as the target shapes since they have 
analytical results available in the literature, so being suitable for 
benchmarking. In all of the cases, the adopted starting shape (initial 
body) was an ellipse with aspect ratio equal to 0.1, and the stopping 
tolerance was taken as εst = 10−4. 

Four cases will be shown here. According to target shape, 
number of panels, m, and adopted acceleration factor, ft, they are: 
(1) circular cylinder without circulation, m = 24, ft = 3; (2) 
symmetrical Joukowski airfoil at no incidence (β* = 0º, a/me = 12,5, 
α = 0º), m = 24, ft = 2.1; (3) cambered Joukowski airfoil at 
incidence (β* = 12º, a/me = 4.5, α = 4º), m = 24, ft = 2.1; (4) 
cambered Joukowski airfoil at incidence (β* = 12º, a/me = 4.5, α = 
4º), m = 50, ft = 2.1. The nomenclature for conformal mapping 
parameters of the Joukowski airfoils follows that used by 
Karamcheti (1980).  

Graphs for these cases are presented in Figs. 8 to 15, showing 
the convergence behavior for shape, velocity distribution W(s) and 
ordinate distribution y(s). In all of the graphs, the target shape and 
required (target) distributions are always represented by solid lines. 
The current iterated shapes are represented by dashed lines. The 
current velocity and ordinate distributions are indicated by proper 
keys within the corresponding graph. For the Joukowski airfoils, the 
ordinates were scaled up for better visualization of the iterative 
process for shape (the real shapes are relatively thin). The shape 
coordinates (x, y) and the boundary coordinate s were normalized 
with respect to the airfoil chord length l and the total contour length 
sl, respectively (X = x/l, Y = y/l, S = s/sl). 

Discussion 

One observes that a relatively small number of iterations was 
necessary for attaining geometric convergence. The symmetrical 
bodies (cases 1 and 2, Figs. 8 to 11) required less iteration than the 
non-symmetrical body (cases 3 and 4, Fig. 12 to 15). One also 
observes that the number of panels has a strong effect on the 
convergence ratio: for the same target airfoil, the use of 24 panels  
required 18 iterations (case 3, Figs. 12 and 13) while the use of 50 
panels required 30 iterations (case 4, Figs. 14 and 15). Obviously, 
there is a precision improvement as the number of panels increases: 
This is a reminder about the need of a panel method able to achieve 
precise results with relatively few panels. Of course, a sufficiently 
high number of panels must be chosen for achieving an adequate 
geometric representation. For airfoils, m = 50 may be considered a 
recommended inferior bound. 

 Petrucci (1998) have previously employed a source panel 
method of low order for solving the inverse problem. This author 
has observed convergence difficulties in treating airfoils with high 
camber and/or with very cusped trailing edges. Velocity oscillations 
and geometrical crossings were then observed at the trailing edge 
region. These difficulties have arisen in solving the inverse problem 
even when the direct problem was satisfactorily solved with the 
same number of panels.  It was observed that the source 
distributions made a poor job in controlling the airfoil curvature. It 
was concluded that both the type and the order of the singularity 
distributions must be chosen with care in order to adequately solve 
inverse design problems. In fact, one verifies in the present paper 
that the use of linear vortex panels and a consistent application of 
Kutta condition have decisively improved the iterative process. 



A Fast Algorithm for Inverse Airfoil Design Using a … 

J. of the Braz. Soc. of Mech. Sci. & Eng.       Cop yright  2007 by ABCM      October-December 2007, Vol. XXIX, No. 4 / 361 

 

 

0.00 0.2 0 0.40 0.60 0.8 0 1.00
X

-0.50

-0.25

0.00

0.25

0.50

Y
 
 
 
 
 

Starting shape 

 
 
 
 
 

1st Iteration 

 .00  .20 0.40 0.60 0.80 1.00
X

-0.50

-0.25

0.00

0.25

0.50

Y

0.0 0 0.20 0.40 0.60 0.80 1.00
X

-0.50

-0.25

0.00

0.25

0.50

Y 
 
 
 
 
 

4th Iteration 

 
 
 
 
 

8th Iteration 

0.00 0.2 0 0.40 0.60 0.8  1. 0X

-0.50

-0 25

0.00

0.25

0.50

Y

Figure 8.  Case 1: Iterative process for the geomet rical shape. 

 

Figure 9. Case 1: (a) Iterative process for velocit ies. (b) Iterative process for ordinates. 
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Figure 10.  Case 2: Iterative process for the geome trical shape. 

Figure 11. Case 2: (a) Iterative process for veloci ties. (b) Iterative process for ordinates. 
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Figure 12. Case 3:  Iterative process for the geome trical shape. 

Figure 13. Case 3: (a) Iterative process for veloci ties. (b) Iterative process for ordinates. 
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One observes in cases 3 and 4 (Figs. 12 and 14) that the iterative 
process is able to adjust the correct angle of attack at convergence. 
In these cases, the target shape was set at α = 4o while the starting 

shape was set at α = 0o. The recovering of the correct angle of attack 
increases the flexibility of the inverse design approach. 

Other important aspect is the departure between the starting and 
target shapes. Although the algorithm has exhibited a good global 

Figure 14.  Case 4: Iterative process for the geome trical shape. 

 

Figure 15. Case 4: (a) Iterative process for veloci ties. (b) Iterative process for ordinates. 
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convergence performance one should be careful about guessing the 
starting geometry. In case 3, for instance, if one starts from the 
circular cylinder instead of the thin ellipse, the required number of 
iterations for convergence will increase from 18 to 235. This is an 
extreme situation: the algorithm is asked to search a thin and cusped 
airfoil starting from a very blunt body without an effective trailing 
edge. A slow-down in the convergence ratio is natural in this case 
due to the severe geometric adjustments to be performed, mainly at 
the trailing edge region.  But the algorithm after all converges, 
exhibiting a global convergence capability and robustness. 

In all of the cases, the calculation of the normal velocity 
distribution induced by the fictitious vortices was made by means of 
the starting influence matrix. This has substantially accelerated the 
iterative process in all of the cases. The numbers of iterations 
required for cases 1, 2, 3 and 4 were 8, 6, 18 and 30, respectively. 
On the other hand, when the influence matrix of the current iteration 
was used, the numbers of iterations for convergence were 18, 15, 28 
and 50, respectively. But the characteristic of global convergence 
still remains. 

With regard to the accelerating factor ft one has verified that it 
exerts a strong effect on the convergence ratio. In all of the cases the 
values of ft were chosen in order to produce a convergence ratio 
next to the best. For no acceleration (ft =1), the number of iterations 
would be doubled in average. 

Concluding Remarks 

A fast algorithm for inverse airfoil design with basis on linear 
vortex panels has been proposed. The presented test results have 
validated the algorithm in terms of versatility, convergence ratio and 
good precision even with a relatively low number of panels. 

The convergence of the algorithm is fast when the departure 
between the starting and target shapes is not too large but it may be 
slowed-down in other cases. Nevertheless, in all of the tests the 
algorithm has exhibited good characteristics of global convergence. 
One can take advantage of this aspect in combining the proposed 
algorithm with methods having strong local convergence behavior, 
like the Newton-Raphson method. 

The proposed algorithm is able to recover the correct attitude of 
the target airfoil with respect to the onset flow (the angle of attack) 
by itself. This issue increases the flexibility of the inverse design 
approach. 

Finally, it is important to remark that the geometrical marching 
step of the proposed algorithm can be used in conjunction with other 
flow solvers, not necessarily of potential type. By using this 
approach, it would be possible to accelerate inverse design methods 
based on viscous or compressible flow codes. Thus the proposed 
algorithm can be useful in more realistic design situations. 

 
 
 

Acknowledgments 

The development of this work has been supported by the CNPq 
 National Council of Scientific and Technological Development 
of Brazilian Government  by means of a doctoral fellowship. 

References 

Abbot, I. H. and von Doenhoff, A. E., 1959, “Theory of Wing Sections”, 
2nd Edition, Dover Publications, Inc., New York. 

Barron, M. R., 1989, “Computation of incompressible potential flow 
using von Mises coordinates”, Mathematics and Computers in Simulation, 
Vol. 31, pp. 177-188. 

Barron, M. R., 1990, “A non-iterative technique for design of aerofoils 
in incompressible potential flow”, Communications in Applied Numerical 
Methods, Vol. 6, pp. 557-564. 

Eppler, R., 1990, “Airfoil Design and Data”, Spring Verlag, Berlin-
Heidelberg. 

Hess, J.L. and Smith, A.M.O., 1967, “Calculation of potential flow 
about arbitrary bodies”, Progress in Aeronautical Sciences, Vol. 8, pp. 1-
138. 

Karamcheti, K., 1980, “Principles of Ideal-Fluid Aerodynamics”, R. E. 
Krieger Publishing Company, Florida. 

Latypov, A.M., 1993, “Numerical Solution of Steady Euler Equations in 
Streamline-Aligned Orthogonal Coordinates”, IMA Preprint Series, 
No.1182, University of Minnesota. 

Malone, J. B., 1982, “A subsonic panel method for iterative design of 
complex aircraft configurations”, Journal of Aircraft, Vol. 19, No. 10, pp. 
820-825. 

Morino, L. and Kuo, C. C., 1974, “Subsonic potential aerodynamics for 
complex configurations: a general theory”, AIAA Journal, Vol.12, No. 2, pp. 
191-197. 

Murugesan, K., Railly, J. W., 1969, “Pure design method for aerofoils in 
cascade”, Journal of Mechanical Engineering Science, Vol. 11,  No. 5,  pp. 
454-467. 

Petrucci, D. R., 1998, “Inverse problem for the flow around isolated 
airfoils and turbomachine cascades (in Portuguese)”, M. Sc. Dissertation, 
EFEI, Itajubá-MG, Brazil. 

Petrucci, D. R., Manzanares Filho, N. and Oliveira, W., 1998, “A 
numerical technique for solving the inverse problem of potential flow in 
turbomachine cascades (in Portuguese)”, Proceedings of ENCIT 1998 - 7th 
Brazilian Congress of Thermal Engineering and Sciences, ABCM,  Rio de 
Janeiro-RJ, Brazil, pp. 1305 – 1310. 

Petrucci, D. R., Manzanares Filho, N. and Ramirez, R. G. C., 2001, “An 
efficient panel method based on linear vortex distributions for flow analysis 
in turbomachinery cascades (in Portuguese)”, Proceedings of COBEM 2001, 
16th Brazilian Congress of Mechanical Engineering, ABCM, Uberlândia, 
MG, Brazil, Vol. 8, pp. 256-265. 

Selig, M. S., Maughmer, M. D., 1992a, “Multipoint inverse airfoil 
design method based on conformal mapping”, AIAA Journal, Vol. 30, No 5, 
pp. 1162-1170. 

Selig, M. S., Maughmer, M. D., 1992b, “Generalized multipoint inverse 
airfoil design”, AIAA Journal, Vol. 30, No 11, pp. 2618-2625. 

Selig, M. S., 1994, “Multipoint inverse design of an infinite cascade of 
airfoils”, AIAA Journal, Vol. 24, No 4, pp. 774-782. 

Shigemi, M., 1985, “A solution of an inverse problem for multi-element 
aerofoils through application of panel method”, Trans. Japan Soc. Aero. 
Space Sci., Vol. 28, No. 80, pp. 97-107. 

Yiu, K. F. C., 1994, “Computational methods for aerodynamic shape 
design”, Mathl. Comput. Modelling, Vol. 20, No. 12, pp. 3-29. 

 


