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A Fast Algorithm for Inverse Airfoil
Design Using a Transpiration Model
and an Improved Vortex Panel Method

A fast algorithm for inverse airfoil design using afficient panel method for potential
flow calculation is presented. The method emplimgzal vortex distributions on the panels
and a consistent procedure for imposing the Kuttiadition, thus eliminating the spurious
aerodynamic loading that usually appears at a cdspmiling edge. The algorithm
searches the airfoil ordinates attending to a giwemface velocity distribution with fixed
abscissas. It begins with a guessed starting shepk successively modifies it by an
iterative process, such that the normal velocitynishes and the calculated velocity
distribution gradually approaches the required omach iteration is performed in two
main steps: 1) the flow calculation step; 2) theomgetrical marching step, where the
calculated velocity distribution is compared withetrequired one and a transpiration
model is applied to modify the current shape towadother one more close to the target
shape. The geometrical marching is conducted byingrthe panel slopes as a function of
the normal velocity excess induced by the diffexdsetween the required and calculated
velocities. A scheme is applied in order to cldse bhody shape. Various test cases were
carried out and are presented for the efficiencg anbustness validation of the proposed
inverse algorithm.
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Introduction

Inverse methods are useful tools for aerodynamapaldesign
by virtue of their great flexibility. Airfoil shapeare constructed for
attending each specific design situation, thusaoming the relying
on standard families of wing sections like the NA&#ies (Abbott
and Doenhoff, 1959).

The inverse methods for aerodynamic shape design bea
implemented in various manners. They also compeéte ather
design methods. There is no general accepted fatasisin for
airfoil design procedures. For instance, Yiu (1984¥sifies them in
four broad categories: (1) inverse methods (inclgditerative
correction and nonlinear system approaches); (@rative
modification methods (including here the very intpat
optimization approach); (3) transformed plane meétliimcluding
conformal mapping techniques); (4) special meth¢dsluding
panel methods for incompressible potential flowl)ere is some
superposition and mixing in this classificationr fexample, pure
inverse methods can actually be implemented by mednboth
conformal mapping and integral equation formulagigfor whose
solution the panel method represents a classicaherioal
approach).

The pure inverse methods search a unique body Swpton
(if it exists) for attending a specified velocityr gressure
distribution on the body contour. On the other hamyptimization
methods normally search a best solution regarding specified
global objective (like minimum drag or maximum Jitand taking
into account some restrictions upon the final geomer flow
conditions. Generally, the computational cost of tmverse
approach tends to be a small fraction of the ogtition approach
cost. Thus, the inverse approach is indicatedherearlier stages of
the aerodynamic design when some prospective shapes
delineated for later refinements by means of theimapation
approach.

For ideal flows, pure inverse methods can be effity
implemented by means of conformal mappings, stieaml
coordinate-based transformations or boundary iatégrmulations,
particularly the panel method. In the conformal piag method,
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the body shape is searched in a transformed pléeeewt usually
approaches a circle by a suitable constructioracdipetric mapping
functions. This procedure allows a rigorous geoimetontrol
during the iterative process. Selig and Maughme®92a, b)
proposed an inverse airfoil design method basethemmulti-point
approach due to Eppler (1990). It is possible tapadhe basic
procedure for including geometric restrictions s maximum
thickness and camber as well as boundary layertgrositeria upon
the required velocity distributions. The procedwas also extended
by Selig (1994) to the inverse design of cascadsrfils.

The great advantage of conformal mapping methodtheg
ability to express conditions of closeness and @ggooal
unigqueness in a natural manner. However, they hbe some
drawbacks: They are not generally extensible to theece-
dimensional case, rely on rather sophisticated emagtical
techniques and require a prior knowledge of a bldtamapping
function in order to handle each particular problem

Some limitations of conformal mapping techniques dze
overcome by using streamline coordinate-based foamations. In
this context, Barron (1990) has proposed an elegantiterative
method for airfoil design in potential incompressilflows. The
method is based on a previously developed fornafaimploying a
von Mises coordinate transformation (Barron, 198%)s approach
was extended to general ideal steady flows (Latyd®83; Yiu,
1994), but it is also restricted to two-dimensiooahfigurations.

Boundary integral formulations represent a flexibleernative
in developing inverse airfoil design procedures.especial when
they are numerically implemented by means of panethods. A
procedure of this type was proposed by Shigemi §198r single
and multi-element airfoils. In this procedure, gtha panels with
linear vortex distributions are employed and theidann boundary
condition is applied in control points. In this eathe final vortex
distribution is known a priori since it is equivateto the required
contour velocity. The unknown airfoil ordinates aletermined by
applying the Newton-Raphson method for solving #lystem of
nonlinear algebraic equations that arises. In otdeassure the
airfoil closeness and also to fix the body edgdsig&ni (1985)
applied a least square technique.

Petrucci et al. (1998) proposed an inverse mettogyolith a
modified version of the Hess-Smith method (Hess @mith, 1967)
for the flow calculation step. The method emplofraight panels

ABCM



A Fast Algorithm for Inverse Airfoil Design Using a ...

with uniform source distributions of unknown intéies and a
vortex distribution of sinusoidal shape with an moWwn maximum
intensity at the leading edge and a vanishing Bitgmt the trailing
edge. This vortex distribution alleviates spuriaesodynamic loads
that usually occur at a cusped trailing edge. Ttace intensities
and the maximum vortex intensity are calculatedapplying the
Neumann boundary condition at the control pointd &me Kutta
condition at the trailing edge. The geometric manghstep is
conducted by altering the panel slopes according forocedure
suggested by Murugesan and Railly (1969). Due eéddtv order of
the singularity distributions and also the poorfgenance of the
source distributions in controlling curvature efiedPetrucci (1998)
has verified some convergence difficulties in tresec of airfoils
with very cusped trailing edge and high cambemwds concluded
that a higher order panel method would be realbessary in order
to overcome these difficulties.

In this paper, one proposes an improved algoritomirfverse
airfoil design with basis on the panel method.Ha fiow calculation
step one employs a linear vortex panel method thighNeumann
boundary condition and a new scheme for applying Kutta
condition consistently in the case of a cuspedinigaedge (Petrucci
et al.,, 2001). In the geometrical marching stepe applies the
transpiration model of Muregesan and Railly (196@jth
modifications for fixing the trailing edge point é@nthe airfoil
abscissas during the iterative process and alsaskuring the body
closeness.

The effectiveness and robustness validation of pgheposed
inverse algorithm is carried out by means of soasecstudies for
which analytical results are available in the &tere (circular
cylinder and Joukowski airfoils).

Nomenclature

a = circle radius
Cp =drag coefficient

Cp = pressure coefficient

ft = accelerating factor

jss = index of point closest to leading edge stagnmapoint
m = number of panels

me = eccentricity magnitude

I = chord length

s = natural coordinate along the body contour

S = normalized natural coordinate along the bodntcar
sl = total countour length

W, = calculated (analyzed) velocity

Wg, = calculated normal velocity

W, = effective normal velocity

W, =required velocity

W, = tangential velocity
= trailing edge velocity
Wipe = normal velocity at trailing edge
Wy = tangential velocity at trailing edge
b, = y-projection of the effective normal velocity o€ §-th

panel

W = conjugated complex velocity

W, = conjugated complex velocity of the onset uniféiow at
infinity

= abscissa

= normalized abscissa

= ordinate of actual body shape

= ordinate of new body shape

= effective new ordinate
= complex coordinate

N'<?<< > X
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Greek Symbols

a = angle of attack between the onset flow directiad the
chord axis

£ = angle of camber

X =angle between theth panel and the direction

oy = ordinate variation

AS = panel length

Ay = ordinate difference of current body shape

AY = ordinate difference of new body shape

& = stopping tolerance

y = vortex intensity

Vi = fictitious vortex intensities

Vi = fictitious vortex intensities with acceleration

A = filter computed as the mean value of the norrefdaity
modulus

6  =panel angle

{(s) = integration point on the body contour

Subscripts

bf relative to trailing edge

j relative to pansgl

n relative to normal velocity
t relative to tangential velocity
st =relative to stagnation point

Algorithm Description

Given a required velocity distribution at the airfmntour and a
starting body shape, the inverse design algoritmarches the
required body shape by an iterative process. Esefation is
subdivided into two main steps: 1) the flow caltiola step; 2) the
geometrical marching step. At the end of each timmeone finds a
new body shape that is presumably more close tdattyet shape.
The iterative process is repeated until the diffees between the
ordinates of the current and last iterations stéhim a prescribed
tolerance. In what follows, these iterative steps described in
more detail. A flow chart of the algorithm is showmnFig. 1.
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Figure 1. Flow chart of the proposed algorithm.
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Flow Calculation Step The panels joined by the trailing edge= zy,, receive a special
treatment (Fig. 2b). A regularization conditioy,,,=—), is

body shape is computed by means of an efficienelparethod imposed to make the trailing edge velocity finitéus the equation
based on linear vortex distributions. The flow $s@med to be two- SVS‘e.”.“ rgsultlng from application of .the Neumannuristary
dimensional, steady, potential and incompressitfae body condition in each panel becomes determimack (n). However, the
contour is a;:)proxima,ted by straight panels Withty, zp,..., Zn Zye regularization condition is not sufficient for &ying the Kutta
denoting the panel nodes and 7., representing the trailing edge condition consustently. in the case of a very cq;padlng edge.
(Fig. 2). In each panel, the central point is deaigd as a control Thus one further requwesithe total velpcny a“m'ﬂg edge t(.) be
point for applying the Neumann boundary conditiohzero normal equail to the vort_ex intensity there, as it shobh{i_)tetlcally be, i. e.,
velocity). Linear vortex distributions are placed the panels such W, =~/ - In this way, the system of equations becomes-over

In this work, the corresponding flow field for eaderative

that the vortex intensity associated with fhh node is). This  determined i + 1 equations wittm unknownsy, ..., i) being
value is equivalent to the required velocity atjttie node. solved by least squares (Petrucci et al, 2001).
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A
\
Jie, i
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Figure 2. (a) Panel definition and vortex intensity for two contiguous Conformal mapping parameters: ¢ = 0°, a/me = 12.5; g=5°.

Figure 3. Pressure coefficient for a symmetrical Jo  ukowski airfoil.

panels. (b) Scheme for Kutta condition implementati ~ on.

— 1.00 , ,
The conjugated complex veloci/ (z) in a generic point = x N
+ iy of the complex pland, = (-1)"? is expressed by means of a N - |
Cauchy integral on the boundary cont@ur 11 * =3 S
. ©) »'I iRt
W (7 =W ! s W = -l
W(2) =W, + Eﬁgc 72-¢ ds, Wp =W e™ @ 0.00 7 Analytical result

- - -- Hess & Smith method ,

where W, represents the conjugated complex velocity ofchset

uniform flow at infinity,  being the angle of attack between the
onset flow direction and the chord axig(s) represents an -1.00 7
integration point on the body contour. The integsatalculated by

summation of each sub-integral vaIMTi:J (2) corresponding to the g
contribution of the panels joined by the nagiérig. 2a). Assuming
straight panels with linear vortex distributionisistcontribution can 200 S P
be calculated analytically, resulting the followiagpression foj = N7

2, ...,m(yx is the angle between tih panel and the direction)

Cp

L4 Present method R4
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X
_ eIt z-zi4 z2-2j4
W;(2) =iy log -1 Figure 4. Pressure coefficient for a cambered Jouko  wski airfoilConformal
2 Zj=Zj4 -2 mapping parameters: g = 12°, alme = 4.5; @ = 4°.
@
—ixi
i - -7 o

+ & Zjin—2 log ! +1 The tests made up to now have demonstrated thatiigysand

2 | Zj41 ~ Z z-2zj good precision of this procedure for airfoils witkery cusped

trailing edges, even with a relatively low numbémpanels. Figures
3 and 4 show some coefficient pressure results Jmrkowski
airfoils with and without camber, respectively,ngsm = 16 panels
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only. The abscissas are normalized with respettteairfoil chord.
The airfoils were generated by conformal mappingsfthe circle
with the following parameters: angle of attack,angle of camber,
[, eccentricity ratio,@/me a being the radius of the circle anie

the eccentricity magnitude (Karamcheti, 1980). Tesults are
compared with the low order panel method of Hes#tSmodified

by Petrucci (1998).

One can see that the low order panel method isabt# to
represent adequately the pressure distribution thiglow number
of panels, mainly for the cambered airfoil (Fig. ©n the other
hand, the present method leads to satisfactonftseisuboth cases.
It is important to mention that increasing the nembf panelsn O
as in fact becomes necessary in applicationwill produce results
that converge rapidly to the analytical resultsadprcoefficients
Cp(m) were computed to be compared with the zero apalyt
value. Some results ar€p(16) = 0.01077,Cp(32) = 0.00117,
Cp(64) = 0.00011Cp(128) = 0.00000 for the symmetrical airfoil
and Cp(16) = 0.01896,Cp(32) = 0.00415,Cp(64) = 0.00097,
Cp(128) = 0.00009 for the cambered airfoil. For theskl & Smith
method with m 128 one hasCp(128) = 0.00143 for the
symmetrical airfoil andCy(128) = 0.00114 for the cambered airfoil.

Geometrical Marching Step

At the end of the flow calculation step one hasawot#td a new
vortex distribution. This could be compared witle tiequired vortex
(velocity) distribution in order to decide if oneas attained
convergence or not. However, before verifying tbewvergence, one
proceeds directly with a geometrical marching sigmonstructing
another shape that is more close to the targeeshap

Here one applies a modified version of the tramdigin model
due to Murugesan and Railly (1969). In this mo@el;ortex-only
boundary method is employed and the transpiratifiacts are
represented by normal velocities induced by fiotii vortex
representing the difference between current angetavelocities.
The introduced modifications were first presenteg Petrucci
(1998). They do not significantly alter the basanspiration model
and were mainly proposed for maintaining the tngiledge fixed
during the iterative process and also for assuenglosed body
shape at the end of the geometrical marching s$tethe original
model, the leading stagnation point of the iteratbdpe must be
found and a re-paneling of the intrados and exsadaequired in
any iteration, starting from the stagnation poowards the trailing
edge. Further, the body closeness issue is notrephaaddressed
by Muregesan ans Raily (1969). Another modificatien also
applied for fixing the body abscissas between fi@na and so
facilitating the global convergence. With these ffiodtions, the
angle of attach of the onset flow do not need taiven since the
iterative process is able to set the correct baiityide relative to the
onset flow at convergence by itself. This issue lbawery useful for
design purposes. Also, a re-paneling of the bodfase becomes
unnecessary.

Basically, the geometrical marching step is asofed: firstly,
one calculates a fictitious vortex distribution terms of the
difference between the required and calculated citgds (vortex
intensities) at the panel nodes. Then one calaiateormal velocity
excess (transpiration) induced by this fictitioumtex distribution.
Finally, one conducts a suitable variation of tlame slopes trying
to annul this normal velocity excess. A straightfard scheme is
further applied in order to assure the body closendén what
follows, the whole procedure will be described iarmdetail.

J. of the Braz. Soc. of Mech. Sci. & Eng.
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Calculation of the Fictitious Vortex Distribution

The intensity of the fictitious vortex distributiatepends upon
the difference between the calculated (analyzett)citg W,(s) and
the required (target) velocity,(s). However, one must be careful
about the velocity signal relative to the adoptedhporientation
around the body. Here the path starts and endweatdiling edge,
and its orientation is such that the interior af Hbody remains at the
right side (Fig. 5). Normally one has a stagnatiomt next to the
leading edge. Thus, the velocity is negative onbibigom portion of
the body (starting from the trailing edge up to #@gnation point)
and positive on the top portion (following from teagnation point
back to the trailing edge.)

Woc P "-—_~
— - ~~a .
'/ m “=»
—> ‘ m+1
> ¢ ¢ v 3 _2____|1
— . &«e-—-—-—""

Figure 5. Adopted path orientation around the airfo il.

Initially, one finds the nodal poirjt, closest to the stagnation
point corresponding either to the calculated véjyo@r to the
required velocity, that one which first occurs. aTlis, we take the
first point where these velocities have differeiginals or at least
one of them is null (with exception of the trailiedge) and use this
point to divide the boundary into two branches:

varyj; if W, <0 thenjq=j (3)

Then one computes the fictitious vortex intensitieshe panel
nodes by the following expressions:

Vi (8) =W, (8) =W, ()

forj =1, ..., e 4)

Vi (S) =W, (S) —W.(s) forj =jgtl, ...,m+l

®)

Acceleration of the | terative Process

Some providence can be taken at this point in dmlaccelerate
the global iterative process. First, it was vedfithat a constant
accelerating factorft can be applied on the fictitious vortex
distribution without altering its basics characgds. Tests have
indicated that this factor must lie in a consematiange, I ft <
3.5. Values much above 3.5 may produce catastraystiiations in
the iterative process while retarding factfirs1 have not needed to
be applied. One writes:

}7 et (S) = Vi (S) T (6)

Calculation of the Induced Normal Ve ocities

The fictitious vortex distribution will induce a nmoal velocity
distribution on the body contour which is calcuthtasing the
current influence matrix or preferably the startinfuence matrix
(this issue will be later discussed in detailwis observed that this
normal velocity may suffer severe variations esglcinear the
leading edge where the fictitious vortices may aisxy intensely. In
producing a new shape, these variations would chigsappearance
of spurious bumps or concavities at the leadingeedgion which
impair the convergence process. For avoiding thleaebacks, one
applies an automatic filteA to the calculated normal velocities
Wc,(s) by bounding their excessive values and maintgirthose
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that are sufficiently mild. The filter is automatlly computed as the Stopping Criteriafor the Iterative Process

mean value of the normal velocity modulus:

1 ¢s
A =§j0 We,(9)| ds )

where sl represents the total contour length. The filtetls as an
upper bound to the modulus of the effective normedbcities\W,,(s)
such that

W,(s) =Wg,(s) , it We(s)|<A; ®)

WG (s)

W, (s)| '

Generation of a New Geometrical Shape

W.(s) =1

it We(9)|> A. 9)

Using the effective normal velocity in each contmint, a
scheme was conceived in order to alter the paogksl i. e., the
body ordinates, without varying the body abscisEas.the current
body shape the ordinate difference between thelrpmats ofj-th
panel isAy; = Y1 —

variation dy; as follows

AY, =dy, + %, (10)

According to Fig. 6a, a relation should exist bedwethe
ordinate variation, the required velocity and tharmmal velocity
calculated in the current iteration. Since one sdek a new body
shape with zero normal velocity on it, the dashed bn bottom of
Fig. 6a represents an approximation to the newetati direction.
But this direction is also geometrically represdritg the new panel
slope which is related to the current panel slopé the ordinate
variation. Thus, a similarity exists between thaeanatic and
geometric triangles in Fig. 6a, from which the riegd ordinate
variation follows

W, o,
| s,

W, W,
L AS, J

] o

Starting from the first panel, a cumulative sumiatiof
ordinate variations calculated in Eq. (11) is perfed for the nodal
pointsj = 2, ...,m+1. Thus, the new ordinates becomes

= Jy,=AS, (11)

Y. =Y, + Ay, + A4S, =2, .. ml. (12)

' coss, |W |

Procedurefor Closing the New Body Shape

The application of Eq. (12) does not assure thatrésulting
shape is closed as required. The ordinate of gtentzdem+1 do not
necessarily coincides with that of the first noghes1. To overcome
this drawback, one divides the differenge- Y., by the number of
panels and adds this remaining value to the nodaihtp

cumulatively, starting with the"® node and ending with the node

m+1. This scheme assures the body closeness (Fjg.TBhs the
effective new ordinate¥; becomes

v oY =Y
Y, =Y, +(]_1)%, (13)

358/ Vol. XXIX, No. 4, October-December 2007

y;. For the new body shape the corresponding
ordinate differencé\y; is calculated by adding a suitable ordinate

Figure 6. (a) Modification of
body.

At least two kinds of stopping criterion can be l&xh One is
based on the difference between the calculated raogired
velocities at the end of the flow calculation stprmally such type
of criterion is not adequate for the present atbam since the
velocity distribution may exhibit a very large \ation at the leading
edge region for very small geometrical variatiomlhe same may
occur with a criterion based on the velocity difiece between
successive iterations.

A more adequate and realistic criterion can be édated using
the geometric marching itself. In this paper onfinds the stopping
criterion using the mean quadratic error of thdedénces between
the ordinates of the current iteration and thoséheflast iteration.
The iterative process stops when this value becamedler than a
prescribed tolerances,. At convergence, the calculated velocities
approach the required ones, the fictitious vortieesl induced
normal velocities approach zero and the currenpetepproaches
the target shape.

2" 1 andm+1

[ G

Non-closed body
—e— Closed body

(b)

j-th panel slope. (b) Procedure for closing the
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Use of the Starting Influence M atrix during the
Geometrical Marching Step; Further Discussion about
the Computations

Some tests have raised another important conveggsage: in
calculating the normal velocities induced by thetiious vortex
distribution, convergence improvements can beratthif one uses
the influence matrix of the starting shape insteddhe current
iterated shape. At first glance, this may soundngfe because the
final and starting shapes may be very differentfreach other and
the influence matrix is strongly connected to thepe of the airfoil.

For explaining this situation, it is important fite note that the
current matrix is always used in the flow calcwatistep. The
normal velocities induced by the actual vortex riisttion must
counterbalance the normal effect of the uniform ebnfow.
Roughly speaking, beinfA] the current influence matrix (of the

current shape) an@W.,,) the vector of onset flow normal velocities,

the corresponding vectdy) of actual vortex intensities (equal to

1 I 1 I 1 I I I 1 I 1 I 1
L 13 | _
E - =
£ - 3
2 ] ]
- ] i
.2 ] 7
S ANl === Starting matrix
c .
<) - Current matrix -
O
(@)
1E+2 _fm—mmmmm——— =
1 I 1 I 1 I 1 I 1 I 1 I 1
1B —3
1E1 —3
P -
1E2 —3
I------ Starting matrix
E Current matrix
1E3 =3 Y Convergence points
! I ' [ ' I

10 20
Number of iterations

30

Figure 7. (a) and (b): Condition number of the infl
24 and 50 panels, respectively.

The reason why the use of the starting matrix adstef the
current matrix has been shown advantageous is surde. One
hypothesis is that the successive shape alteratvontd impair the
conditioning properties of the influence matrix lwitesulting error
propagation. Some tests were made for showingtiehypothesis
is really appealing. For these tests, one has chasethe target
shape a Joukowski airfoil with conformal mappingauaeterss* =

J. of the Braz. Soc. of Mech. Sci. & Eng.
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tangential velocities) is calculated by solving gystem[A]()) = -
(Wan) in the flow calculation step. Due to the Kutta diion
treatment, the original system of equations is fiedliiand it is
solved by least squares, as already discussed ebeffuit in
synthesis, the current influence matrix must somehe retained in
order to obtain a well calculated flow field thatieed represents the
current airfoil shape.

On the other hand, in the geometrical marching, stepector
(74q) Of fictitious vortex intensities is calculated, pseviously

explained. Now, the actual uniform onset flow i$¢ peesent and the
vector (W,) of induced normal velocities is calculated by mpe

matrix multiplication:(W,) = [A] (y,.) - Here, it is easy to see that

the use of the current matrix is not strictly neeaeg, provided the
algorithm is convergent. Indeed, in this case beittors(y ) and

(W,) will converge to zero and the matrpA] will eventually
become irrelevant during the iterative procedure.

i 1 I 1 I 1 I 1 I 1 I 1 I I_
1
]
o 1E+3 —]
E 3 3
2 ]
= ] ]
je) - -
i 1)1 ------- Starting matrix -
5 - Current matrix -
O
(b)
1E+2 1 1 1 1 1 1 1
[ [ [ [ I [
0 10 20 30 40 5 €
Number of iterations
1B 31 | L I L L L
3 (d)
I
\
N
E1—4
= N
A = Y
-1 \
_ \
N
\\
1E2 S~ =
J------ Starting matrix
E Current matrix
- ° Convergence points
1E-3 LI L L L N L LB I
0 0 20 3 40 50 60

Number of iterations

) and (d): Mean value of normal velocity modulus fo  r

12°, a/me= 4.5, a = 4° and as the starting shape an ellipse with
aspect ratio equal to 0.1. The stopping toleranas taken agy =
10, Tests were made fon = 24 panels anth = 50 panels, with the
accelerating factdit set equal 2.2.

Figures 7 (a) and (b) show that the condition nuntfethe
current matrix increases rapidly and exhibits sooseillations
during the first iterations. This behavior is indied when the
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number of panels is increased. These results seregplain why
the use of the starting influence matrix helps tweterate the
convergence process: Even more important than thalles
condition number of the starting matrix, the constaof its spectral
properties implies a faster shape evolution in camspn with the
use of the current matrix. More specifically, theciflations in the
condition number of the current matrix impart dstibns in the
normal velocities induced by the fictitious vortaistribution which
in turn generate oscillations in the iterated shape finally a
relative delay in the convergence process. Thiaydehn be clearly
observed in Figs. 7 (c) and (d) where it is shoWwa iterative
evolution of the mean value of the normal veloaitgdulusA (the
filter defined in Eq. 7). The “convergence pointsrresponding to
the iteration for which the stopping tolerance whiaved, are
indicated by black circles. When using the startmgtrix, the
convergence is attained in 18 iterationsrfor 24 panels and in 30

Denis R. Petrucci and Nelson Manzanares Filho

Case Studies

Some case studies were carried out in order talatali the
proposed methodology and to evaluate its charatitesi of
convergence and robustness. The circular cylinded the
Joukowski airfoil were chosen as the target shapes they have
analytical results available in the literature, lsging suitable for
benchmarking. In all of the cases, the adoptedistashape (initial
body) was an ellipse with aspect ratio equal tg 8ntl the stopping
tolerance was taken ag= 10"

Four cases will be shown here. According to targeape,
number of panelsn, and adopted acceleration factfir,they are:
(1) circular cylinder without circulationm = 24, ft = 3; (2)
symmetrical Joukowski airfoil at no incidengg & 0°, a/me= 12,5,
a =09, m= 24 ft = 2.1; (3) cambered Joukowski airfoil at
incidence * = 12°, a/me = 4.5,a = 4°, m = 24, ft = 2.1; (4)

iterations form = 50 panels; on the other hand, when using theambered Joukowski airfoil at incideng@ € 12°,a/me= 4.5,a =

current matrix the number of iterations for conwsrge practically
doubles] to 34 and 68, respectively. As now expected fFigs.
7 (a) and (b), it is also clear from Figs. 7 (c)i4d) that the starting
matrix leads to smoother convergence behavior mpasison with
the current matrix.

Some Remar ks about the Generality of the Proposed
Inverse Algorithm

In this work, the vortex panel method was appliedtfie whole
iteration process. Nevertheless, it is importanhate that thelow
calculation steps independent of thgeometrical marching stejit
is conceivable the application of other flow modelshe first step,
while maintaining the proposed approach for moddyihe body
geometry in the second step. It is possible to viseous or
compressible flow solvers in the first step as lasgone applies a
consistent procedure for defining an equivalentoeigy at the
boundary contour. For example, suppose that
incompressible method based on primitive variabigsbeing
applied. It is possible to use the Bernoulli theor®r converting
the target and calculated pressure distributiorie lequivalent
potential velocities distributions” for computiniget fictitious vortex
distribution required in the geometrical marchiteps

Further, the vortex-only panel method here used ban
extended to three dimensions using a dipole-oniyepanethod
(Morino and Kuo, 1974): The dipole intensity is aglent to the
potential function on the boundary and its tangegrderivative is
equivalent to the boundary velocity (which in tusnequal to the
vortex intensity in two dimensions). The use oftegronly (2D) or
dipole-only (3D) formulations can advantageousihplaee the
source-based formulations used in direct solut{dtess and Smith,
1967) and inverse design (Malone, 1982) since tditian of
vortex or dipoles to the source distribution is & necessary for
representing lifting-bodies like airfoils and wings

Implementation and Validation of the M ethodology

Computer | mplementation | ssues

For implementing the previously described algoritlantortran
double precision program was developed using theRdi$&ran PS
4.0® compiler. The least square subroudeSQRR of the IMSL®
library was called for solving the equation systemeach flow
calculation step. For the condition number caldéoket presented in
Figs. 7 (a) and (b), the subroutibeFCRG of the same library was
called. The running tests were made on an IBM RE€-tiomputer
with a 350 MHz Pentium II® processor and 64 Mb RAN&ing 50
panels, the average CPU time per iteration wastatims.
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4%, m = 50, ft = 2.1. The nomenclature for conformal mapping
parameters of the Joukowski airfoils follows thased by
Karamcheti (1980).

Graphs for these cases are presented in Figs.18,tehowing
the convergence behavior for shape, velocity distion W(s) and
ordinate distributiory(s). In all of the graphs, the target shape and
required (target) distributions are always represgoy solid lines.
The current iterated shapes are represented byedidstes. The
current velocity and ordinate distributions areidated by proper
keys within the corresponding graph. For the Jowdkowirfoils, the
ordinates were scaled up for better visualizatidnthe iterative
process for shape (the real shapes are relatihahy. tThe shape
coordinates X, y) and the boundary coordinasewere normalized
with respect to the airfoil chord lengttand the total contour length
sl, respectively (X /I, Y =yll, S =g/sl).

Discussion

One observes that a relatively small number offiens was
necessary for attaining geometric convergence. §yrametrical
bodies (cases 1 and 2, Figs. 8 to 11) requireditessgion than the
non-symmetrical body (cases 3 and 4, Fig. 12 ta TB)e also
observes that the number of panels has a stroregtefin the
convergence ratio: for the same target airfoil, tise of 24 panels
required 18 iterations (case 3, Figs. 12 and 13)ewthe use of 50
panels required 30 iterations (case 4, Figs. 141&)d Obviously,
there is a precision improvement as the numberaoé|s increases:
This is a reminder about the need of a panel medidelto achieve
precise results with relatively few panels. Of gmyra sufficiently
high number of panels must be chosen for achieaimgdequate
geometric representation. For airfoila,= 50 may be considered a
recommended inferior bound.

Petrucci (1998) have previously employed a souseeel
method of low order for solving the inverse problefhis author
has observed convergence difficulties in treatiimipiés with high
camber and/or with very cusped trailing edges. ®glmscillations
and geometrical crossings were then observed atrdliieng edge
region. These difficulties have arisen in solvihg tnverse problem
even when the direct problem was satisfactorilwelwith the
same number of panels. It was observed that th&rceo
distributions made a poor job in controlling thef@l curvature. It
was concluded that both the type and the ordehefsingularity
distributions must be chosen with care in ordeadequately solve
inverse design problems. In fact, one verifiesha present paper
that the use of linear vortex panels and a congistpplication of
Kutta condition have decisively improved the iteratprocess.
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One observes in cases 3 and 4 (Figs. 12 and 1hthiterative  shape was set at= (°. The recovering of the correct angle of attack
process is able to adjust the correct angle otlatéh convergence. increases the flexibility of the inverse designrapgh.
In these cases, the target shape was set=a#’® while the starting Other important aspect is the departure betweestdréng and
target shapes. Although the algorithm has exhibétegbod global
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convergence performance one should be careful apmssing the
starting geometry. In case 3, for instance, if cterts from the
circular cylinder instead of the thin ellipse, tfeguired number of
iterations for convergence will increase from 1886. This is an
extreme situation: the algorithm is asked to seartthin and cusped
airfoil starting from a very blunt body without a&ffective trailing

edge. A slow-down in the convergence ratio is ratir this case
due to the severe geometric adjustments to be rpeeth mainly at
the trailing edge region. But the algorithm af@dl converges,
exhibiting a global convergence capability and sibass.

In all of the cases, the calculation of the normelocity
distribution induced by the fictitious vortices wasde by means of
the starting influence matrix. This has substalytiatcelerated the
iterative process in all of the cases. The numlpdrsterations
required for cases 1, 2, 3 and 4 were 8, 6, 183ndespectively.
On the other hand, when the influence matrix ofdineent iteration
was used, the numbers of iterations for convergemee 18, 15, 28
and 50, respectively. But the characteristic ofbgloconvergence
still remains.

With regard to the accelerating facfbrone has verified that it
exerts a strong effect on the convergence ratiall lof the cases the

values offt were chosen in order to produce a convergence rat'étre
next to the best. For no acceleratiéin=l), the number of iterations g

would be doubled in average.

Concluding Remarks

A fast algorithm for inverse airfoil design with $ig on linear
vortex panels has been proposed. The presentedetdts have
validated the algorithm in terms of versatility neergence ratio and
good precision even with a relatively low numbepanels.

The convergence of the algorithm is fast when tbpadure
between the starting and target shapes is notarge but it may be
slowed-down in other cases. Nevertheless, in althef tests the
algorithm has exhibited good characteristics obglaconvergence.
One can take advantage of this aspect in combitiiagproposed
algorithm with methods having strong local converge behavior,
like the Newton-Raphson method.

The proposed algorithm is able to recover the comattitude of
the target airfoil with respect to the onset flalwe(angle of attack)
by itself. This issue increases the flexibility thie inverse design
approach.

Finally, it is important to remark that the georiet marching
step of the proposed algorithm can be used in catipn with other
flow solvers, not necessarily of potential type. Bging this
approach, it would be possible to accelerate irvdesign methods
based on viscous or compressible flow codes. Thasptoposed
algorithm can be useful in more realistic designations.
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