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Influence of Physical and Geometrical
System Parameters Uncertainties on
the Nonlinear Oscillations of
Cylindrical Shells

This work investigates the influence of physicall ajeometrical system parameters
uncertainties and excitation noise on the nonlingdrations and stability of simply-
supported cylindrical shells. These parameters esemposed of both deterministic and
random terms. Donnell's non-linear shallow shekdhy is used to study the non-linear
vibrations of the shell. To discretize the partitifferential equations of motion, first, a
general expression for the transversal displacemisntobtained by a perturbation
procedure which identifies all modes that couplehwthe linear modes through the
quadratic and cubic nonlinearities. Then, a partausolution is selected which ensures
the convergence of the response up to very largéeatiens. Finally, the in-plane
displacements are obtained as a function of thesvarsal displacement by solving the in-
plane equations analytically and imposing the nsass boundary, continuity and
symmetry conditions. Substituting the obtained redaansions into the equation of
motion and applying the Galerkin’s method, a digergystem in time domain is obtained.
Several numerical strategies are used to study ribelinear behavior of the shell
considering the uncertainties in the physical amdmetrical system parameters. Special
attention is given to the influence of the unceitias on the parametric instability and
escape boundaries.
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Introduction

Cylindrical shells are one of the most common gtrad
elements with applications in nearly all enginegriields. They
are particularly suited to withstand axial loadsl #ateral pressure.
Under these loading conditions thin-walled cylirdti shells
usually display a complex nonlinear response duemindal
coupling and interaction and high imperfection #&vigy. The
study of the nonlinear vibrations of cylindricaletls goes back to
the middle of the last century with the works byuCfL961),
Nowinski (1963), Evensen (1963, 1967) and Olsor6%)9among
others. In these works either the Ritz or Galerkiethod are used
to discretize the shell. For this, a modal expamsfor the
displacement field is necessary. The developmentarfsistent
modal solutions capable of describing the main rhodaractions
observed in cylindrical shells has received mucteraion in
literature. A detailed review of this subject waghfished in 2003
by Amabili and Paidoussis (2003).

Theoretical static critical load
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Also, a considerable effort in structural enginegrhas been
directed towards understanding the behavior ofcairas liable to
buckling (Bazant and Cedolin, 1991). This stepsseatial for the
development of safe design criteria (Ziemian, 20Y@hile a good
correlation between the experimental results arel ttieoretical
critical loads can be observed for structural elemeexhibiting
stable post-buckling behavior, such as plates aodinmns, a
persistent discrepancy between theoretical and riempetal
buckling loads is observed for structural systerishiting unstable
post-buckling behavior, being the experimental lteslower than
the theoretical ones. Figure 1 compares the nozewltheoretical
critical load of a perfect cylindrical shell undaxial load with the
scatter of experimental results found in the liiera (Batista and
Gongcalves, 1994). Here (R/h) is the radius-to-théds ratio, which
is a measure of the shell slenderness. The expai@inesults are
much lower than the theoretical critical load, loethe theoretical
value a distant upper bound. This is an archetggample of an
imperfection sensitive structure in structural 8tb

A general explanation for this upsetting behaviaswgiven by
Koiter in his pioneering work on the general theofypuckling and
post-buckling behavior of elastic structures (Kiitel945;
Kounandis, 2006). Koiter showed that imperfectioirs the
geometry or in the load may decrease substantlayoad carrying
capacity of these structures under slow variatibthe applied load.
However these imperfections are not known a paad may even
change during the service life of the structure.atidition, load
imperfections may cause a further decrease inritieat load. This
scenario becomes even worse if the unavoidableriaities in
system parameters are also taken into accounte 8iecexpressions
for the critical load are developed based on acsequilibrium
analysis, they actually calculate an upper bound tfe load
carrying capacity of the real structure, as theyni take into
account the disturbances imposed upon the impedgcicture
during its service life (Santee, 1999). The infleenof these
disturbances on the integrity of the structure banevaluated by
analyzing the evolution of the basins of attractwinthe stable
equilibrium configurations as a function of the teys parameters.
This issue was first addressed by Thompson and cckers
(Thompson, 1989; Soliman and Thompson, 1989, 199Rpy
introduced the concepts of safe basin and erosiofilgs. It was
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further analyzed by several authors and nowadaigsagreed that
the safety of a nonlinear mechanical system ocstra depends not
only on the stability of their solutions, but also the continuous
and uncorrupted basin surrounding each solutian,tdkal erosion
of a given basin corresponding to the system faillihe integrity of
a basin of attraction depends on the topology eftisin boundary,
which can be smooth or fractal, and on the wayttiheabasins of the
various co-existing solutions interfere with eatheo. This topic is
particularly important in systems exhibiting mul&ppotential well,
where the basins of various in-well and cross-vgellutions are
intertwined. In a recent work Rega and Lenci (2088nmarized
the current knowledge in the area and introduced nencepts
which can be efficiently used for the integrity bsés of nonlinear
systems. Recently, using these concepts, Goncalves. (2011)
studied the global dynamics and topological intggof the basins
of attraction of a parametrically excited cylinddicshell through a
two-degree-of-freedom reduced order model. Howewube
investigation of the influence of uncertainties aaddom noise on
the evolution and stratification of the basins tfaetion must also
be carried out to arrive at a safe load level fesign.

To take indirectly into account these deleterioffects, several
lower bounds of static buckling loads have beenpgsed for
design. They are usually based on the scatter pEkrerental
buckling loads and energy considerations (Batistdh &oncalves,
1994). Estimate of the dynamic buckling load ofustures with
unstable post-buckling behavior — the load corredpw to escape
from the safe pre-buckling well — considering th#ees of
uncertainties and imperfections is a much moreiatiff task.
Structures under dynamic loads may exhibit botlall@nd global
bifurcations that affect in different ways the loeatrying capacity
and degree of safety of the structure. Global bdtions are
particularly important since they control, as shdwnSoliman and
Thompson (1989), the evolution of the basins afaation of the
solutions in phase space. In addition, comparet thi¢ static case,
the number of load control parameters is highernalfy,
experimental results of dynamic buckling loadslehder structures
are rather scarce in literature (Virgin, 2000; Aiiiab2008).
Therefore, little is known on the effects of unaarties on the load
carrying capacity of structures liable to unstatitic buckling in a
dynamic environment. In a recent work Gongalves &ahtee
(2008) analyzed the influence of uncertainties lom Ibad carrying
capacity of a simplified structural model exhibgimnstable post-
buckling behavior. Using several tools of non-lindgnamics, they
showed that the uncertainties have an influencdasirand of the
same order as geometric imperfections on the scaftéuckling
loads and proposed a safe lower bound based onikdels
criterion. Thus, the aim of the present work isingsa similar
methodology, to study the influence of uncertamtie the dynamic
stability of a cylindrical shell under axial loads.

The influence of combined random material and geome
properties on the free vibration frequencies andkling loads of
cylindrical shells has been investigated by, amottgers, Yadav
and Verma (2001); Singh, Yadav and lyengar (208%fanou and
Papadrakakis (2004); Papadopaulos and Papadrakaki8s);
Kriegesmann et al. (2010) and Stefanou (2011).H@nother hand,
there is a lack of information on the influencettoése uncertainties
on the post-buckling behavior and particularly & thonlinear
oscillations of these structures. However, for otlsgstems, a
number of publications, in recent years, have itigated the
influence of random noise on their bifurcationssiba of attraction
and the competition between different attractorai @nd Winslow,
1994; Kraut, Feudel, and Grebogi, 1999; Kraut arddel, 2002).
As an extension of these previous works, and fatigwthe
methodology described in Gongalves, Silva and Dad® (2008)
for the derivation of consistent reduced order neder the
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nonlinear vibrations of cylindrical shells, the geat work
investigates the influence of small uncertaintieshie physical and
geometrical parameters of the shell and the unatbdéd noise
present in the axial excitation on the dynamic tingkloads and
bifurcation diagrams. For this, a detailed paraimeanalysis is
carried out to clarify the influence of uncertagstiin load and
system parameters.

Nomenclature
D = flexural stiffness of the shell, N.m
E =Young’s modulus, Pa
G(Py, w t) =random disturbance in axial load, N/m
= thickness, m
L =length, m
m, n = number of longitudinal half-waves and

circumferential waves, respectively

M,, Mg, M,y = moments resultants in, respectively, axial,
circumferential and in-plane direction, N.m/m

Ny, Ng, Nyg = force resultants in, respectively, axial,
circumferential and in-plane direction, N/m

Py = axial static pre-load, N/m

P, = amplitude of the deterministic harmonic axial
load, N/m

P = classical axial buckling load, N/m

Q = parameter which expresses the quality of the
fabrication process

R = radius, m

t =time, s

u, Vv, w = axial, circumferential and transversal

displacements of shell’s middle surface, m
X = axial coordinate, m

w = non-dimensional parameter for transversal
displacements

z = transversal coordinate, m

Greek Symbols

a = system parameter (&, o, L, R or h)

a = mean value of the chosen parameter (design value)

o = standard deviation parameter

£ = non-dimensional parameter for axial coordinate

o = non-dimensional parameter for axial static pradb

i = non-dimensional parameter for amplitude of the
deterministic harmonic axial load

N, N2 = linear viscous and viscoelastic material
damping coefficient

v = Poisson’s coefficient

g = circumferential coordinate, rad

P = mass density, kg/m3

Oy, Og = stresses at an arbitrary point of shell in,
respectively, axial and circumferential direction

aéG = variance of the random force amplitude

Txo = tangential resultant stresses at an arbitrary
point of shell

T = non-dimensional parameter for time

w = deterministic excitation frequency, rad/s

wh = lowest vibration frequency of the shell for
nominal values of physical and geometrical
parameters, rad/s

W = frequency bandwidth of the excitation

frequency, rad/s
= non-dimensional parameter for deterministic
excitation frequency
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Problem Formulation

Shell equation

Consider a cylindrical shell of radid® thicknessh and length
L, made of a linear elastic material with Young's dulus E,
Poisson coefficient and mass density. For an isotropic shell the
stresses at an arbitrary point are given in terhtieomiddle surface
strains and changes of curvature, according to Bléarshallow
shell theory, by:

Oy 1 v 0
_ E

9 (= 2 v 1 0
- @-v°) 1-v)
he ° 0

(1)

1
U+ 5 W= ZW
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, R\ X R

The shell is subjected to a harmonic axial loathefform:
P=Ry+Rcos(at)+G(R,a,t) (2

where Py is the axial static pre-load®, is the amplitude of the
deterministic harmonic loadw is the deterministic excitation

frequencyt is time andG(P;, w, t) is the random disturbance that

depends on the deterministic parameRrandw.

The nonlinear equations of motion, considering orhe
transversal inertia and damping forces, are giverlerms of the
force and moments resultants as:

Nys,0
Ny x+ XR =0 (3)
Ng g
Nyg x +—=—=0 4
; . 1 | Mgg
hi+ 2, pw o h+77, D 0% Ww—— :
P MmP@Wo 2 RZ{ R
+2M g0 +R M o+ R(N, - P) + (5)

W
Ng[%—lJang wyxg}:o
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For a simply-supported shell, the following bourydeonditions
must be satisfied:

v(0,6)=v(L,6)=0 @)
w(0,6)=w(L,68)=0 @)
M, (0,68)=M,(L,6)=0 ©9)
N, (0,6)=N,(L,8)=0 (10)

The boundary condition, Eq. (10), is a nonlineaurmary
condition when written in terms of the displacersettat is:

Eh 1 17} 1
U A=W | VWA — W
{ X Ty X R( N 2R 0 ﬂ

Ny = 11)

_1—v2

The displacement field, in this work, is also reqdito satisfy
the following conditions:

u(L/2,6)=0 and v(x,0)=v(x,277) (12)

The symmetry of the axial displacement field iscasequence
of the adopted modal solution for the transversapldcement
field and the symmetry of the boundary conditioBgg. (7)-(10)).
In the foregoing, the following non-dimensional aaeters have
been introduced:

w w
W=— £=— T=apt Q=—
h % w,
, (13)
R R Eh
fo=—"> =— Rer=
Fer Rer R;B;_UZ

HereP,, is the classical axial buckling load of the shell.

General solution of the shell displacement field by a
perturbation procedure

The numerical model is developed by expanding ridwesiersal
displacement componentin series in the circumferential and axial
variables. From previous investigations on mod&ltems for the
nonlinear analysis of cylindrical shells under &kiads (Gongalves
and Batista, 1988; Gongalves and Del Prado, 200R5) it is
observed that, in order to obtain a consistent himglevith a
limited number of modes, the sum of shape functifms the
displacements must express the nonlinear couplietgvéen the
modes and describe consistently the unstable paitibg response

where 77, and 77, are, respectively, the linear viscous damping andf the shell as well as the correct frequency-aiugé relation.

the viscoelastic material damping coefficieris= En*/12(1 —v?)
is the flexural stiffness of the shelky is the lowest vibration
frequency of the shell for nominal values of phgbicand
geometrical parameters and the force and momeessiltants are
obtained by the integration of the stress companalung the shell
thickness as follows:

b2
[Nxv Ng. Nxﬁ] = J [Exv Oy, fx&] dz
2

(6)

b
[Mxv Mg, Mxﬁ] = J.[ZExv 20y, foﬁ] dz
2
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Based on a perturbation procedure, the laterabdtidinw can
be described as:

w= > 3¢ ¢)osing)sin(jmmé)

i=135 j=135

+ > > ¢ €)coslkné)cos(imzé)

k= 0,241=024

(14

By imposing the boundary conditions, Eq. (8) and &, and
by retaining in Eq. (14) the number of modes neamgs® achieve
convergence up to very large deflections, one obtdor the
transversal displacement (Goncalves, Silva and f¥atlo, 2008;
Silva, Gongalves and Del Prado, 2011):
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w:[(11 € Xcos(n)+a, € )cos(sne)] sin(m7e)
+[ 15 € )c0S(NG) + {55 € Jo0s(3n8) | sin(3m7ze)
+|€0a(0) + ¢4, € Joos(2n0)
{—%+ cos(2mﬂ£)—%cos(4mn£)}

(15)

The in-plane displacementisandv are obtained by substituting
Eq. (15) into the in-plane equilibrium equations, E3) and Eq. (4),
and by solving the system of linear partial diffafal equations inu
andv and imposing the relevant boundary, symmetry andicuity
conditions. Based on this procedure one obtains nbeessary
number of in-plane modes and writes their modal laoges in
terms of the modal amplitude§(t) in Eq. (15) (Gongalves, Silva
and Del Prado, 2008; Silva, Gongalves and Del Rrafil).
Finally, by substituting the adopted expansion tfoe transversal
displacementv together with the obtained expressions daand v
into the equation of motion in the transversal dimn, Eq. (5), and
by applying the standard Galerkin method, a coeststliscretized
system of ordinary differential equations of motisrmerived.

Simulation of the uncertainties in the physical and

geometric parameters

The physical parameterE,( v and p) and the geometrical

0.2

anG(E)):Z%3 for Q-4 <m<q+@ (18)

2 2

where UéG is the variance of the random force amplitude anid
the frequency bandwidth of the excitation frequency
Additionally, it is considered that the standardidgon of the
random force amplitude is proportional to the deiaistic force
amplitude Py, thus:
O56=0R (29)
wheredis the standard deviation parameter of proportigneso,
the random force is a stochastic process that dispem the
frequency, w, and amplitudeP;, of the deterministic term. The

numerical algorithms used in the present work canfdund in
Gongalves and Santee (2008).

Numerical Results

Consider a cylindrical shell of radit®s= 0.2 m, length. = 0.4 m
and thicknessh = 0.002 m. The shell material has the following
propertiesE = 210 GPay = 0.3 andp = 7850 kg/m3. For this shell
geometry the lowest buckling load as well as theeki natural
frequency are obtained for= 1 andn = 5 (Gongalves and Del Prado,

parametersl( R and h) of the shell usually have some reference005). The viscous and material damping coeffisiept and,, are,

values which are defined at the stage of designverer, depending
on the allowable tolerances in the fabrication pss¢ small variations
of these parameters may occur. Usually these smaditions have a
negligible influence on the load capacity of theucture. But in
structural systems liable to buckling, due mainty the inherent
nonlinearity of the buckling process, small changesy lead to
significant changes in the load capacity and safetige structure.

For each physical and geometrical parameaterthe following

respectively, 0.0008 and 0.0001. These valuesheilised throughout
the present numerical analysis. These values asedban the
experimental results by Amabili and co-workers (4iia2008).

Numerical resultswith physical and geometrical uncertainties

The continuous black curves in Figs. 2 and 3 ageptirametric
and permanent escape boundaries in the force tospace,

uniform probability density functiorf, is assumed (Gongalves andconsidering a deterministic harmonic axial load Ey. (2)

Santee, 2008):

100 , if ag ——a0Q<a<ao +2Q
f(a)={2a,Q 100 100 (16)
0, otherwise

whereq is the system parametd, (U, o, L, R or h), ay is the mean
value of the chosen parameter (design value),gla parameter
which expresses the quality of the fabrication pssc as a
percentage of the mean valug,

Simulation of therandom force

For the numerical calculations of the present wdhie non-
deterministic term of the axial load in Eq. (B(Py, w, t), is
considered as a stationary and ergodic continutmefiastic process
in time (Gongalves and Santee, 2008). Another Hgsis is that the
stochastic proces3(Py, w, t) has a zero expected value, that is:

E[G(R,wt)]=0 17)

The description of a stochastic process is usuabyle in the
frequency domain. Here, it is assumed that the arnderm
G(Py, w, t) has a spectral density function given by:
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(G(Py, w, t) = 0). The dashed horizontal line represents titeca
static axial load/ ., = /o + /1. The dashed vertical lines identify the
lowest natural frequency of the shell and twices thalue, which
corresponds to the main parametric resonance redioe region
below the parametric instability boundary corregomo sets of
load parameters (frequency/forcing amplitude) tlead to stable
trivial solutions, that is, under small perturbasothe perturbed
response tends to zero as time increases. Thenrediove the
escape boundary corresponds to force parametdriedithto escape
from the pre-buckling well. After escape, the shmlay exhibit
small amplitude oscillations around a post-bucklieguilibrium
position or large cross-well motions. Between th&se regions,
there is a region with a complex dynamics wherpedding on the
initial conditions, the shell may display harmoiwic sub-harmonic
motions within the pre-buckling well or escape fraime pre-
buckling well. In this region, the dynamic responsead,
consequently, the dynamic buckling load are rathamsitive to
physical and geometrical uncertainties.

Figures 2 and 3 show the influence of the uncestaim the
Young modulusE and in shell thicknes® on the parametric
instability and escape boundaries in the forcerobspace. In these
figures, the curves in gray are derived from thalgsis of ten
samples randomly generated within the range of dquality
parameter (Q) in Eq. (16).

Special Issue 2, 2012, Vol. XXXIV / 625
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The curves in gray in Figs. 2a-c and 3a-c represespectively,
the mean parametric instability boundary and escapendary,
obtained using the arithmetic mean value of thecwtical loads.
The curves in gray in Figs. 2d-f and 3d-f illus¢ratespectively, the
parametric and escape instability boundaries cerisid the average
value plus or minus the standard deviation of tenes.

The stability boundaries shown in Figs. 2a-c and 8atained by
the mean value of the critical loads are slighifjedent from those
obtained for the reference system. This differancesases with the
value of Q. In all cases the upper and lower boafidse ten samples,
as shown in Figs. 2f and 3f, lead to a high valitgbdf the critical
loads, especially on the right hand side of thenmaérametric
instability region where the parametric instabilgycharacterized by a
super-critical bifurcation leading to a period teaution. The critical
load is particularly sensitive to the small vadas in the shell
thickness, as expected for a thin-walled structure.

Figure 4 illustrates the possible types of thelstesbonse in the
vicinity of each stability boundary shown in Fig.tBrough time
responses, projections of the phase space andapdisections (dots
along the phase space projections). If the cylinslesubjected to a
periodic axial load, it will undergo the familiaorigitudinal forced
vibration, exhibiting a uniform transversal motialue to the effect of

inear Oscillations of Cylindrical Shells

Poisson’s ration, also known as breathing mode. d¥ewat certain
critical values, the longitudinal motion becomesstable and the
cylinder executes transverse bending vibrationsFitn 4a, for a
forcing amplitude lower than the critical valug; (= 0.60) and® =
1.20, after a small initial disturbance, the anplé of the response
decreases rapidly converging to the trivial sohutitf the control
parameter/ is increased slightly beyond the critical valug; €
0.65), the shell exhibits initially an exponentiglowth of the
amplitude, as predicted by the linear theory, caying to a limit
cycle within the pre-buckling well. In this caseettrivial solution
becomes unstable and the system converges to el stable

solution (a period response means a steady state response with a

period k times that of the forcing). Figure 4b illustratdee shell
response in the vicinity of the escape boundary /e 0.60 and2 =
1.60 the response converges to a limit cycle abgewo within the
pre-buckling well. For/; = 0.65 the motion can no longer remain
within the pre-buckling well and converges to a otnattractor,
exhibiting large amplitude cross-well motions. Téepossible
outcomes are rather sensitive to initial conditioasd system
parameters. So, small variations on these datalezayto different
system responses, which may affect the safetyeoftitucture.

S
e

Figure 4. Time responses, phase-portraits and Poinc  aré maps. (

Figures 5-8 show characteristic bifurcation diagsasfithe left
and right hand sides of the main parametric inktgbregion.
Figures 5 and 7 correspond to sub-critical bifuoret
representative of the left hand side of the inditgbiegion while
Figs. 6 and 8 correspond to super-critical bifuorarepresentative
of the right hand side of the instability regionhéBe bifurcation
diagrams are obtained by the brute force methodchwimaps a
sequence of stable responses as the bifurcati@meser increases.
They are obtained by fixing the forcing frequenaeyd dncreasing
slowly the forcing amplitude.

The black curves are the coordingig(t) of the Poincaré map
of the reference solution obtained with the desiglues. The gray

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright O

[0 =0.40, G(P1, @, t) = 0). Sample 3 (E = 224,87 GPa) — Q = 10.

curves represent the lower and upper bounds afabedinatel,4(t)
of the Poincaré map considering the ten differames. Figures 5
and 6 show the influence of the uncertainties i@ ¥alue of the
Young modulus while Figs. 7 and 8 illustrate thiiuience of small
variations in the shell thickness.

These figures show that small variations in thesameters may
lead to significant variations in the critical Igaand also in each time
response, leading to new bifurcations, as illusttah Fig. 9, where
the bifurcation diagrams obtained for two differargtlues of the
Young modulus are presented. Not only variationthém maximum
values of the displacements and velocities occut,atso different
branches of solutions appear.
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Figure 9. Two samples of the bifurcation diagram co  nsidering an
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Figure 10. Phase-portrait and Poincaré map for
1.80, G(P1, w t) = 0. Uncertainty in Young modulus.

l,=0.40, 1=1.00, 2=

Figure 10 shows two different shell responses wilzn
uncertainty in Young modulus is considered. Whileohe case a
period two response is observed, in the other teedy state
response exhibit a period four times greater than of the forcing.
While the former results from one period doublinfytzation, the
latter is the result of two period doubling bifutioas. This shows
that small variations in one parameter may leaddifferent
bifurcation scenarios.
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Numerical resultswith random forces

Figure 11 shows the influence of the random portibthe load,
G(P;, w, 1), described by Eg. (2), on the parametric insiigbénd
escape boundaries of the axially loaded cylindritall for one
bandwidth, w;, 0.50 and two values of the standard deviation
parametergd, 0.05 and 0.10. For this value ©f anddten samples
are generated and the two critical loads are eteduaonsidering
the average values of the shell geometry and phlysarameters. In
Fig. 11, curves in black are the results for a mheit@stic harmonic
force, as shown in Figs. 2 and 3. The dashed guayes represent
the average of the escape load. The presence sé teads to a
dispersion of the results in the right side of thstability region.
The continuous gray curves represent the valuehefnmiean load
added or subtracted from the value of the standawihtion of ten
samples. As the standard deviation parameferincreases, the
dispersion of the dynamic buckling loads increadso all escape
loads of the perturbed system are lower than thmg@eent escape
load of the shell under a deterministic load. &e, ghell is sensitive
to noise in the excitation and this decreases dfetysof the shell in
a dynamic environment.

(b) 5= 0.10

Figure 11. Instability boundaries in force control
@ = 0.50).

space. (/o = 0.40,

Figure 12 shows two time responses consideringséime set
of force parameters/f = 0.40,/7 =0.675,Q = 1.60, = 0.25,
0=0.10), but two different random perturbationss shown in
Fig. 12, the escape in these circumstances is entétate; the
long term response may escape or remain withirpteebuckling
well, depending on the external noise, or even msdar a while
and return to the pre-buckling well. While the st under
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deterministic load displays a sub-harmonic respafigeeriod two,
the perturbed system exhibit a quasi-periodic nmtio

Figure 13 illustrates the characteristic bifurcatidagrams of
the main parametric instability region consideriig = 0.40,

Silva et al.

under deterministic harmonic load, while the twaaygrcurves
represent the bounds of the coordinates of the cBoén map
obtained after ten samples of the perturbed loady(dots). The
results show that the random small perturbatiorthef harmonic

@ =0.25, = 0.10. Figure 13a shows a sub-critical bifuraatio forcing does not change the overall behavior afurdations of the
representative of the shell behavior on the lefichside of the main System, causing only small perturbations of then&mié map

instability region, while Fig. 13b illustrates thehavior of the shell

around the fixed points of the deterministic systdoe to the

on the right hand side of the main instability cegiThe black dots perturbations of the orbit as illustrated in Fi§. The dispersion of
represent the coordinath,(t) of the Poincaré map of the shell points around the fixed points increasegareases.
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Figure 13. Bifurcation diagrams of the cylindrical
@ =0.25, =0.10).

shell. (o = 0.40,
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cylindrical shell under random noise. (

400 15 -10 -5 0 5 10 15
Gia(7)

I5=0.40, [, =0.675, 2=1.60, @ =0.25, §=0.10).

Figure 14 illustrates the influence of random nasethe basin
of attraction of the shell consideridg = 0.40,/7 = 0.40,Q2 = 1.60.
It shows three cross-sections of the twelve-dimeradi basin of
attraction by the41(t) x d41(t)/dt plane. A total of 150 x 150 cells
are considered in the analysis. The black regionesponds to the
initial conditions that converge to the period tattractor within the
pre-buckling well, while the gray region correspsntb initial
conditions that lead to a period two large-ampktsdlution outside
the pre-buckling well. Figure 14a corresponds te deterministic
case and Fig. 14b and Fig. 14c are related to phedusolutions
obtained withd= 0.05 andd = 0.10, respectively, and} = 0.25. In
the deterministic case each set of initial condgideads to a
specific attractor. In the non-deterministic cdeegach set of initial
conditions, the equations of motion are integraigidg ten different
samples of random perturbation. If in all cases ra$ponses
converge to the same attractor as in the detertitimiase, the cell is
either marked in black or gray, but if they conwerp different
attractors or if the attractor is different fronetbne identified in the
deterministic case, this means that the resporseciased with a
given set of initial conditions is sensitive to dam noise and the
cell is marked in white in Fig. 14b and Fig. 14c the standard
deviation parameterd increases the white region increases,
decreasing the safe region associated with a gittesctor.

Figure 15 shows the probability density functiontio& initial
conditions used for the construction of the basinattraction of Fig.
14. In these figures 22500 sets of initial condiiorandomly
distributed in the plané; (1) x d{;,(T)/dt are used and, for each set,
the equations of motion are integrated during 4@€iods of the
harmonic deterministic force. The plane is diseegtiwith 150 x 150
cells and the number of times that each cell igedsis computed,
obtaining in this way a numerical probability déngKraut, Feudel,
and Grebogi, 1999). In the deterministic case, E&q, sharp peaks
are observed in the coordinates correspondingedixed points of
the small amplitude and large amplitude period aitcactors of the
basin of attraction depicted in Fig. 15a. As thandard deviation
parameted and consequently the noise increase, the Poiseati®dns
show an increasing dispersion of points as illtstrén Fig. 13, which
is reflected in the associated probability densishown in Fig. 15b
and Fig. 15c.
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Conclusions

In this work Donnell’s shallow shell equations arsed to
study the nonlinear vibrations and instabilities af simply-
supported cylindrical shell. A reduced order modtelderived,
which satisfies the relevant boundary, continuityd ssymmetry
conditions of the problem and describes with piiecighe shell
motions up to large deflections. The parametriclymis clarifies
the influence of small uncertainties of physicargmeters and
geometry of the shell on the parametric instabibtyd escape
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I,=0.40, 71 =0.40, 2= 1.60).

boundaries. Small variations of the physical andgeometric
parameters lead to a dispersion of the resultsrardhe average
critical values, in particular variations in the ogeetric
parameters. This leads to critical loads much lowean the
theoretical critical load in some forcing frequeneggions,
resulting in a decrease in the load carrying cdpaeihich must
be carefully considered at the stage of design. ifflaence of
random noise on the axial load is also investigafdte random
noise transforms the n-periodic harmonic respordethe shell
into quasi-periodic responses, but does not chdhgetype of

Special Issue 2, 2012, Vol. XXXIV / 631



bifurcation connected with the observed instabilfyenomena,
namely, parametric instability and escape from phe-buckling
well. However, in a slowly evolving system the ranmdnoise may
decrease the escape load in certain excitatioruémcy ranges.
Also, it adds a certain degree of uncertainty t@ thasin
boundaries decreasing the safe region of the sh&k results
show that in structures liable do instability, teE#ect of small
uncertainties must be taken into account in theindifn of

reliable safety factors for design.
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