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Influence of Physical and Geometrical 
System Parameters Uncertainties on 
the Nonlinear Oscillations of 
Cylindrical Shells 
This work investigates the influence of physical and geometrical system parameters 
uncertainties and excitation noise on the nonlinear vibrations and stability of simply-
supported cylindrical shells. These parameters are composed of both deterministic and 
random terms. Donnell’s non-linear shallow shell theory is used to study the non-linear 
vibrations of the shell. To discretize the partial differential equations of motion, first, a 
general expression for the transversal displacement is obtained by a perturbation 
procedure which identifies all modes that couple with the linear modes through the 
quadratic and cubic nonlinearities. Then, a particular solution is selected which ensures 
the convergence of the response up to very large deflections. Finally, the in-plane 
displacements are obtained as a function of the transversal displacement by solving the in-
plane equations analytically and imposing the necessary boundary, continuity and 
symmetry conditions. Substituting the obtained modal expansions into the equation of 
motion and applying the Galerkin’s method, a discrete system in time domain is obtained. 
Several numerical strategies are used to study the nonlinear behavior of the shell 
considering the uncertainties in the physical and geometrical system parameters. Special 
attention is given to the influence of the uncertainties on the parametric instability and 
escape boundaries. 
Keywords: dynamic instability, uncertainties, nonlinear analysis, cylindrical shells 
 

Introduction1 

Cylindrical shells are one of the most common structural 
elements with applications in nearly all engineering fields. They 
are particularly suited to withstand axial loads and lateral pressure. 
Under these loading conditions thin-walled cylindrical shells 
usually display a complex nonlinear response due to modal 
coupling and interaction and high imperfection sensitivity. The 
study of the nonlinear vibrations of cylindrical shells goes back to 
the middle of the last century with the works by Chu (1961), 
Nowinski (1963), Evensen (1963, 1967) and Olson (1965), among 
others. In these works either the Ritz or Galerkin method are used 
to discretize the shell. For this, a modal expansion for the 
displacement field is necessary. The development of consistent 
modal solutions capable of describing the main modal interactions 
observed in cylindrical shells has received much attention in 
literature. A detailed review of this subject was published in 2003 
by Amabili and Païdoussis (2003). 

 

 
Figure 1. Comparison of the theoretical critical lo ad of a cylindrical shell 
under axial load with the scatter of experimental r esults. 
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Also, a considerable effort in structural engineering has been 
directed towards understanding the behavior of structures liable to 
buckling (Bazant and Cedolin, 1991). This step is essential for the 
development of safe design criteria (Ziemian, 2010). While a good 
correlation between the experimental results and the theoretical 
critical loads can be observed for structural elements exhibiting 
stable post-buckling behavior, such as plates and columns, a 
persistent discrepancy between theoretical and experimental 
buckling loads is observed for structural systems exhibiting unstable 
post-buckling behavior, being the experimental results lower than 
the theoretical ones. Figure 1 compares the normalized theoretical 
critical load of a perfect cylindrical shell under axial load with the 
scatter of experimental results found in the literature (Batista and 
Gonçalves, 1994). Here (R/h) is the radius-to-thickness ratio, which 
is a measure of the shell slenderness. The experimental results are 
much lower than the theoretical critical load, being the theoretical 
value a distant upper bound. This is an archetypal example of an 
imperfection sensitive structure in structural stability. 

A general explanation for this upsetting behavior was given by 
Koiter in his pioneering work on the general theory of buckling and 
post-buckling behavior of elastic structures (Koiter, 1945; 
Kounandis, 2006). Koiter showed that imperfections in the 
geometry or in the load may decrease substantially the load carrying 
capacity of these structures under slow variation of the applied load. 
However these imperfections are not known a priori and may even 
change during the service life of the structure. In addition, load 
imperfections may cause a further decrease in the critical load. This 
scenario becomes even worse if the unavoidable uncertainties in 
system parameters are also taken into account. Since the expressions 
for the critical load are developed based on a static equilibrium 
analysis, they actually calculate an upper bound for the load 
carrying capacity of the real structure, as they do not take into 
account the disturbances imposed upon the imperfect structure 
during its service life (Santee, 1999). The influence of these 
disturbances on the integrity of the structure can be evaluated by 
analyzing the evolution of the basins of attraction of the stable 
equilibrium configurations as a function of the system parameters. 
This issue was first addressed by Thompson and co-workers 
(Thompson, 1989; Soliman and Thompson, 1989, 1992). They 
introduced the concepts of safe basin and erosion profiles. It was 
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further analyzed by several authors and nowadays it is agreed that 
the safety of a nonlinear mechanical system or structure depends not 
only on the stability of their solutions, but also on the continuous 
and uncorrupted basin surrounding each solution, the total erosion 
of a given basin corresponding to the system failure. The integrity of 
a basin of attraction depends on the topology of the basin boundary, 
which can be smooth or fractal, and on the way that the basins of the 
various co-existing solutions interfere with each other. This topic is 
particularly important in systems exhibiting multiple potential well, 
where the basins of various in-well and cross-well solutions are 
intertwined. In a recent work Rega and Lenci (2005) summarized 
the current knowledge in the area and introduced new concepts 
which can be efficiently used for the integrity analysis of nonlinear 
systems. Recently, using these concepts, Gonçalves et al. (2011) 
studied the global dynamics and topological integrity of the basins 
of attraction of a parametrically excited cylindrical shell through a 
two-degree-of-freedom reduced order model. However the 
investigation of the influence of uncertainties and random noise on 
the evolution and stratification of the basins of attraction must also 
be carried out to arrive at a safe load level for design. 

To take indirectly into account these deleterious effects, several 
lower bounds of static buckling loads have been proposed for 
design. They are usually based on the scatter of experimental 
buckling loads and energy considerations (Batista and Gonçalves, 
1994). Estimate of the dynamic buckling load of structures with 
unstable post-buckling behavior – the load corresponding to escape 
from the safe pre-buckling well – considering the effects of 
uncertainties and imperfections is a much more difficult task. 
Structures under dynamic loads may exhibit both local and global 
bifurcations that affect in different ways the load carrying capacity 
and degree of safety of the structure. Global bifurcations are 
particularly important since they control, as shown by Soliman and 
Thompson (1989), the evolution of the basins of attraction of the 
solutions in phase space. In addition, compared with the static case, 
the number of load control parameters is higher. Finally, 
experimental results of dynamic buckling loads of slender structures 
are rather scarce in literature (Virgin, 2000; Amabili, 2008). 
Therefore, little is known on the effects of uncertainties on the load 
carrying capacity of structures liable to unstable static buckling in a 
dynamic environment. In a recent work Gonçalves and Santee 
(2008) analyzed the influence of uncertainties on the load carrying 
capacity of a simplified structural model exhibiting unstable post-
buckling behavior. Using several tools of non-linear dynamics, they 
showed that the uncertainties have an influence similar and of the 
same order as geometric imperfections on the scatter of buckling 
loads and proposed a safe lower bound based on Melnikov’s 
criterion. Thus, the aim of the present work is, using a similar 
methodology, to study the influence of uncertainties on the dynamic 
stability of a cylindrical shell under axial loads.  

The influence of combined random material and geometric 
properties on the free vibration frequencies and buckling loads of 
cylindrical shells has been investigated by, among others, Yadav 
and Verma (2001); Singh, Yadav and Iyengar (2002); Stefanou and 
Papadrakakis (2004); Papadopaulos and Papadrakakis (2005); 
Kriegesmann et al. (2010) and Stefanou (2011). On the other hand, 
there is a lack of information on the influence of these uncertainties 
on the post-buckling behavior and particularly on the nonlinear 
oscillations of these structures. However, for other systems, a 
number of publications, in recent years, have investigated the 
influence of random noise on their bifurcations, basins of attraction 
and the competition between different attractors (Lai and Winslow, 
1994; Kraut, Feudel, and Grebogi, 1999; Kraut and Feudel, 2002). 
As an extension of these previous works, and following the 
methodology described in Gonçalves, Silva and Del Prado (2008) 
for the derivation of consistent reduced order models for the 

nonlinear vibrations of cylindrical shells, the present work 
investigates the influence of small uncertainties in the physical and 
geometrical parameters of the shell and the unavoidable noise 
present in the axial excitation on the dynamic buckling loads and 
bifurcation diagrams. For this, a detailed parametric analysis is 
carried out to clarify the influence of uncertainties in load and 
system parameters. 

Nomenclature 

D = flexural stiffness of the shell, N.m 
E = Young’s modulus, Pa 
G(P1, ω, t) = random disturbance in axial load, N/m 
h = thickness, m 
L = length, m 
m, n = number of longitudinal half-waves and 

circumferential waves, respectively 
Mx, Mθ, Mxθ = moments resultants in, respectively, axial, 

circumferential and in-plane direction, N.m/m 
Nx, Nθ, Nxθ = force resultants in, respectively, axial, 

circumferential and in-plane direction, N/m 
P0 = axial static pre-load, N/m 
P1 = amplitude of the deterministic harmonic axial 

load, N/m 
Pcr = classical axial buckling load, N/m 
Q = parameter which expresses the quality of the 

fabrication process 
R = radius, m 
t = time, s 
u, v, w = axial, circumferential and transversal 

displacements of shell’s middle surface, m 
x = axial coordinate, m 
W = non-dimensional parameter for transversal 

displacements 
z = transversal coordinate, m 

Greek Symbols 

α = system parameter (E, υ, ρ, L, R or h) 
α0 = mean value of the chosen parameter (design value) 
δ = standard deviation parameter 
ε = non-dimensional parameter for axial coordinate 
Γ0 = non-dimensional parameter for axial static pre-load 
Γ1 = non-dimensional parameter for amplitude of the 

deterministic harmonic axial load 
η1, η2 = linear viscous and viscoelastic material 

damping coefficient 
υ = Poisson’s coefficient 
θ = circumferential coordinate, rad 
ρ = mass density, kg/m³ 

xσ , θσ  = stresses at an arbitrary point of shell in, 

respectively, axial and circumferential direction 
2
GGσ   = variance of the random force amplitude 

θτ x   = tangential resultant stresses at an arbitrary 

point of shell 
τ = non-dimensional parameter for time 
ω = deterministic excitation frequency, rad/s 
ω0 = lowest vibration frequency of the shell for 

nominal values of physical and geometrical 
parameters, rad/s 

ωl = frequency bandwidth of the excitation 
frequency, rad/s 

Ω = non-dimensional parameter for deterministic 
excitation frequency 
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Problem Formulation 

Shell equation 

Consider a cylindrical shell of radius R, thickness h and length 
L, made of a linear elastic material with Young’s modulus E, 
Poisson coefficient υ and mass density ρ. For an isotropic shell the 
stresses at an arbitrary point are given in terms of the middle surface 
strains and changes of curvature, according to Donnell’s shallow 
shell theory, by: 
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The shell is subjected to a harmonic axial load of the form: 
 

( )tPGtPPP ,,)(cos 110 ωω ++=
                                               

(2)  
 

where P0 is the axial static pre-load, P1 is the amplitude of the 
deterministic harmonic load, ω is the deterministic excitation 
frequency, t is time and G(P1, ω, t) is the random disturbance that 
depends on the deterministic parameters P1 and ω. 

The nonlinear equations of motion, considering only the 
transversal inertia and damping forces, are given in terms of the 
force and moments resultants as: 
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where η1 and η2 are, respectively, the linear viscous damping and 
the viscoelastic material damping coefficients, D = Eh3/12(1 – υ 2) 
is the flexural stiffness of the shell, ω0 is the lowest vibration 
frequency of the shell for nominal values of physical and 
geometrical parameters and the force and moments’ resultants are 
obtained by the integration of the stress components along the shell 
thickness as follows: 
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For a simply-supported shell, the following boundary conditions 
must be satisfied: 

 
( ) ( ) 0,,0 == θθ Lvv

                                                                   
(7)  

( ) ( ) 0,,0 == θθ Lww                                                            (8)  

( ) ( ) 0,,0 == θθ LMM xx                                                           (9)  

( ) ( ) 0,,0 == θθ LNN xx                                                         (10)  

 
The boundary condition, Eq. (10), is a nonlinear boundary 

condition when written in terms of the displacements, that is: 
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The displacement field, in this work, is also required to satisfy 

the following conditions: 
 

( ) 0,2 =θLu     and    ( ) ( )π2,0, xvxv =
                                

(12)  

 
The symmetry of the axial displacement field is a consequence 

of the adopted modal solution for the transversal displacement 
field and the symmetry of the boundary conditions (Eqs. (7)-(10)). 
In the foregoing, the following non-dimensional parameters have 
been introduced: 
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Here Pcr is the classical axial buckling load of the shell. 

General solution of the shell displacement field by a 

perturbation procedure 

The numerical model is developed by expanding the transversal 
displacement component w in series in the circumferential and axial 
variables. From previous investigations on modal solutions for the 
nonlinear analysis of cylindrical shells under axial loads (Gonçalves 
and Batista, 1988; Gonçalves and Del Prado, 2002, 2005), it is 
observed that, in order to obtain a consistent modeling with a 
limited number of modes, the sum of shape functions for the 
displacements must express the nonlinear coupling between the 
modes and describe consistently the unstable post-buckling response 
of the shell as well as the correct frequency-amplitude relation. 

Based on a perturbation procedure, the lateral deflection w can 
be described as: 
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By imposing the boundary conditions, Eq. (8) and Eq. (9), and 

by retaining in Eq. (14) the number of modes necessary to achieve 
convergence up to very large deflections, one obtains for the 
transversal displacement (Gonçalves, Silva and Del Prado, 2008; 
Silva, Gonçalves and Del Prado, 2011): 
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The in-plane displacements u and v are obtained by substituting 

Eq. (15) into the in-plane equilibrium equations, Eq. (3) and Eq. (4), 
and by solving the system of linear partial differential equations in u 
and v and imposing the relevant boundary, symmetry and continuity 
conditions. Based on this procedure one obtains the necessary 
number of in-plane modes and writes their modal amplitudes in 
terms of the modal amplitudes ζij(t) in Eq. (15) (Gonçalves, Silva 
and Del Prado, 2008; Silva, Gonçalves and Del Prado, 2011). 
Finally, by substituting the adopted expansion for the transversal 
displacement w together with the obtained expressions for u and v 
into the equation of motion in the transversal direction, Eq. (5), and 
by applying the standard Galerkin method, a consistent discretized 
system of ordinary differential equations of motion is derived. 

Simulation of the uncertainties in the physical and 

geometric parameters 

The physical parameters (E, υ and ρ) and the geometrical 
parameters (L, R and h) of the shell usually have some reference 
values which are defined at the stage of design. However, depending 
on the allowable tolerances in the fabrication process, small variations 
of these parameters may occur. Usually these small variations have a 
negligible influence on the load capacity of the structure. But in 
structural systems liable to buckling, due mainly to the inherent 
nonlinearity of the buckling process, small changes may lead to 
significant changes in the load capacity and safety of the structure. 

For each physical and geometrical parameter, α, the following 
uniform probability density function, f, is assumed (Gonçalves and 
Santee, 2008): 
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where α is the system parameter (E, υ, ρ, L, R or h), α0 is the mean 
value of the chosen parameter (design value), and Q is a parameter 
which expresses the quality of the fabrication process as a 
percentage of the mean value, α0. 

Simulation of the random force 

For the numerical calculations of the present work, the non-
deterministic term of the axial load in Eq. (2), G(P1, ω, t), is 
considered as a stationary and ergodic continuous stochastic process 
in time (Gonçalves and Santee, 2008). Another hypothesis is that the 
stochastic process G(P1, ω, t) has a zero expected value, that is: 
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The description of a stochastic process is usually made in the 

frequency domain. Here, it is assumed that the random term 
G(P1, ω, t) has a spectral density function given by: 
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where 2
GGσ  is the variance of the random force amplitude and ωl is 

the frequency bandwidth of the excitation frequency. 
Additionally, it is considered that the standard deviation of the 

random force amplitude is proportional to the deterministic force 
amplitude, P1, thus: 

 

1PGG δσ =
                                                                              

(19)  

 
where δ is the standard deviation parameter of proportionality. So, 
the random force is a stochastic process that depends on the 
frequency, ω, and amplitude, P1, of the deterministic term. The 
numerical algorithms used in the present work can be found in 
Gonçalves and Santee (2008). 

Numerical Results 

Consider a cylindrical shell of radius R = 0.2 m, length L = 0.4 m 
and thickness h = 0.002 m. The shell material has the following 
properties: E = 210 GPa, υ = 0.3 and ρ = 7850 kg/m³. For this shell 
geometry the lowest buckling load as well as the lowest natural 
frequency are obtained for m = 1 and n = 5 (Gonçalves and Del Prado, 
2005). The viscous and material damping coefficients, η1 and η2, are, 
respectively, 0.0008 and 0.0001. These values will be used throughout 
the present numerical analysis. These values are based on the 
experimental results by Amabili and co-workers (Amabili, 2008). 

Numerical results with physical and geometrical uncertainties 

The continuous black curves in Figs. 2 and 3 are the parametric 
and permanent escape boundaries in the force control space, 
considering a deterministic harmonic axial load in Eq. (2) 
(G(P1, ω, t) = 0). The dashed horizontal line represents the critical 
static axial load, Γcr = Γ0 + Γ1. The dashed vertical lines identify the 
lowest natural frequency of the shell and twice this value, which 
corresponds to the main parametric resonance region. The region 
below the parametric instability boundary corresponds to sets of 
load parameters (frequency/forcing amplitude) that lead to stable 
trivial solutions, that is, under small perturbations the perturbed 
response tends to zero as time increases. The region above the 
escape boundary corresponds to force parameters that lead to escape 
from the pre-buckling well. After escape, the shell may exhibit 
small amplitude oscillations around a post-buckling equilibrium 
position or large cross-well motions. Between these two regions, 
there is a region with a complex dynamics where, depending on the 
initial conditions, the shell may display harmonic or sub-harmonic 
motions within the pre-buckling well or escape from the pre-
buckling well. In this region, the dynamic response and, 
consequently, the dynamic buckling load are rather sensitive to 
physical and geometrical uncertainties. 

Figures 2 and 3 show the influence of the uncertainty in the 
Young modulus E and in shell thickness h on the parametric 
instability and escape boundaries in the force control space. In these 
figures, the curves in gray are derived from the analysis of ten 
samples randomly generated within the range of the quality 
parameter (Q) in Eq. (16).  
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(a) Q = 5 (b) Q = 10 (c) Q = 15 

   
(d) Q = 5 (e) Q = 10 (f) Q = 15 

Figure 2. Parametric and escape instability boundar ies in the force control space, considering an unce rtainty in the Young modulus, E. (ΓΓΓΓ0 = 0.40, 
G(P1, ωωωω, t) = 0). 

 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

   
(d) Q = 5 (e) Q = 10 (f) Q = 15 

Figure 3. Parametric and escape instability boundar ies in the force control space, considering an unce rtainty in the shell thickness, h. (ΓΓΓΓ0 = 0.40, 
G(P1, ωωωω, t) = 0). 
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The curves in gray in Figs. 2a-c and 3a-c represent, respectively, 
the mean parametric instability boundary and escape boundary, 
obtained using the arithmetic mean value of the ten critical loads. 
The curves in gray in Figs. 2d-f and 3d-f illustrate, respectively, the 
parametric and escape instability boundaries considering the average 
value plus or minus the standard deviation of ten samples. 

The stability boundaries shown in Figs. 2a-c and 3a-c obtained by 
the mean value of the critical loads are slightly different from those 
obtained for the reference system. This difference increases with the 
value of Q. In all cases the upper and lower bounds of the ten samples, 
as shown in Figs. 2f and 3f, lead to a high variability of the critical 
loads, especially on the right hand side of the main parametric 
instability region where the parametric instability is characterized by a 
super-critical bifurcation leading to a period two solution. The critical 
load is particularly sensitive to the small variations in the shell 
thickness, as expected for a thin-walled structure. 

Figure 4 illustrates the possible types of the shell response in the 
vicinity of each stability boundary shown in Fig. 2 through time 
responses, projections of the phase space and Poincaré sections (dots 
along the phase space projections). If the cylinder is subjected to a 
periodic axial load, it will undergo the familiar longitudinal forced 
vibration, exhibiting a uniform transversal motion, due to the effect of 

Poisson’s ration, also known as breathing mode. However at certain 
critical values, the longitudinal motion becomes unstable and the 
cylinder executes transverse bending vibrations. In Fig. 4a, for a 
forcing amplitude lower than the critical value (Γ1 = 0.60) and Ω = 
1.20, after a small initial disturbance, the amplitude of the response 
decreases rapidly converging to the trivial solution. If the control 
parameter Γ1 is increased slightly beyond the critical value, (Γ1 = 
0.65), the shell exhibits initially an exponential growth of the 
amplitude, as predicted by the linear theory, converging to a limit 
cycle within the pre-buckling well. In this case the trivial solution 
becomes unstable and the system converges to a period-two stable 
solution (a period-k response means a steady state response with a 
period k times that of the forcing). Figure 4b illustrates the shell 
response in the vicinity of the escape boundary. For Γ1 = 0.60 and Ω = 
1.60 the response converges to a limit cycle of period two within the 
pre-buckling well. For Γ1 = 0.65 the motion can no longer remain 
within the pre-buckling well and converges to a remote attractor, 
exhibiting large amplitude cross-well motions. These possible 
outcomes are rather sensitive to initial conditions and system 
parameters. So, small variations on these data may lead to different 
system responses, which may affect the safety of the structure. 

 
 

 

 
 

 
(a) Ω = 1.20 

  
(b) Ω = 1.60 

Figure 4. Time responses, phase-portraits and Poinc aré maps. ( ΓΓΓΓ0 = 0.40, G(P1, ωωωω, t) = 0). Sample 3 ( E = 224,87 GPa) – Q = 10. 

 
 
Figures 5-8 show characteristic bifurcation diagrams of the left 

and right hand sides of the main parametric instability region. 
Figures 5 and 7 correspond to sub-critical bifurcations 
representative of the left hand side of the instability region while 
Figs. 6 and 8 correspond to super-critical bifurcation representative 
of the right hand side of the instability region. These bifurcation 
diagrams are obtained by the brute force method which maps a 
sequence of stable responses as the bifurcation parameter increases. 
They are obtained by fixing the forcing frequency and increasing 
slowly the forcing amplitude. 

The black curves are the coordinate ζ11(τ) of the Poincaré map 
of the reference solution obtained with the design values. The gray 

curves represent the lower and upper bounds of the coordinate ζ11(τ) 
of the Poincaré map considering the ten different samples. Figures 5 
and 6 show the influence of the uncertainties in the value of the 
Young modulus while Figs. 7 and 8 illustrate the influence of small 
variations in the shell thickness. 

These figures show that small variations in these parameters may 
lead to significant variations in the critical loads and also in each time 
response, leading to new bifurcations, as illustrated in Fig. 9, where 
the bifurcation diagrams obtained for two different values of the 
Young modulus are presented. Not only variations in the maximum 
values of the displacements and velocities occur, but also different 
branches of solutions appear. 
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(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 5. Bifurcation diagram considering an uncert ainty in the Young modulus. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.50, G(P1, ωωωω, t) = 0. 
 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 6. Bifurcation diagram considering an uncert ainty in the Young modulus. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.80, G(P1, ωωωω, t) = 0. 
 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 7. Bifurcation diagram considering an uncert ainty in the shell thickness. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.50, G(P1, ωωωω, t) = 0. 
 

   
(a) Q = 5 (b) Q = 10 (c) Q = 15 

Figure 8. Bifurcation diagram considering an uncert ainty in the shell thickness. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.80, G(P1, ωωωω, t) = 0. 
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(a) sample 3 (E = 224,87 GPa) – Q = 10 

 
(b) sample 5 (E = 237,05 GPa) – Q = 10 

Figure 9. Two samples of the bifurcation diagram co nsidering an 
uncertainty in Young modulus. ΓΓΓΓ0 = 0.40, ΩΩΩΩ = 1.80, G(P1, ωωωω, t) = 0. 

 
 

 
Figure 10. Phase-portrait and Poincaré map for ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 1.00, ΩΩΩΩ = 
1.80, G(P1, ωωωω, t) = 0. Uncertainty in Young modulus. 

 
Figure 10 shows two different shell responses when an 

uncertainty in Young modulus is considered. While in one case a 
period two response is observed, in the other the steady state 
response exhibit a period four times greater than that of the forcing. 
While the former results from one period doubling bifurcation, the 
latter is the result of two period doubling bifurcations. This shows 
that small variations in one parameter may lead to different 
bifurcation scenarios. 

Numerical results with random forces 

Figure 11 shows the influence of the random portion of the load, 
G(P1, ω, t), described by Eq. (2), on the parametric instability and 
escape boundaries of the axially loaded cylindrical shell for one 
bandwidth, ωl, 0.50 and two values of the standard deviation 
parameter, δ, 0.05 and 0.10. For this value of ωl and δ ten samples 
are generated and the two critical loads are evaluated, considering 
the average values of the shell geometry and physical parameters. In 
Fig. 11, curves in black are the results for a deterministic harmonic 
force, as shown in Figs. 2 and 3. The dashed gray curves represent 
the average of the escape load. The presence of noise leads to a 
dispersion of the results in the right side of the instability region. 
The continuous gray curves represent the value of the mean load 
added or subtracted from the value of the standard deviation of ten 
samples. As the standard deviation parameter, δ, increases, the 
dispersion of the dynamic buckling loads increase. Also all escape 
loads of the perturbed system are lower than the permanent escape 
load of the shell under a deterministic load. So, the shell is sensitive 
to noise in the excitation and this decreases the safety of the shell in 
a dynamic environment. 

 

 
(a) δ = 0.05 

 
(b) δ = 0.10 

Figure 11. Instability boundaries in force control space. ( ΓΓΓΓ0 = 0.40, 
ωωωωl = 0.50). 

 
Figure 12 shows two time responses considering the same set 

of force parameters (Γ0 = 0.40, Γ1 = 0.675, Ω = 1.60, ωl = 0.25, 
δ = 0.10), but two different random perturbations. As shown in 
Fig. 12, the escape in these circumstances is indeterminate; the 
long term response may escape or remain within the pre-buckling 
well, depending on the external noise, or even escape for a while 
and return to the pre-buckling well. While the system under 
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deterministic load displays a sub-harmonic response of period two, 
the perturbed system exhibit a quasi-periodic motion. 

Figure 13 illustrates the characteristic bifurcation diagrams of 
the main parametric instability region considering Γ0 = 0.40, 
ωl = 0.25, δ = 0.10. Figure 13a shows a sub-critical bifurcation 
representative of the shell behavior on the left hand side of the main 
instability region, while Fig. 13b illustrates the behavior of the shell 
on the right hand side of the main instability region. The black dots 
represent the coordinate ζ11(τ) of the Poincaré map of the shell 

under deterministic harmonic load, while the two gray curves 
represent the bounds of the coordinates of the Poincaré map 
obtained after ten samples of the perturbed load (gray dots). The 
results show that the random small perturbation of the harmonic 
forcing does not change the overall behavior and bifurcations of the 
system, causing only small perturbations of the Poincaré map 
around the fixed points of the deterministic system due to the 
perturbations of the orbit as illustrated in Fig. 13. The dispersion of 
points around the fixed points increases as δ increases. 

 

      
Figure 12. Time response and phase portrait of the cylindrical shell under random noise. ( ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 0.675, ΩΩΩΩ = 1.60, ωωωωl = 0.25, δδδδ = 0.10). 

 
(a) Ω = 1.50 

 
(b) Ω = 1.60 

Figure 13. Bifurcation diagrams of the cylindrical shell. ( ΓΓΓΓ0 = 0.40, 
ωωωωl = 0.25, δδδδ = 0.10). 

Figure 14 illustrates the influence of random noise on the basin 
of attraction of the shell considering Γ0 = 0.40, Γ1 = 0.40, Ω = 1.60. 
It shows three cross-sections of the twelve-dimensional basin of 
attraction by the ζ11(τ) x dζ11(τ)/dτ plane. A total of 150 x 150 cells 
are considered in the analysis. The black region corresponds to the 
initial conditions that converge to the period two attractor within the 
pre-buckling well, while the gray region corresponds to initial 
conditions that lead to a period two large-amplitude solution outside 
the pre-buckling well. Figure 14a corresponds to the deterministic 
case and Fig. 14b and Fig. 14c are related to perturbed solutions 
obtained with δ = 0.05 and δ = 0.10, respectively, and ωl = 0.25. In 
the deterministic case each set of initial conditions leads to a 
specific attractor. In the non-deterministic case, for each set of initial 
conditions, the equations of motion are integrated using ten different 
samples of random perturbation. If in all cases all responses 
converge to the same attractor as in the deterministic case, the cell is 
either marked in black or gray, but if they converge to different 
attractors or if the attractor is different from the one identified in the 
deterministic case, this means that the response associated with a 
given set of initial conditions is sensitive to random noise and the 
cell is marked in white in Fig. 14b and Fig. 14c. As the standard 
deviation parameter δ increases the white region increases, 
decreasing the safe region associated with a given attractor. 

Figure 15 shows the probability density function of the initial 
conditions used for the construction of the basins of attraction of Fig. 
14. In these figures 22500 sets of initial conditions randomly 
distributed in the plane ζ11(τ) x dζ11(τ)/dτ are used and, for each set, 
the equations of motion are integrated during 400 periods of the 
harmonic deterministic force. The plane is discretized with 150 x 150 
cells and the number of times that each cell is visited is computed, 
obtaining in this way a numerical probability density (Kraut, Feudel, 
and Grebogi, 1999). In the deterministic case, Fig. 15a, sharp peaks 
are observed in the coordinates corresponding to the fixed points of 
the small amplitude and large amplitude period two attractors of the 
basin of attraction depicted in Fig. 15a. As the standard deviation 
parameter δ and consequently the noise increase, the Poincaré sections 
show an increasing dispersion of points as illustrated in Fig. 13, which 
is reflected in the associated probability densities shown in Fig. 15b 
and Fig. 15c. 
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(a) ωl = 0.0, δ = 0.00 (b) ωl = 0.25, δ = 0.05 (c) ωl = 0.25, δ = 0.10 

Figure 14. Cross sections of the basin of the attra ction of the shell submitted to (a) a deterministic  and (b, c) non-deterministic load. ( ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 0.40, 
ΩΩΩΩ = 1.60). 

  

(a) ωl = 0.0, δ = 0.00 (b) ωl = 0.25, δ = 0.05 

 

(c) ωl = 0.25, δ = 0.10 

Figure 15. Probability density functions for the se t of initial conditions analyzed in Fig. 14. ( ΓΓΓΓ0 = 0.40, ΓΓΓΓ1 = 0.40, ΩΩΩΩ = 1.60). 

 

Conclusions 

In this work Donnell’s shallow shell equations are used to 
study the nonlinear vibrations and instabilities of a simply-
supported cylindrical shell. A reduced order model is derived, 
which satisfies the relevant boundary, continuity and symmetry 
conditions of the problem and describes with precision the shell 
motions up to large deflections. The parametric analysis clarifies 
the influence of small uncertainties of physical parameters and 
geometry of the shell on the parametric instability and escape 

boundaries. Small variations of the physical and/or geometric 
parameters lead to a dispersion of the results around the average 
critical values, in particular variations in the geometric 
parameters. This leads to critical loads much lower than the 
theoretical critical load in some forcing frequency regions, 
resulting in a decrease in the load carrying capacity, which must 
be carefully considered at the stage of design. The influence of 
random noise on the axial load is also investigated. The random 
noise transforms the n-periodic harmonic responses of the shell 
into quasi-periodic responses, but does not change the type of 
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bifurcation connected with the observed instability phenomena, 
namely, parametric instability and escape from the pre-buckling 
well. However, in a slowly evolving system the random noise may 
decrease the escape load in certain excitation frequency ranges. 
Also, it adds a certain degree of uncertainty to the basin 
boundaries decreasing the safe region of the shell. The results 
show that in structures liable do instability, the effect of small 
uncertainties must be taken into account in the definition of 
reliable safety factors for design. 
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