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The present paper considers the flexure-torsion coupled vibrations of axially loaded thin-
walled beams with arbitrary open cross section, by means of an exact solution. The effects
of axial force, warping stiffness and rotary inertia are included in the present

formulations. In the case of simply supported thin-walled beam, a closed-form solution for
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I ntroduction

Thin-walled beam members are widely used as basictsral
elements within the fields of mechanical, civil, r@aeautical
engineering etc., offering a high performance imte of minimum
weight for a given strength. Because of their fcatsignificance in
engineering applications, it is essential for desingineers to
evaluate the dynamic characteristics of the thileda beam
structures accurately and so ensure that theigulgsi reliable and
safe. The effects due to axial force on the dynaesponse of the
thin-walled beams are especially of interest. toglier, turbine or
propeller blades, plane and space frames and atdergy of cable-
stayed bridges, all could be qualified as axialded structures.

Due to their practical importance mentioned abgive vibration
analysis of thin-walled beams have been studiedifigrent authors
and numerous approaches for calculating the frearation
frequencies have been proposed (Friberg, 1983; makiy 1987;
Banerjee, 1989 and 1999; Kim et al., 1994; Tanaka Bercin,
1999; Kollar, 2001; Arpaci and Bozdag, 2002 and 20Prokt,
2005 and 2006).

Relatively fewer works are available in literatumvard the
study of the coupled bending-torsion vibrationsaafally loaded
thin-walled beams. Banerjee and Williams (1992 4884) derived
the analytical expressions for the coupled flextmedional dynamic
stiffness matrix of an axially loaded Timoshenkaineclement. But
the warping stiffness was not included in theiotlye The method is
referred as an exact method since it is based @tteshape
functions obtained from the exact solution of diffetial equations.
As Moon-Young et al. (2003) pointed out, this atiabl method,
however, is sometimes inefficient because analytgerations in
solving a system of simultaneous ordinary diffei@néquations
with many variables may be too complex. Hashemi Rizhard
(2000) presented a new dynamic finite element f@ toupled
bending-torsional vibration of axially loaded beabesed on the
closed-form solutions of the Bernoulli-Euler and 8enant beam
theories. But the warping of the cross-sectiongashleformation
and rotary inertia were not included in the forniola. Taking the
warping effect into account, Li et al. (2004a) @rout the free
vibration analysis of an axially loaded beam wittnsymmetrical
open cross section by means of dynamic transferixmatethod.

Subsequently, Li et a(2004b) extended this work to include the

effects of rotary inertia and shear deflection, lbutted the flexural
motion to a single plane. The dynamic transfer ixatnethod
implies mathematical procedures which are sometidiiégult to
deal with determining the frequencies values of ttmmplex
transcendental characteristic equation.
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the coupled natural frequencies of free harmonic vibrations was derived by using a
general solution of the governing differential equations of motion based on Vlasov theory.
The method isillustrated by its application to two test examples, to demonstrate the effects
of bending-torsion coupling and axial force on the dynamic behavior of thin-walled beams.
Compared with those available in the relevant literature, numerical results demonstrate
the accuracy and effectiveness of the proposed method.
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The investigation in the present paper is partlyivated by the
fact that natural frequencies of axially loadedivalled beams are
often required in the design of many structuresoAsome studies
have shown that the effect of axial force on natfrequencies is
more pronounced than those of the shear deformatiofor rotary
inertia. The proposed method is simple, rapid acmli@ate enough
to be used in preliminary design stage and also viifying
numerical results of complex and time-consuming poter
procedures. It is expected that undertaken invatstig will be
useful for better understanding of dynamic charésttes of thin-
walled elements.

Nomenclature

ab,c,d = coefficientsin the frequency equation

C = origin of coordinate system

D = shear center

e,s = curvilinear coordinates

F = area of cross section

G = shear modulus

hp = distance from tangent at arbitrary point on contour
to pole

I ool yys ! ww | o = gEOMEtrical properties of cross section

K = Saint Venant torsion constant

L = length of element

My, My = bending moments

M, = bimoment

my, m,, mp, M, = external bending moments, torsional moment
and bimoment per unit length of the beam

N = axial force

(0] = starting point (point fromwhich sis measured)
P = external force

p = frequency

Px Py, P, = externally loads per unit length of the beam
P, By, P, = externally applied loads per unit area of midplane

of the beam
To = total torsional moment
Ts = Saint Venant torsional moment

t = thickness of wall
U,V, @ = amplitudes of the transver se displacements and
torsional rotation

V) = work of actual stresses
u = vector of displacements
u,v,w = displacements of shear center

Uy iy, W= displacements of an arbitrary point of cross-section
V,, Vy, = shear forces
w = work of external load and inertia forces
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w = axial displacement of cross section considered asrigid translations u, v and w of pole D and the crossi@ecotation ¢
X,Y¥,Z = descartes coordinates about the same pole:
Greek Symbols
% = shear strain U =u=¢(y-yo)
B = symbol of variation Vo=V B(x—x) @)
€ = stramtepsor . W= W-UX-Vy - #'w
& = longitudinal strain
An =nsiL . . . .
= density wherew is warping function with respect to pdbe

P Component deformations different from zero are wyibg
c = stress vector
a, = Qormal stress £, =W -UX-Vy- @'
T =time o (2)
Ty = shear stress uniformly distributed over thickness V. =2f'e
Iy = total shear stress ) ] ] )
I = Saint Venant shear stress where e is the distance of the observed point from the dbeid
@ = rotation of the cross section around its shear centre  Surface measured along the normal )
W = warping function Reducing the normal stresses at the center oftgrawid shear

. stresses at the pol®, for stress resultants the following expressions
Subscripts are obtained
D = relative to shear centre

N=[[ odF
M, = I L o,ydF
M, = —”F o, xdF

Basic Equations

V, = —JL 7,.sinadF

v, = J'L 1, cosa dF ©

T, = [, 7ahpdF
T, =2[[ r.edF
M, =[] o,edF

In Egs. (3),N represents the axial forc#), and M, the bending
moments with respect to theandy axis,V, andV, the shear forces
in thex andy direction,Tp the torsion momenfls the Saint Venant
torque,M,the bimoment an# the area of the cross section.

The equations of motion of thin-walled beanm ¢e obtained
using the principle of virtual displacements. Adictor and matrix
quantities are defined with respect to the rightdwed rectangular
coordinate systemx( y, z). The zaxis is parallel with the
longitudinal centroidal axis of the beam, while and y are
arbitrarily taken.

Figure 1. Section geometry.

A straight uniform thin-walled beam of length with
nonsymmetrical open cross-section is shown in EigThe beam
consists of a linear elastic material with masssitgm. The beam is
referenced to a right-handed rectangular coordinsysteny, vy, z,
where thez-axis is the initial elastic axis of the beam whilandy G dF
are the principal axes of the cross-section. Thgiroof these axes
is located at the centrof@d The shear centre with coordinaigand
Yp in Cxy is denoted by. Furthermore, it is assumed that the beam
is loaded by a given transverse forces per unitlep,, p, andp,
distributed along the centroidal axis, externaliypleed moment per
unit lengthm,, m, and mp and external distributed bimoment of
intensitym,,. A constant axial forcE is assumed to act through the
centroid of the cross-section of the thin-walledrne

Based on the usual assumptions of Vlasov theory

» the cross-section is perfectly rigid in its ownngla

» the shear strains in the middle surface of the avalhegligible. Figure 2. Differential element of beam.

The displacementUs, Vo and W of an arbitrary point Sof the
cross section can be described by only four compsnehree
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A small element between cross sectiens z andz, = z + dz The virtual work of the internal load due to theresponding
(Fig. 2) subjected to external |0aa€§x’ B, f’z) per unit area of Variation of deformation, per unit length of theraent, is

midplane is considered. T__
At any point on the cross sectignacts as a stress vector = .U (0.0, +7.07, ) oF (10)

et iy o _ _ _ _
O =Tt +0), =T SINal, +7,C0801, + T}, “) Using expressions (2) for virtual strains, wherealre

displacement should be replaced by virtual dispiesd, one gets
The vector of virtual displacementd, which satisfies the for JU :
necessary continuity and displacement boundaryitions, may be
adopted in the same form as a vector of real disptents _
&0 :—{ [[[o,(ow-cux-ov'y-o8'w)+z,25p €] dF} (11)
ou =adud, +ovi, +owj, = F

=[ou-0op(y-Yo)]i, +[ov+ap(x=x)]i, (%) By suitable rearrangement of (9) and (11) in acaoce with
+(5W—6u'x—5\/y—5¢’w)iz virtual displacement parameters, the principle iofual work may
be expressed as

displacements are marked with prefixare arbitrary functions of
coordinates and do not depend upon external loads.
The virtual work expression is

Virtual displacement parameters, which for disfimctfrom real
Jw{ jja;dp-pﬁ%dp+jpzds}+
F F s
+5u{—” rsinadF +[[ooudr-p|[udF +| pxds}+
W +dU =0 ) ; ; : .
+5V{ﬂ r_.cosadF +[[ oovidF - p[[VdF +] pyds}+
F F F s

where oW = virtual work of external load and inertia fordasough

virtual displacementgu and dU = virtual work of actual stresses
o realized through virtual strainde =[d, dy,]- +5¢{”T'shod': —'Uaf[(y—yD)ug—(x—xD)\/]’]dF+
The virtual work of the external load and inertiarcles, - -
including the second order effects of the consteial stresso?, +pﬂ[(y—yD)UD—(X—XD)\'/'j]dF +j[py(x—xD)—pX(y—yD)ilds}—
F s

per unit length of the element is
dW=”(0',ZdJ +6du,)dF +ﬂ o? (u'du +V'ov,) dF + ~ou {LI(GJZX+TES|na)dF -pj;j X dF +.[ pzxds}— (12)
F F
@)

+[pouds-p|[ududr -V {'U(a’zy—rscosa)dF ~p|[ yidF+[ pzyds}—
S F F F s

where p is the density (mass per unit volume), afd is the -5¢'{ﬂ(a’zw—r3h[>+2rse)dF—p“'aA‘/\'/de+J'pzwds}:o
acceleration vector given by F F s

U=Ui. +Vi +vi.= To satisfy these equations identically for anyuaftdisplacement
X gy Uz . . . .
o . o ) . ... (8) parameterdw,,du,, oV, .. it is necessary the expressions in the
[u ¢(y yD)]Ix+[V+¢(X XD)]IY+(W Ux=vy ¢w)|z great brackets to vanish. Now, using the expressiom stress

resultants (3), one obtains
A dot denotes differentiation with respect to time.

Substituting (4), (5) and (8) into (7), the follawg expression N'—p.UV\'/de+ p,=0

for AW is obtained F

v+ ([ o utdrF -p| [ tdF +p,=0
M:”F{—r’zssina [ 0u=3¢ (y-Yo ) [*7.cosa | ov+dp (x—x, ) |+ F F

+0, (OW-3V'y-Ou'x-¢' w)~ Vi +J; [ovir-p J-F.[ VodF +p, =0

~1,.8na [ Su'-0¢' (Y-, ) [+1,.c08a [ OV+3p' (X, ) [+ To=[[ o2 [(y=yo ) Ul {(x=%; ) V- JoF +
e s o ¢ 13
10 (=004~ 04'c) o+ RfJT(-3o) )0 JoF +m, =0 -
ol o2 (v o+ CHE
+J.S{ 5, [ Su-06 (y-y, )}Lﬁy [ Sv+ap(xx, )}L M +V, +,0J'FI xiir, dF +m, =0
+P, (GW-0u'x-0Vy-0¢'w) } ds- M, -V, ~p [ yi,dF +m, =0

~p [ (Suli.+ov+wii) dF M, T, +T,~p|[ i, dF +m,=0
F
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The forcesVy, Vy andTp can be eliminated from (13) in order to

obtain four equations:
N'-p|[ virdF +p,=0,
£
M 5‘” o udF +,0” xw/, dF +pﬂ i, dF - p,+m,=0,
F E e

M+ [[ o2vidF ~p| | yii,dF ~p| [ v.dF + p, +m1 =0, (14)

u(zt)| [U(2)
v(zt) |=|V(2) |sinpr 17)
#(z1)] [2(2)

wherep is the radian frequency atV and @ are amplitudes of the
transverse displacements and torsional rotatiomst8uting (17)
into homogeneous Egs. (16) yields

Ixx I U""
MZ)+Ts'—.UJZ°[(y—yD)ug—(x—xD)\/D'}dF— E Ly | ;/7 -
F ww |
~p|[ wit,dF +o[[ (y=Yo ) t=(x-X, ), |dF +m, +m =0 o000 [1 0 vy U
] F -lGK|o 0 o[+P[ 0 1 —x, [|V"|+ (18)
The stress resultants can be expressed directlierins of the 0 0 1 |y, % I/F])®"
displacements (Proki 2005 and 2006). The equations are written in
matrix form: I ru” 1 0 vy, |U 0
"E 0 0 O O +pp? I, V'|-pFp’l 0 1 -x ||V |=|0
N o1 o o olv Il @ I, @] [o
My XX " L yD _XD ?
M, |=E c ol, 0 O Vv (15)
-M, 00 01, O ¢ In the case of a beam with simply supported enat& §upports
T 00 0 0 CGK & at each end which prevent rotation and can warglyfrehe end
S L E | conditions are
The Equations of motion can be obtained by sultistguthe u 0 U’ 0
stress resultants from (15) into (14) V|=/0 V" |=|0 (19)
@| |0 " 0
Flo|Oo| ofw
Ofl, | O Ofu These requirements are satisfied by taking
Blool1, [ ofv|”
O O O Im ¢nn U(Z) CU
V(z)|=|C, |sinA,z (20)
0000 0 0 O 0 »(z)| |c,
0000 0 1 Yo i
-| GK +P -
0000 00 1 % 4 whereC,, C, andC,; are constants anﬁln:nr[/L n=1 2, ...
0001 0 Yo % bL/F])¢ (16) Substituting (20) into (18) results in
FI|O| O] O[w o e 0 W
-p =~ +pFlol o] 1 [—x [ .° ME [ +A2GK|0 0 0|+
0|0 |l,| O|W D1l v, w
) I . (. 001
oo ofl,|e O|yp | % | 2 || ¢
F 1 0 vy Ly
-p, | +AP| 0 1 -x, [-AZpp? I - (21)
= px_m’l Yo ™% ID/F oo
P, * 1 10 vy [\[a] fo
m, +m, | -pFp’l 0 1 -x [||G |=]0
Yo % Io/F])|Co 0

To achieve the compact form the order of Eq. (14s1artificially
raised by one. The first equation in (16), desogbéxial vibration,
is uncoupled from the rest of the system and mayaha&ysed
independently.

The free harmonic transverse and torsional vibnatiare
defined by the coupled homogeneous Eqgs. (16-2,3.solution
may be expressed in the form

Setting the determinant of the above system eguzgito:
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PRI P
E 0 /]n E Yo~ Yo FpD
(421, +F)
LNy Ll P
0 E xDFpD—/l,fExD =0 (22)
~(421,+F) p,
- o el
/1 yD Yo Fp: XDFpD_/]n E Xp E EF
_(/1|12IAM+ID) Py
wherep, = é p®> vyields the following algebraic frequency equation

of the third order
apd+bp?+cp.+d =0 (23)
with the coefficients
=—(A21,,4F ) (A2, +F) (A 41, )+
20 (Aot F J+y3 (A2,,4F) |

GK

b:Anz(/lflxx+F)(/ln2IW+F)[/1nzl w2 tP

e
A2 K/]"ZI Xx+£j(an2| JAF )+(An2| W+EJ(A5| _+F )}(Afl o)
+F)

P
—2ATF 3 (A0, )

-A:F{xg(/\:w

{2
o gD
(i Forge
22 {yD(/l E]*XS(A”Z'“EH*
A V(40,4 Joxd (43,47

éF)_

d=A° (/lnzl xx+Ej[/]n2| W+E)(/ln2| Sp
E E E

(24)

I+F}
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supported thin-walled beams and also to confirmpteslictability
and accuracy of the theory.

X

0.0155m
4

>
? J0.004 m

\0.0245 m

D

Figure 3. Cross section layout for Example 1.

The first example considers a thin-walled beam wstmi-
circular cross-section, Fig. 3. This example wdected because
comparative results are available in the litergtureet al. (2004a).
The geometrical and material properties of thinlechlbeam are
given below.

L=0.82m

F=3.08< 10'

E=68.9x10 kN/nf

G=26.5x10 kN/nt

p=2711kNS /nt

I, =9.26x10° nf

l,, =1.77x10° nf

l,,=1.52x10% nf

K =1.64x 10° nt

b =1.843x 10"

X, =0.0

Y, =—0.0155m

First, the axial force P is simply assumed to bre zad then the
effects of a constant compressive axial force (P.79 kN) on the
natural frequencies are considered. The naturquiéecies obtained
by the present method and those found by Li é2@04a) are given
in Table 1.

Table 1. Natural frequencies (Hz) of beam studied as Example 1.

p? P p P=C P=179kt
I {YD (A | )+x§ (/‘f'xx”ﬂ Mode Present Lietal. Present Li et al.
E E paper (2004a) paper (2004a)
n=1 89.24 89.27 84.65 84.69
Numerical Examples 150.45 150.44 147.77 147.77
319.84 320.32 318.60 319.07
The method presented in the previous section ig use
calculate the natural frequencies of the thin-wbleams. For every | =2 356.51 357.11 352.03 352.62
mode the three numerical values which charactéhie different 366.09 365.81 361.71 361.42
types of natural frequencies: predominantly toralppredominantly 1091.88 1106.59 1090.46 1105.14
flexural in x direction and predominantly flexural indirection are
given. The particular examples are chosen to illustrageeffects of n=3 604.52 604.13 598.56 598.16
axial force on coupled bending-torsion natural aftims of simply 800.48 803.50 796.02 799.02
2355.3( N/A 2353.8° N/A
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0.00125 m
—>

AY

exhibits bending-torsion coupling have been derividte effects of
warping and rotatory inertia are also included. 8ylving the

N governing differential equations of motion of theean, the
analytical expressions for the coupled bendingtoed vibration of
an axially loaded beam are derived in an exacteseéhen the
results obtained from the present theory are coedpavith the
published results, very good agreement is obseflled.method is
useful particularly when better accuracy of resubts higher
frequencies are required.

0.058 m

0.03771 m

"
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Figure 4. Cross section layout for Example 2.

The second example examines a thin walled beam Wi{hppendlx
monosymmetical channel cross section as shown gn 4 with The values that determine geometrical propertiesciafss
geometrical and physical properties listed below. section are given by

L=128m lxx:J-J'XZdF
F=2.684 10 m &
E=2.164x 16 kN/m 1, = [[ydF
G=0.801x 16 kN/m ‘
| = [[ &P dF
p=7.8055 kNS /nf )
I, =0.450x 10° M |D=II[(X'XD)2+(Y—YD)2}dF
l,, =0.940< 10 nf F
l,,=0.1636x 10° K:%jt?’ds

K =0.140x 10°
l, =9.256x 10" nd
X, =0.0

y, =-0.03771m

Externally applied loads and moments per unit lerafta beam
are as follows

p=[pds p,=[pds p,=[pds

The computational results, both including and ediclg the
effect of compressive axial force (P = 2.56 kNE given in Table

m =[pyds m =-[pxds m, =[[B,(x=%)-B(y-¥)Jds
2. A very good agreement was found with publistesaits, Li et al. ° ° °

(2004b), obtained by the dynamic transfer matrixhod. m, = f p,axs
s
Table 2. Natural frequencies (Hz) of beam studied as Example 2. of
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