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Flexural-Torsional Vibration Analysis 
of Axially Loaded Thin-Walled Beam 
The present paper considers the flexure-torsion coupled vibrations of axially loaded thin-
walled beams with arbitrary open cross section, by means of an exact solution. The effects 
of axial force, warping stiffness and rotary inertia are included in the present 
formulations. In the case of simply supported thin-walled beam, a closed-form solution for 
the coupled natural frequencies of free harmonic vibrations was derived by using a 
general solution of the governing differential equations of motion based on Vlasov theory. 
The method is illustrated by its application to two test examples, to demonstrate the effects 
of bending-torsion coupling and axial force on the dynamic behavior of thin-walled beams. 
Compared with those available in the relevant literature, numerical results demonstrate 
the accuracy and effectiveness of the proposed method. 
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Introduction1 

Thin-walled beam members are widely used as basic structural 
elements within the fields of mechanical, civil, aeronautical 
engineering etc., offering a high performance in terms of minimum 
weight for a given strength. Because of their practical significance in 
engineering applications, it is essential for design engineers to 
evaluate the dynamic characteristics of the thin-walled beam 
structures accurately and so ensure that their design is reliable and 
safe. The effects due to axial force on the dynamic response of the 
thin-walled beams are especially of interest. Helicopter, turbine or 
propeller blades, plane and space frames and also girders of cable-
stayed bridges, all could be qualified as axially loaded structures. 

Due to their practical importance mentioned above, the vibration 
analysis of thin-walled beams have been studied by different authors 
and numerous approaches for calculating the free vibration 
frequencies have been proposed (Friberg, 1983; Dokumaci, 1987; 
Banerjee, 1989 and 1999; Kim et al., 1994; Tanaka and Bercin, 
1999; Kollár, 2001; Arpaci and Bozdag, 2002 and 2003; Prokić, 
2005 and 2006). 

Relatively fewer works are available in literature toward the 
study of the coupled bending-torsion vibrations of axially loaded 
thin-walled beams. Banerjee and Williams (1992 and 1994) derived 
the analytical expressions for the coupled flexural-torsional dynamic 
stiffness matrix of an axially loaded Timoshenko beam element. But 
the warping stiffness was not included in their theory. The method is 
referred as an exact method since it is based on exact shape 
functions obtained from the exact solution of differential equations. 
As Moon-Young et al. (2003) pointed out, this analytical method, 
however, is sometimes inefficient because analytical operations in 
solving a system of simultaneous ordinary differential equations 
with many variables may be too complex. Hashemi and Richard 
(2000) presented a new dynamic finite element for the coupled 
bending-torsional vibration of axially loaded beams based on the 
closed-form solutions of the Bernoulli-Euler and St. Venant beam 
theories. But the warping of the cross-sections, shear deformation 
and rotary inertia were not included in the formulation. Taking the 
warping effect into account, Li et al. (2004a) carried out the free 
vibration analysis of an axially loaded beam with nonsymmetrical 
open cross section by means of dynamic transfer matrix method. 
Subsequently, Li et al. (2004b) extended this work to include the 
effects of rotary inertia and shear deflection, but limited the flexural 
motion to a single plane. The dynamic transfer matrix method 
implies mathematical procedures which are sometimes difficult to 
deal with determining the frequencies values of the complex 
transcendental characteristic equation.  
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The investigation in the present paper is partly motivated by the 
fact that natural frequencies of axially loaded thin-walled beams are 
often required in the design of many structures. Also, some studies 
have shown that the effect of axial force on natural frequencies is 
more pronounced than those of the shear deformation and/or rotary 
inertia. The proposed method is simple, rapid and accurate enough 
to be used in preliminary design stage and also for verifying 
numerical results of complex and time-consuming computer 
procedures. It is expected that undertaken investigation will be 
useful for better understanding of dynamic characteristics of thin-
walled elements. 

Nomenclature 

a,b,c,d = coefficients in the frequency equation 
C        = origin of coordinate system 
D        = shear center 
e ,s    = curvilinear coordinates 
F    = area of cross section 
G    = shear modulus 
hP     = distance from tangent at arbitrary point on contour 

to pole 
 , , ,xx yy DI I I Iωω = geometrical properties of cross section 

K    = Saint Venant torsion constant 
L  = length of element 
Mx, My  = bending moments 
Mω  = bimoment 
mx, my, mD, mω = external bending moments, torsional moment 

and bimoment per unit length of the beam 
N  = axial force 
O    = starting point (point from which s is measured) 
P  = external  force 
p  = frequency 
px, py, pz  = externally loads per unit length of  the beam 

 x y zp , p , p  = externally applied loads per unit area of midplane 

of the beam   
TD   = total torsional moment 
Ts  = Saint Venant torsional moment 
t  = thickness of wall 
U, V, Φ  = amplitudes of the transverse displacements and 

torsional rotation 
 U   = work of actual stresses 

u  = vector of displacements 
u, v, w  = displacements of shear center  

      , , u v w∗ ∗ ∗ = displacements of an arbitrary point of cross-section 

Vx, Vy   = shear forces 
 W   = work of external load and inertia forces 
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w    = axial displacement of cross section considered as rigid 
x, y, z   = descartes coordinates 

Greek Symbols 

γs = shear strain 
δ = symbol of variation 
εεεε   = strain tensor 
εz  = longitudinal strain 
λn = nπ/L 
ρ = density 
σ   = stress vector 
σz = normal stress 
τ = time 
τw   = shear stress uniformly distributed over thickness 
τzs   = total shear stress 
τs   = Saint Venant shear stress 
ϕ   = rotation of the cross section around its shear centre 
ω   = warping function 

Subscripts 

D = relative to shear centre 

Basic Equations 

 
Figure 1. Section geometry. 

 
A straight uniform thin-walled beam of length L with 

nonsymmetrical open cross-section is shown in Fig. 1. The beam 
consists of a linear elastic material with mass density ρ. The beam is 
referenced to a right-handed rectangular coordinates system x, y, z, 
where the z-axis is the initial elastic axis of the beam while x and y 
are the principal axes of the cross-section. The origin of these axes 
is located at the centroid C. The shear centre with coordinates xD and 
yD in Cxy is denoted by D. Furthermore, it is assumed that the beam 
is loaded by a given transverse forces per unit length px, py and pz 
distributed along the centroidal axis, externally applied moment per 
unit length mx, my and mD and external distributed bimoment of 
intensity mω .  A constant axial force P is assumed to act through the 
centroid of the cross-section of the thin-walled beam.  

Based on the usual assumptions of Vlasov theory 
� the cross-section is perfectly rigid in its own plane, 
� the shear strains in the middle surface of the wall are negligible. 

The displacements u∗ , v∗  and w∗  of an arbitrary point S* of the 
cross section can be described by only four components, three 

translations u, v and w of pole D and the cross section rotation ϕ
about the same pole: 
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where ω is warping function with respect to pole D. 

Component deformations different from zero are given by 
 

2
z
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                                                          (2) 

 
where e is the distance of the observed point from the middle 
surface measured along the normal n . 

Reducing the normal stresses at the center of gravity and shear 
stresses at the pole D, for stress resultants the following expressions 
are obtained 
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In Eqs. (3), N represents the axial force, Mx and My the bending 
moments with respect to the x and y axis, Vx and Vy the shear forces 
in the x and y direction, TD the torsion moment, Ts the Saint Venant 
torque, Mω the bimoment and F the area of the cross section. 
     The equations of motion of thin-walled beam can be obtained 
using the principle of virtual displacements. All vector and matrix 
quantities are defined with respect to the right-handed rectangular 
coordinate system (x, y, z). The z-axis is parallel with the 
longitudinal centroidal axis of the beam, while x and y are 
arbitrarily taken. 
 

 
Figure 2. Differential element of beam. 
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A small element between cross sections z1 = z and z2 = z + dz 

(Fig. 2) subjected to external loads ( ), ,x y zp  p  pp  per unit area of 

midplane is considered. 
At any point on the cross section z1 acts as a stress vector  
 

sin coszs z z zs x zs y z zτ σ τ α τ α σ= + = − + +t i i i iσ
                        

(4) 

 
The vector of virtual displacements δu, which satisfies the 

necessary continuity and displacement boundary conditions, may be 
adopted in the same form as a vector of real displacements 
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Virtual displacement parameters, which for distinction from real 
displacements are marked with prefix δ, are arbitrary functions of 
coordinates and do not depend upon external loads. 

The virtual work expression is 
 

0W Uδ δ+ =                                                                     (6) 

 
where Wδ = virtual work of external load and inertia forces through 

virtual displacements δu and Uδ  = virtual work of actual stresses 

σ  realized through virtual strains [ ]z T  δε δγδ =ε . 

The virtual work of the external load and inertia forces, 
including the second order effects of the constant axial stress o

zσ , 

per unit length of the element is 
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where ρ is the density (mass per unit volume), and u&&  is the 
acceleration vector given by 
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(8) 

                                                                                            
A dot denotes differentiation with respect to time. 

Substituting (4), (5) and (8) into (7), the following expression 

for δW is obtained 
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The virtual work of the internal load due to the corresponding 
variation of deformation, per unit length of the element, is 
 

( )z z s s

F

U dF.δ σ δε τ δγ=− +∫∫                                  (10) 

 
Using expressions (2) for virtual strains, where real 

displacement should be replaced by virtual displacement, one gets 
for δU : 
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By suitable rearrangement of (9) and (11) in accordance with 

virtual displacement parameters, the principle of virtual work may 
be expressed as 
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To satisfy these equations identically for any virtual displacement 
parameter , ,o P Pw u  v , ,...δ δ δ  it is necessary the expressions in the 

great brackets to vanish. Now, using the expressions for stress 
resultants (3), one obtains 
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The forces Vx , Vy  and TD can be eliminated from (13) in order to 

obtain four equations: 
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The stress resultants can be expressed directly in terms of the 
displacements (Prokić, 2005 and 2006). The equations are written in 
matrix form: 
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The Equations of motion can be obtained by substituting the 
stress resultants from (15) into (14) 

 
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 00 0 0 0

0 1 00 0 0 0

0 0 10 0 0 0

00 0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

xx

yy

D

D

D D D

xx

yy

F w
I u

E
I v

I

w

y u
GK P

x v

y x I F

F

I

I

I

ωω

ωω

ϕ

ϕ

ρ

′′′   
   ′′′′    −
   ′′′′
   ′′′′    

′     
     ′′     − + −
     ′′−
       ′′−     

−

0 0 0 0

0 1 0

0 0 1

0

D
D

D
D

D
D D

z

x y

y x

D

w w
y

u u
F x

v v
I

y x
F

p

p m
                                                   

p m

m mω

ρ

ϕ ϕ

 ′      
      ′′      + −     ′′  
      −′′         

′− 
 ′− =
 ′+
 ′+ 

&& &&

&& &&

&& &&

&& &&

            

        

(16) 

 
To achieve the compact form the order of Eq. (14-1) is artificially 
raised by one. The first equation in (16), describing axial vibration, 
is uncoupled from the rest of the system and may be analysed 
independently. 

The free harmonic transverse and torsional vibrations are 
defined by the coupled homogeneous Eqs. (16-2,3,4). The solution 
may be expressed in the form 
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where p is the radian frequency and U, V and Φ are amplitudes of the 
transverse displacements and torsional rotation. Substituting (17) 
into homogeneous Eqs. (16) yields 
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In the case of a beam with simply supported ends (fork supports 

at each end which prevent rotation and can warp freely) the end 
conditions are 
 

0 0

0 0

0 0

U U

V        V

Φ Φ

′′       
       ′′= =       
       ′′                                                             

(19) 

 
These requirements are satisfied by taking 
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                                                                 

(20) 

 
where Cu, Cv and CΦ are constants and 1 2n n L    n  , , ......λ π= =  

Substituting (20) into (18) results in 
 

4 2

2 2 2

2

0 0 0

0 0 0

0 0 1

1 0

0 1

1 0 0

0 1 0

0

xx

n yy n

D xx

n D n yy

D D D

D U

D V

D D D

I

E I GK

I

y I

 + P x p I

y x I F I

y C

Fp x C

y x I F C

ωω

ωω

Φ

λ λ

λ λ ρ

ρ

    
    + +    
       

   
   − − −   
   −   

     
     − − =     
     −               

 (21) 

 
Setting the determinant of the above system equal to zero: 
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(22) 

 

where 2p p
E

ρ
∗ =  yields the following algebraic frequency equation 

of  the third order 
 

3 2 0ap bp cp d∗ ∗ ∗+ + + =                       (23) 
 

with the coefficients 
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Numerical Examples 

The method presented in the previous section is used to 
calculate the natural frequencies of the thin-walled beams. For every 
mode the three numerical values which characterize three different 
types of natural frequencies: predominantly torsional, predominantly 
flexural in x direction and predominantly flexural in y direction are 
given. The particular examples are chosen to illustrate the effects of 
axial force on coupled bending-torsion natural vibrations of simply 

supported thin-walled beams and also to confirm the predictability 
and accuracy of the theory. 

 
Figure 3. Cross section layout for Example 1. 

 
The first example considers a thin-walled beam with semi-

circular cross-section, Fig. 3. This example was selected because 
comparative results are available in the literature, Li et al. (2004a). 
The geometrical and material properties of thin walled beam are 
given below. 
 

-4 2

6 2

6 2

2 4

8 4

8 4

12 6

9 4

7 4

0.82 m

F = 3.08 10 m

68.9 10 kN / m

26.5 10 kN / m

2.711 kNs / m

9.26 10 m

1.77 10 m

1.52 10 m

1.64 10 m

1.843 10 m

0.0

0.0155 m

xx

yy

D

D

D

L  

 

E  

G  

 

I  

I  

I  

K  

I  

x

y  

ωω

ρ
−

−

−

−

−

=

×
= ×

= ×

=
= ×

= ×

= ×

= ×

= ×
=
= −

 

 
First, the axial force P is simply assumed to be zero and then the 

effects of a constant compressive axial force (P = 1.79 kN) on the 
natural frequencies are considered. The natural frequencies obtained 
by the present method and those found by Li et al. (2004a) are given 
in Table 1. 
 

Table 1. Natural frequencies (Hz) of beam studied as Example 1. 

Mode 
P = 0 P = 1.79 kN 

Present 
paper 

Li et al. 
(2004a) 

Present 
paper 

Li et al. 
(2004a)      

n=1 89.24 
150.45 
319.84 

89.27 
150.44 
320.32 

84.65 
147.77 
318.60 

84.69 
147.77 
319.07 

     
n=2 356.51 

366.09 
1091.88 

357.11 
365.81 
1106.59 

352.03 
361.71 
1090.46 

352.62 
361.42 
1105.14 

     
n=3 604.52 

800.48 
2355.30 

604.13 
803.50 
N/A 

598.56 
796.02 
2353.87 

598.16 
799.02 
N/A 
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Figure 4. Cross section layout for Example 2. 

 
The second example examines a thin walled beam with 

monosymmetical channel cross section as shown in Fig. 4, with 
geometrical and physical properties listed below. 
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The computational results, both including and excluding the 

effect of compressive axial force (P = 2.56 kN), are given in Table 
2. A very good agreement was found with published results, Li et al. 
(2004b), obtained by the dynamic transfer matrix method. 
 

Table 2. Natural frequencies (Hz) of beam studied as Example 2. 

Mode 
P = 0 P = 2.56 kN 

Present 
paper 

Li et al. 
(2004b) 

Present paper 
Li et al. 
(2004a) 

     
n=1 67.19 

94.36 
273.68 

67.12 
N/A 

275.75 

65.79 
93.35 
273.35 

65.72 
N/A 

275.42 
     

n=2 263.55 
376.22 
1065.86 

263.67 
N/A 

1049.80 

262.14 
375.24 
1065.53 

262.25 
N/A 

1048.38 
     

n=3 589.47 
842.11 
2303.14 

591.23 
N/A 
N/A 

588.05 
841.13 
2302.82 

589.81 
N/A 
N/A 

Conclusion 

Using the principle of virtual displacements the basic governing 
equations of motion of an axially loaded thin walled beam which 

exhibits bending-torsion coupling have been derived. The effects of 
warping and rotatory inertia are also included. By solving the 
governing differential equations of motion of the beam, the 
analytical expressions for the coupled bending-torsional vibration of 
an axially loaded beam are derived in an exact sense. When the 
results obtained from the present theory are compared with the 
published results, very good agreement is observed. The method is 
useful particularly when better accuracy of results or higher 
frequencies are required. 
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Appendix 

The values that determine geometrical properties of cross 
section are given by 
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Externally applied loads and moments per unit length of a beam 

are as follows 
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