
Converting CSG models into Meshed B-Rep Models Using …

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2007 by ABCM October-December 2007, Vol. XXIX, No. 4 / 337

Marcos de Sales G. Tsuzuki
Senior Member, ABCM

mtsuzuki@usp.br

Fabio K. Takase
Member, ABCM

fktakase@usp.br

Murilo Antônio S. Garcia
murilogarcia@yahoo.com

Thiago de Castro Martins
thiago@usp.br

Escola Politécnica, University of Sao Paulo
Dep. Mechatronics and Mech. Syst. Eng.

05508-900 São Paulo, SP. Brazil

Converting CSG models into Meshed
B-Rep Models Using Euler Operators
and Propagation Based Marching
Cubes
The purpose of this work is to define a new algorithm for converting a CSG representation
into a B-Rep representation. Usually this conversion is done determining the union,
intersection or difference from two B-Rep represented solids. Due to the lack of explicit
representation of surface boundaries, CSG models must be converted into B-Rep solid
models when a description based on polygonal mesh is required. A potential solution is to
convert a CSG model into a voxel based volume representation and then construct a B-Rep
solid model. This method is called CSG voxelization, conceptually it is a set membership
classification problem with respect to the CSG object for all sampling points in a volume
space. Marching cubes algorithms create a simple mesh that is enough for visualization
purposes. However, when engineering processes are involved, a solid model is necessary.
A solid ensures that all triangles in the mesh are consistently oriented and define a closed
surface. It is proposed in this work an algorithm for converting CSG models into
triangulated solid models through propagation based marching cubes algorithm. Three
main new concepts are used in the algorithm: open boundary, B-Rep/CSG Voxelization
mapping and constructive triangulation of active cells. The triangles supplied by the
marching cubes algorithm need not be coherently oriented; the algorithm itself finds the
correct orientation for the supplied triangles. The proposed algorithm restricts the
exploration to the space occupied by the solid's boundary. Differently from normal
marching cubes algorithms that explore the complete sampled space.
Keywords: solid model, marching cubes algorithm, triangular meshes

Introduction
1The Constructive Solid Geometry (CSG) representation allows

users to define complex 3D solid objects by hierarchically
combining simple geometric primitives using Boolean operations
and affine transformations (Hoffmann, 1989). It is a very popular
and powerful solid modeling scheme, and it is particularly suitable
for interactive object manipulations and design. Traditionally, CSG
primitives are defined by simple analytic objects, such as cubes,
cylinders and spheres. Some recent CSG algorithms can also
support primitives that are general solid models defined by their
boundary surfaces. An explicit representation of the boundary is not
available in a CSG model.

CSG is a widely used modeling paradigm, but several
algorithms in different fields, require a description based on
polygonal mesh. Due to the lack of explicit representation of surface
boundaries, CSG visualization is not directly supported by standard
graphics systems. Boender et. al. (1994) showed that in order to
derive an accurate finite element mesh from a CSG model, a B-Rep
model has in fact to be derived. They proposed an algorithm based
in two steps, where the first step is the boundary evaluation of the
CSG model, which converts the CSG model into a B-Rep
representation by computation of its boundary. Tobler et al. (1996)
proposed an approach to convert CSG solid models into B-Rep solid
models based on the marching cubes algorithm. They focused on the
marching cubes algorithm and did not explain anything about how
the B-Rep solid model is created. Kamel and Chen (1991) defined
an algorithm where the primitives are meshed, and remeshing is
performed on the interference region. This algorithm is very hard to
implement and has several special cases.

A solution for the rendering of volumetric CSG models is to
convert a CSG model into a voxel based volume representation and
then construct a B-Rep solid model. This method is called CSG
voxelization, conceptually it is a set membership classification

Paper accepted August, 2007. Technical Editor: Glauco A. de P. Caurin.

problem with respect to the CSG object for all sampling points in a
volume space. The marching cubes algorithm (Lorensen and Cline,
1987) was originally proposed as a tool for CSG voxelization.
Recently, several authors (Viceconti et al., 1999) have used the
marching cubes as a tool for visualization of CSG models and/or
medical images. Lee et al. (2005) used the marching cubes
algorithm and improved the geometrical quality of the generated
triangles, that is measured either by its angles and its edge´s length.

Related Works

It is estimated that in a 3D domain containing the CSG model, a
well designed algorithm that visits only the cells intersected by the
CSG model's boundary, from now refered as active cells, will have a
computational cost of O(n2/3) (Itoh and Koyamada, 1995), where n
is the number of cells. Consequently, algorithms which perform an
exhaustive covering of cells are found to be inefficient
(computational cost of O(n), spending a large portion of time
visiting cells which do not contribute to the contour, also named as
empty cells. The CSG boundary is also named as isosurface.

The majority of the techniques for accelerating the extraction of
isocontours do so by limiting the number of cells that are visited,
thereby reducing the overhead associated with the inevitable search
for active cells. Newman and Yi (2006) classified the methods that
minimize unnecessary operations on empty cells according to their
main processing characteristics: hierarchical geometric approaches
(Galin and Akkouche, 2000; Whilhems and Gelder, 1992), interval-
based and propagation-based (Bajaj et al., 1996; Itoh et al., 2001;
Itoh and Koyamada, 1995; Shekkar et al., 1996). Typically, these
methods minimize the operations via representations that can
efficiently encode regions of non-activity.

Wilhems and Van Gelder (1992) were the first to use octrees to
avoid examining empty cells. The algorithm starts with a setup
phase that creates the octree. Each node of the octree contains the
maximum and minimum scalar values among the cells in the sub-
volume. When the user specifies an isovalue, the algorithm starts the
isosurface-finding phase, which examines the volume by traversing

Marcos de Sales G. Tsuzuki et al

/ Vol. XXIX, No. 4, October-December 2007 ABCM 338

from the root of the octree. All the sub-volumes with minimum
values higher than the isovalue or maximum values lower than the
isovalue are then excluded. Galin and Akkouche (2000) proposed a
recursive octree subdivision algorithm until a given level of
precision is reached, converging to the implicit surface. The
algorithm propagates through an octree inflating and deflating
strategy.

Interval-based representations are another class of data
structures that are useful in avoiding traversal of empty cells. One
advantage of many interval-based approaches is their operational
flexibility; since these approaches operate in an interval space rather
than in the geometric space of the mesh. Shen and Johnson (1995)
proposed an interval-based isosurface extraction algorithm. The
algorithm is divided into two parts: setup and isosurface extraction.
The algorithm uses the concept of cell's extreme value that is
defined as the maximum and minimum scalar values at the corners
of the cell. Straightforwardly, only those cells that have lower
minimum value and higher maximum value than a given isovalue
are intersected by an isosurface. To efficiently and accurately locate
candidate cells without searching the entire set of data, they sort the
cells by their extreme values. The isosurface extraction algorithm
locates all active cells and polygonizes them.

Several propagation-based approaches generate the isosurface
by recursively visiting adjacent cells. The adjacent cells are inserted
into a queue. The cells inserted in the queue are marked, so that they
are not inserted twice. The cells are removed from the queue and
they are triangulated by the Marching Cubes method or some other
polygonization method. The cells adjacent to the just processed cell
that are not marked, are inserted in the queue. By repeating the
above, an isosurface is generated when the queue becomes empty.
The cell propagation heuristic can be roughly classified as: (1)
propagate through isocurves with fixed coordinate (breadth-first
search) (Bajaj et al., 1996; Itoh and Koyamada, 1995), (2)
vertex/edge adjacency (Itoh et al., 2001), (3) no heuristic at all
(Shekkar et al., 1996).

Propagation-based approaches to isosurface construction avoid
traversal of empty cells since the propagation process visits only
active cells. Propagation-based approaches do not use forward cube
by cube marching but rather propagate outward from some active
seed cell. Most propagation-based approaches require manual
selection of seed cells since automatic selection can be challenging.
For example, the method of Shekkar et al. (1996) recursively
propagates from a user specified cell using isosurface connectivity.
However, a few automatic seed cell selection schemes exist (Bajaj et
al., 1996; Itoh and Koyamada, 1995; Kreveld et al., 1997). Another
advantage to using a propagation approach over other techniques is
that surfaces are easily transformed into a triangle strip
representation for more efficient rendering. Also of importance is
the fact that shared vertices between cells are more efficiently
located, as we are considering only a single closed contour at any
given time. One drawback of the propagation-based algorithms
proposed in the literature is that adjacent cells or triangles are stored
in a stack or queue.

A simple mesh can be enough for visualizations purposes.
However, when engineering processes are involved, a solid model is
necessary. A solid model ensures that all triangles in the mesh are
consistently oriented, i.e. have their vertices listed clockwise
counterclockwise. A finite element mesh is valid only if the mesh
formed by the external faces of its elements is closed and orientable
(Mäntylä, 1988). An algorithm for calculating volumetric properties
generates meaningful results only if the mesh models a closed and
oriented surface. The solid model created through the algorithm
proposed in this work explicitly guarantees all those conditions.
Using a B-Rep data structure, the adjacency information required by
the algorithm presented in this paper is explicitly available.

It is proposed in this work an algorithm for converting a CSG
model into a triangulated B-Rep solid model through a propagation
based marching cubes algorithm. The triangles supplied to the
algorithm need not be coherently oriented; the algorithm itself finds
the correct orientation for the supplied triangles. The technique
presented here is new as the propagation traverses the CSG's
boundary that is represented in the B-Rep data structure. It is not
necessary to mark visited cells and the algorithm uses no queue or
stack for adjacency cell storage. Further, the algorithm has only one
phase, eliminating the setup necessary in other approaches. In the
CSG voxelization, the setup phase corresponds to evaluate the CSG
model over the entirely 3D domain.

The rest of the paper is organized as follows. In section 2, the
concepts behind the CSG representation are briefly explained and
the recursive algorithm to query CSG models is showed. In section
3, the concepts of the B-Rep and the Euler operators are briefly
explained. The Euler operators are used in the definition of the
proposed algorithm. In section 4, the marching cubes algorithm is
briefly explained. In section 5, the proposed algorithm is presented.
Some results are presented in section 6. Discussion and future works
are presented in section 7. Conclusions are presented in section 8.

Figure 1. The five non-trivial Boolean combinations of two sets (from left
to right): A+B= {a : a ∈∈∈∈ A or a ∈∈∈∈ B}, A∩∩∩∩B= {a: a ∈∈∈∈ A and a ∈∈∈∈ B }, A-B= {a : a
∈∈∈∈ A and a ∉∉∉∉ B}, B-A= { a: a ∉∉∉∉ A and a ∈∈∈∈ B}, and the symmetric difference
(A-B)+(B-A).

Figure 2. The instances A, B, and E are shown (left) superimposed on the
same reference grid. The solid S was specified by the following sequence
of commands: A=Block(2,1,4); B=Rotated(A,Z-axis,-90); C=A+B;
D=Block(1,1,1); E=Translated(D,1,0,1); S=C-E; The corresponding CSG
graph (right) has 2 leaf primitives, 2 transformation nodes, and 2
regularized Boolean operation nodes.

CSG Representation

Constructive representations capture a construction process,
which defines the solid by a sequence of operations, that instantiate
or combine modeling primitives or the results of previous
constructions. They often capture the user's design intent in a high
level representation that may be easily edited and parameterized.

CSG is the most popular constructive representation. Its
primitives are parameterized solids, which may be simple shapes
(such as cylinders, cones, blocks) or more complex features suitable
for a particular application domain (such as slots or counter-bored
holes). The primitives may be instantiated multiple times (possibly
with different parameter values, positions, and orientations) and

Converting CSG models into Meshed B-Rep Models Using …

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2007 by ABCM October-December 2007, Vol. XXIX, No. 4 / 339

grouped hierarchically. Primitive instances and groups may be
transformed through rigid body motions (which combine rotations
and translations) or scaling.

The transformed instances may be combined through
regularized Boolean operations: union, intersection, and difference.
These regularized operations perform the corresponding set
theoretic Boolean operations, and then transform the result into an r-
set by applying the topological interior operation followed by the
topological closure. They always return valid (although possibly
empty) solids. Although other Boolean operations may be offered,
these three are convenient and sufficient, because amongst the 16
different Boolean combinations of two sets, A and B, 8 are
unbounded, 3 are trivial, and only 5 are useful for solid modeling:
the union A+B, the intersection A ∩ B, the differences A-B and B-A,
and the symmetric difference, (A-B)+(B-A), as shown in Fig. 1.

Figure 2 illustrates how a simple syntax may be used to specify
a solid in CSG. Parsing such syntax yields a rooted graph, whose
leaves represent primitive instances and whose internal nodes
represent transformations or Boolean operations that produce solids.
The root represents the solid corresponding to the CSG graph. CSG
representations are concise, always valid in the r-set modeling
domain, and easily parameterized and edited. Many solid modeling
algorithms work directly on CSG representations through a divide-
and-conquer strategy, where results computed on the leaves are
transformed and combined up the tree according to the operations
associated with the intermediate nodes. However, CSG
representations do not explicitly carry any information on the
connectivity or even the existence of the corresponding solid. These
topological questions are best addressed through some form of
boundary evaluation, where a whole or partial B-Rep is derived
algorithmically from the CSG model.

Point Classification for CSG Solids

The CSG tree can be viewed as an implicit description of the
modeled solid's geometry that must be evaluated in order to create
graphical output or perform calculations. A CSG representation is a
tree. This immediately suggests a divide and conquer, or recursive
descent algorithm for computing the point classification. The
algorithm is designed as follow (Requicha, 1980):

/* Evaluate property P of a CSG tree */
P *Tree_P (CSG_Tree *S, args)
{

if (S->op = = <primitive>)
return primitive_P (S, args);

else
return combine_P (Tree_P (S->left, args),

Tree_P (S->right, args), S->op);
}

/* Combine two evaluation of P with set operation 0p */
P *Combine_P (CSG_Tree *left_P, CSG_Tree *right_P, in 0p)
{ … }

/* Evaluate P for a primitive */
P *Primitive_P (CSG_Tree *S, args) { … }

Boundary Representation (B-Rep)

B-Rep solid models emerged from the polyhedral models used
in computer graphics for representing objects and scenes for hidden
line and surface removal. They can be viewed as enhanced graphical
models that attempt to overcome some problems by including a
complete description of the bounding surface of the object. There
are three primitive entities face, edge and vertex. The geometric

information attached to them form the basic constituents of B-Rep
models. In addition to geometric information such as face equation
and vertex coordinates, a B-Rep model must also represent how the
faces, edges and vertices are related to each other. According to
Mäntylä (1988), it is customary to bundle all information of the
geometry of the entities under the term geometry of a boundary
model and, similarly, information of their interconnections under the
term topology. It is possible to say that the topology is a glue that
ties the geometry. With the objective of algorithm simplification,
mainly in the determination of the circuit of edges surround a face,
the halfedge entity was created. It was observed that the edge in the
original winged-edge data structure (Baumgart, 1975) had two main
functions: represent the circuit of edges surround the face and to
represent the real edge. The algorithm to determine the circuit of
edges surrounds a face was very complex with several rules. Some
researchers observed that separating these two functions, the
algorithm becomes much simpler (Toriya and Chiyokura, 1991).
This way, modern solid modelers have one entity to represent the
edge itself and the circuit of edges surrounds the face is represented
by a circuit of halfedges. An edge participates in two circuits, each
one with opposite directions. The edge is represented by two
halfedges, each halfedge is used in one circuit. The correct
orientation of the circuit of halfedges is fundamental to guarantee
the integrity of a solid model. Fig. 3 shows circuits of halfedges
surround faces. A face can have holes inside to represent protrusions
or depressions. In this case a face has one outer loop and zero or
more inner loops. The loop represents one circuit of halfedges.

Figure 3. Planar diagram of a B-Rep solid model with its oriented circuit of
halfedges.

Euler Operators

Euler operators were originally introduced by Baumgart (1975)
in the context of the winged-edge data structure. In order to
manipulate the topological entities and at the same time ensure
validity of the model, the Euler operators are used satisfying Euler's
law. The Euler-Poincaré law relates faces, edges, vertices and inner
loops in a quantitative manner for solid models:

v – e + f = 2 - 2 h + r (1)

where v is the number of vertices, e is the number of edges, f is the
number of faces, h is the number of through holes and r is the
number of internal loops. It has been proved by Mäntylä (1988), that
Euler operators form a complete set of modeling primitives for
manifold solids. More precisely, every topologically valid
polyhedron can be constructed from an initial polyhedron by a finite
sequence of Euler operators. Euler operations represent a
conceptually clean way to modify a mesh. Insertion and deletion of
edges, vertices, faces, rings and genus are executed, while a valid
orientated 2-manifold connectivity is maintained, and they are
invertible. The five topological operators and their inverse operators
are illustrated in Fig. 4, basically following a proposal from Mäntylä
(1988).

Marcos de Sales G. Tsuzuki et al

/ Vol. XXIX, No. 4, October-December 2007 ABCM 340

Figure 4. Planar diagrams of Euler operators.

The first operator is MVSF (Make Vertex Solid Face), it creates

a new solid with just one vertex and one face. It’s corresponding
inverse operator KVSF (Kill Vertex Solid Face) is applicable to a
solid consisting of only one vertex and one face. It removes the
vertex and the face. The operator MEV (Make Edge Vertex)
subdivides the circuit of edges surrounds the given vertex, creating
one edge and one vertex. There is a special version of the operator,
used in this work, to create a dangling edge. The inverse operator
KEV (Kill Edge Vertex) removes an edge and a vertex. The
operator MEF (Make Edge Face) divides a face in two by adding a
new edge between two vertices. Its inverse operator KEF (Kill Edge
Face) must be applied to an edge that is adjacent to two distinct
faces.

The operator MEKR (Make Edge Kill Ring) joins two distinct
circuits of halfedges. The new edge is interpreted as belonging twice
to the new circuit of halfedges, once in its both orientations. The
inverse operator KEMR (Kill Edge Make Ring), is applicable to an
edge belonging twice to a circuit of edges. The operator KFMRH
(Kill Face Make Ring Hole) creates a hole through the solid model.
Its inverse operator MFKRH (Make Face Kill Ring Hole) removes
one hole through.

Marching Cubes Algorithm

Marching Cubes is an algorithm for computing triangular
meshes from discrete sampled volume data over voxel-based
volumes (Lorensen and Clide, 1987). The isosurface is located in a
cube of eight voxels. The marching cubes algorithm determines how
the isosurface intersects this cube. Each vertex of the cube is
classified into positive and negative vertices, depending whether the
sampled value associated to vertex is greater or not than an isovalue.
Thus, there are 28=256 possible configurations of a cube. The usual
implementation stores those 256 configurations in a lookup table
that encodes the tiling of the cube in each case. A boundary face is
one of the six sides of a cube. A border is one of the four rims of a
face. An isovertex is the intersection of an isosurface with a border.
A boundary edge is the connection between two isovertices within a
face and an internal edge is the connection between two isovertices
within a cube.

The same configuration can be tiled in various ways and the 256
entries lookup table does not distinguish between those. Those

ambiguities can appear on the boundary face or inside the cube.
Nielson (2003) introduced the concept of deciding on ambiguous
faces by using bilinear interpolation on faces. The internal
ambiguity arises when two diagonally opposite vertices of a cube
can be connected through the interior of the cube, creating a kind of
tunnel. Lewiner et al. (2003) solved the internal ambiguities by
using trilinear interpolation.

CSG to B-Rep Conversion Algorithm

The algorithm traverses the CSG boundary represented by the
B-Rep data structure using three main concepts: open boundary, B-
Rep/CSG voxelization mapping and constructive triangulation of
active cells.

This algorithm classifies each vertex as internal or external
according to the point classification algorithm for CSG solids. In
this context, the bilinear and trilinear interpolation are not useful.
Then, the ambiguity appearing in the boundary face is solved by
applying the point classification algorithm at the center of the
ambiguous boundary face (see Fig. 5). The ambiguity appearing in
the interior of the cube is solved by applying the point classification
algorithm at the center of the cube (see Fig. 6).

Figure 5. Ambiguity appearing on the boundary face. The point
classification algorithm is applied to the center of the ambiguous
boundary face and resulted as external (case (a)) or internal (case (b)).
The configuration in (a) has no internal edges.

Figure 6. Ambiguity appearing in the center of the cube. The point
classification algorithm is applied to the center of the cube and resulted
as external (case (a)) or internal (case (b)).

The open boundary represents the external contour of the

triangles already added to the B-Rep solid model and simulta-
neously defines the position where new triangles can be added. It is
represented as a loop in the B-Rep data structure. Triangles are
incrementally added to the open boundary. When a new triangle is
added, the open boundary is recalculated. The open boundary
defines the traverse direction.

An active cell is triangulated, and its triangles have boundary
edges and in some configurations, internal edges are present (see
Figs. 5(b) and 6(b)). This set of triangles is added to the open
boundary. After including a triangle with internal edges, the open
boundary will have internal edges in its composition. After the set of
triangles associated to this active cell is completely included, the
open boundary is defined uniquely by boundary edges.

Converting CSG models into Meshed B-Rep Models Using …

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2007 by ABCM October-December 2007, Vol. XXIX, No. 4 / 341

The B-Rep/CSG voxelization mapping uses the coordinates
present in the B-Rep solid model to determine the associated active
cells. The algorithm searches for new active cells to continue the
traverse when the open boundary is uniquely composed by boundary
edges. The boundary edge belongs to one created triangle and using
its three coordinates the proposed algorithm determines the active
cell that originated it. One boundary edge has two vertices, and
based on their coordinates it is possible to obtain the coordinates of
two adjacent active cells. Using these two results, the proposed
algorithm determines the next active cell to be used.

The triangulation of the next active cell happens in a
constructive manner. At least the boundary edge that was used to
find the next active cell is known. The proposed algorithm checks if
adjacent boundary edges are present in any open boundary. This is
done by using the coordinates of the vertices limiting each boundary
edge and checking if it is adjacent to the current active cell. The
active cell configuration is determined using the adjacent boundary
edges present in the open boundaries and their associated triangle's
normals. The normal in a B-Rep solid model points outwards. Using
this set of information some vertex classification is determinated
without evaluating the point classification algorithm, as shown in
Fig. 7. The remaining vertex classification is determined using the
point classification algorithm.

Figure 7. The cube configuration is determined by processing its adjacent
boundary edges present in the open boundaries, the rest of the vertices
are classified by applying the point classification algorithm.

Once the set of triangles is determined, they are added to the

open boundary using Euler Operators (see Fig. 8). As a consequen-
ce, the open boundary is automatically updated after the end of the
operation. There are only six different possibilities of cases to
implement triangle attachment:

Figure 8. The open boundary is defined as a circuit of halfedges, a triangle
is attached to the open boundary.

• The first triangle;
• Triangle with one edge created;
• Triangle with two adjacent edges created;
• Triangle with one edge created and a vertex created belonging

to the same open boundary. The vertex is not adjacent to the
edge;

• Triangle with one edge created and a vertex created belonging
to a different open boundary;

• The last triangle with three adjacent edges created.

At the end, the final situation of the open boundary matches

exactly the last triangle to be attached. During the execution of the
algorithm, there will be at least one open boundary. There should be
multiple open boundaries in the case of objects topologically
equivalent to a torus or multiple torus. The open boundaries are
stored in a list.

The Algorithm

The algorithm is presented below. Initially, the algorithm
searches for the first isocube and then processes the first case. The
while loop is done while there are open boundaries to be processed.
The next isocube is obtained by processing the first halfedge from
the open boundary. The list of connected triangles adjacent to the
given halfedge is determined. The triangles are added to the solid
model according to the case classification and the appropriate
processing is done.

1: c ← retrieve First Cube ()
2: solid ← process Case 1 (c),
3: while < exist open boundary to be processed > do,
4: he ← < get boundary edge from open boundary >,
5: c ← < get next active cell > (he),
6: triangle Stack ← < triangle active cell > (c),
7: while < exist triangle in stack > do,
8: triangle ← <get triangle from stack >,
9: < insert triangle using the appropriate routine > (triangle),
10: end while,
11: end while.

The First Triangle

Figure 9 shows the steps to create the first triangle. It is
necessary to firstly apply a MVSF, two MEVs and one MEF. Two
circuits of halfedges are created. The algorithm calculates the
normals of both faces and the face with a normal pointing to the
external side is an internal face. The other face contains the open
boundary and it is pushed in the stack..

1: processCase1 (c)
2: triangle ← processCube (c),
3: v1 ← triangle.get_first_vertex (),
4: v2 ← triangle.get_second_vertex (),
5: v3 ← triangle.get_third_vertex (),
6: solid ← MVSF (v1),
7: MEV (solid, v1, v2); MEV (solid, v2, v3); MEF (solid v1, v3),
8: openBoundaryList.Add (get_open_boundary (solid, c)),
9: return solid.

Figure 9. The first triangle is created.

Marcos de Sales G. Tsuzuki et al

/ Vol. XXIX, No. 4, October-December 2007 ABCM 342

Triangle with One Edge Created

The third vertex does not belong to any open boundary. It is
necessary to apply one MEV and one MEF. The open boundary is
automatically updated. Fig. 10 shows the steps to create this
triangle.

1: processCase2 (solid, he, v3)
2: MEV (solid, he.get_start_vertex (), v3),
3: MEF (solid, v3, he.get_end_vertex ()).

Figure 10. Triangle with one edge created. The final open boundary is
represented by the following circuit of halfedges: A-Na-Nb-C-D-E.

Triangle with two Adjacent Edges Created

It is necessary to apply one MEF. There are two possible
situations, the third vertex is after or before the edge in the open
boundary. Fig. 11 shows the steps to create this triangle when the
third vertex is after the edge in the circuit.

1: processCase3 (solid, he, v3)
2: if he.next ().get_end_vertex () == v3 then,
3: MEF (solid, he.get_start_vertex (), v3),
4: else,
5: MEF (solid, v3, he.get_end_vertex ()),
6: end if.

Figure 11. Triangle with two adjacent edges created. The final opened
boundary is represented by the following circuit of halfedges: A-Na-D-E-F.

Triangle with one Edge and the Third Vertex Created on
the same Open Boundary

The edge and the third vertex are on the same circuit of
halfedges. Then, it is necessary to create two new edges connecting
the third vertex with the edge. This is done by applying MEF twice
(see Fig. 12). A new open boundary is created and added to the list.
The sequence that the vertices are supplied to the MEF is important,
the halfedge associated with the first vertex has the new circuit of
halfedges.

1: processCase4 (solid, he, v3)
2: new OpenBoundary ← MEV(solid, he.get_start_vertex(), v3),
3: MEF (solid, he.get_end_vertex (), v3),

4: openBoundaryList.Add (new OpenBoundary).

Figure 12. Triangle with one edge and the third vertex created on the same
open boundary. Initially, the solid model has one open boundary: A-B-…………-
R-S. After the triangle attachment, the solid model has two open
boundaries: A-B-…………-H-I-Na-P-Q-R-S

Triangle with one Edge and the Third Vertex Created on
Different Open Boundaries

The edge and the third vertex are on different open boundaries.
This situation occurs in solids topologically equivalent to a torus.
This way, it is necessary to create a through hole. This case is
implemented by applying one KFMRH, one MEKR and one MEF
(see Fig. 13). The open boundary is deleted and removed from the
stack.

1: processCase5 (solid, he, v3, open, aux_open)
2: KFMRH (solid, open, aux_open),
3: MEKR (solid, he.get_start_vertex(), v3),
4: MEF (solid, v3, he.get_end_vertex ()),
5: openBoundaryList.Remove (aux_open).

Figure 13. Triangle with one edge and the third vertex created on different
open boundaries. Initially, the solid model has two open boundaries: A-B-
…………-M-N and 1-2-3-4-5-6. After the triangle attachment, the solid model has
only one open boundary: A-B-…………-L-Nd-1-2-3-4-5-6-Na-N.

Triangle with Three Adjacent Edges Created

In this case the triangle is already created, then nothing is done.
The associated open boundary is deleted and removed from the list.

1: processCase6 (open_Boundary),
2: openBoundaryList.Remove (open_Boundary).

Converting CSG models into Meshed B-Rep Models Using …

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2007 by ABCM October-December 2007, Vol. XXIX, No. 4 / 343

Results

In Fig. 14 the B-Rep model construction is illustrated. In a first
step the vertex of each cube that lies on the CSG model boundary
are classified as being internal or external to the solid (Fig. 14.a).
With this classification, the isopoints are easily identified (Fig.
14.b). The isopoints are connected (Fig. 14.c) through the
development of one (Fig. 15.a) or more open boundaries (Fig. 15.b)
using Euler Operators. This approach avoids ambiguities and
generates a solid representation with a valid topology (Fig. 14.d).
More complex solids were used to test the algorithm and can be
seen in Fig. 16, Fig. 17 and Fig. 18.

Figure 14. Solid construction steps: (a) cubes with internal vertices
highlighted, (b) isopoints, (c) isopoints connected, (d) final solid.

Figure 15. Samples of opened boundaries: (a) beginning of the solid
construction with only one opened boundary, (b) intermediate step with 5
opened boundaries, (c) advanced step of the solid construction.

Figure 16. Simple Boolean operations: (a) union with 143.698 triangles, (b)
subtraction with 76.796 triangles, (c) intersection with 61.184 triangles.

Figure 17. Die constructed with one box and several spheres (246.272
triangles).

Figure 18. Complex solid with 553.632 triangles).

Conclusions and Future Works

The CSG representation defines an implicit representation where
the 3D domain D must be discretized and evaluated. Then, the best
performance is provided by algorithms that even do not execute the
point classification algorithm at empty cells. This fact makes the
hierarchical geometric, interval-based and conventional approaches
very costly.

When an active cell is visited, it is necessary to know if a new
open boundary must be created or not. Conventional propagation
based approaches cannot know when such happens and always
pushes adjacent active cells to a stack or queue. This fact increases
too much the memory usage. Another drawback is the verification if

Marcos de Sales G. Tsuzuki et al

/ Vol. XXIX, No. 4, October-December 2007 ABCM 344

the adjacent active cell was already visited or not before pushing
them.

Marching cubes algorithm implementation often use lookup
table of predefined cube configurations. For each configuration
encountered, a match has to be found in the predefined lookup table
with cube configurations, so that a set of triangles approximating the
isosurface can be determined. From the programming point of view,
this method of predefining cube configurations and their connected
triangles in the correct orientation is tedious and error prone.

The proposed algorithm has a better computational performance
as only the vertices of the active cells are investigated using the
point classification algorithm for CSG models. It is not necessary to
verify if an adjacent cell was already visited or not, as the proposed
algorithm has control over visited active cells. The active cell
triangulation is easier implemented, as it is not necessary to produce
a table with predefined cube configurations, as it is done in a
constructive approach. Further, the triangles must not be coherently
oriented, as the algorithm will insert the triangles in the correct
orientation.

The algorithm proposed here is based on three main concepts:
open boundary, B-Rep/CSG Voxelization mapping and constructive
triangulation of active cells. The algorithm makes use of several
types of adjacency information available in the B-Rep data
structure. The proposed algorithm with very few modifications can
be used to generate B-Rep solid models from 3D medical images.
Another possible application is the generation of correct B-Rep solid
models from unstructured triangular meshes. B-Rep solid modelers
export triangular meshes for rapid prototyping and in some special
situations the exported model does not represent a closed boundary.
The algorithm proposed here can be used to find regions in the
unstructured triangular that remain open, and an algorithm to correct
close them can be used.

Acknowledgements

The first author was partially supported by CNPq.

References

Bajaj, C., Pascucci, V., Schikore, D., 1996, “Fast isocontouring for
improved interactivity”, Proceedings of 1996 IEEE Symposium on Volume
Visualization, San Francisco, pp. 39-46.

Baumgart, B. G., 1975, “Polyhedral representation for computer vision”,
AFIPS Conference, Vol. 44, pp. 589-596.

Boender, E., Bronsvoort, W. F., Post, F. H., 1994, “Finite-element mesh
generation from constructive-solid-geometry models”, Computer-Aided
Design, Vol. 26, No. 5, pp. 379-392.

Galin, E., Akkouche, S., 2000, “Incremental polygonization of implicit
surfaces”, Graphical Models, Vol. 62, No. 1, pp. 19-39.

Hoffmann, C. M., 1989, “Geometric and Solid Modeling: An
Introduction”, Morgan Kaufmann Publishers.

Itoh, T., Koyamada, K., 1995, “Automatic isosurface propagation using
an extrema graph and sorted boundary cell lists”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 1, No. 4, pp. 319-327.

Itoh, T., Yamaguchi, Y., Koyamada, K., 2001, “Fast isosurface
generation using the volume thinning algorithm”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 7, No. 1, pp. 32-46.

Kamel, H. A., Chen, L., 1991, “Integration of solid modeling and finite
element generation”, Computer Methods in Applied Mechanics and
Engineering, Vol. 89, pp. 485-496.

Kreveld, M. van, Oostrum, R. van, Bajaj, C., 1997, “Contour trees and
small seed sets for isosurface traversal”, Proceedings of the 13th ACM
Symposium on Computational Geometry, Nice, pp. 212-219.

Lee, S.-W., Senot, A., Jung, H.-Y., Prost, R.; 2005, “Regularized
marching cubes mesh”, Proceedings of ICIP 2005 - IEEE International
Conference on Image Processing, Vol. 3, pp. 788-791.

Lorensen, W. E. and Cline, H. E., 1987, “Marching cubes: a high
resolution 3D surface construction algorithm”, Computer Graphics, Vol.21,
No. 4, pp. 163-169.

Lewiner, T., Lopes, H., Vieira, A. W., Tavares, G., 2003, “Efficient
implementation of marching cubes' cases with topological guarantees”,
Journal of Graphics Tools, Vol. 8, No. 2, pp. 1-15.

Mäntylä, M., 1988, An Introduction to Solid Modelling, Computer
Science Press.

Newman, T. S., Yi, H., 2006, “A survey of the marching cubes
algorithm”, Computers & Graphics, Vol. 30, No. 5, pp. 854-879.

Nielson, G. M., 2003, “On marching cubes”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 9, No. 3, pp. 283-297.

Requicha, A. A. G., 1980, “Representation for rigid solids: theory,
methods and systems”, Computing Surveys, Vol. 12, No. 4, pp.437-464.

Shekhar, R., Fayyad, E., Yagel, R., Cornhill, J., 1996, “Octree-based
decimation of marching cubes surfaces”, Proceedings of the IEEE
Visualization Conference, San Francisco, pp. 335-342.

Shen, H. W., Johnson, C. R., 1995, “Sweeping simplices: a fast iso-
surface extraction algorithm for unstructured grids”, Proceedings of the
IEEE Visualization Conference, pp. 143-150.

Tobler, R. F., Galla, T. M. and Purgathofer, W., 1996, “ACSGM-an
adaptive CSG meshing algorithm”, Proceedings of CSG 96-Set Theoretic
Solid Modelling Techniques and Applications, pp. 17-31.

Toriya, H. and Chiyokura, H., 1991, “3D CAD Principles and
Applications”, Berlin, Springer-Verlag.

Viceconti, M., Zannoni, C., Testi, D., Cappello, A., 1999, “CT data sets
surface extraction for biomechanical modeling of long bones”, Computer
Methods and Programs in Biomedicine, Vol. 59, pp. 159-166.

Wilhelms, J., Gelder, A. van, 1992, “Octrees for faster isosurface
generation”, ACM Transactions on Graphics, Vol. 11, No. 3, pp. 201-227.

