Converting CSG models into Meshed B-Rep Models Using ...

Marcos de Sales G. Tsuzuki
Senior Member, ABCM
mtsuzuki@usp.br

Fabio K. Takase

Member, ABCM
fktakase@usp.br

Murilo Anténio S. Garcia
murilogarcia@yahoo.com

Thiago de Castro Martins

thiago@usp.br

Escola Politécnica, University of Sao Paulo
Dep. Mechatronics and Mech. Syst. Eng.
05508-900 Séo Paulo, SP. Brazil

Converting CSG models into Meshed
B-Rep Models Using Euler Operators
and Propagation Based Marching
Cubes

The purpose of this work is to define a new algaonifor converting a CSG representation
into a B-Rep representation. Usually this conversie done determining the union,
intersection or difference from two B-Rep represdrgolids. Due to the lack of explicit
representation of surface boundaries, CSG modelst ine@ converted into B-Rep solid
models when a description based on polygonal nestguired. A potential solution is to
convert a CSG model into a voxel based volume septation and then construct a B-Rep
solid model. This method is called CSG voxelizatcmmceptually it is a set membership
classification problem with respect to the CSG obfer all sampling points in a volume
space. Marching cubes algorithms create a simplshnikat is enough for visualization
purposes. However, when engineering processesaodvied, a solid model is necessary.
A solid ensures that all triangles in the mesh evasistently oriented and define a closed
surface. It is proposed in this work an algorithor fconverting CSG models into
triangulated solid models through propagation basedrching cubes algorithm. Three
main new concepts are used in the algorithm: opemnbary, B-Rep/CSG Voxelization
mapping and constructive triangulation of activdleeThe triangles supplied by the
marching cubes algorithm need not be coherentlgried; the algorithm itself finds the
correct orientation for the supplied triangles. Theeoposed algorithm restricts the
exploration to the space occupied by the solid'sindary. Differently from normal
marching cubes algorithms that explore the com@atapled space.

Keywords: solid model, marching cubes algorithm, triangutaeshes

Introduction

The Constructive Solid Geometry (CSG) representaitows
users to define complex 3D solid objects by hidraaly
combining simple geometric primitives using Booleaperations
and affine transformations (Hoffmann, 1989). Itaisrery popular
and powerful solid modeling scheme, and it is patérly suitable
for interactive object manipulations and desigradiionally, CSG
primitives are defined by simple analytic objecdsch as cubes,
cylinders and spheres. Some recent CSG algorithams also
support primitives that are general solid modelénde by their
boundary surfaces. An explicit representation eftibbundary is not
available in a CSG model.

problem with respect to the CSG object for all stimgppoints in a
volume space. The marching cubes algorithm (Lorersel Cline,
1987) was originally proposed as a tool for CSG eligation.
Recently, several authors (Viceconti et al., 1988ye used the
marching cubes as a tool for visualization of CSG&dats and/or
medical images. Lee et al. (2005) used the marchinges
algorithm and improved the geometrical quality bé tgenerated
triangles, that is measured either by its anglesisnedge’s length.

Related Works

It is estimated that in a 3D domain containing @&G model, a
well designed algorithm that visits only the céfitersected by the
CSG model's boundary, from now refered as actills, cill have a

CSG is a widely used modeling paradigm, but severaomputational cost o®(r*®) (Itoh and Koyamada, 1995), whemne

algorithms in different fields, require a descigoti based on
polygonal mesh. Due to the lack of explicit reprgagon of surface
boundaries, CSG visualization is not directly supgab by standard
graphics systems. Boender et. al. (1994) showeditharder to
derive an accurate finite element mesh from a C®@eah a B-Rep
model has in fact to be derived. They proposedigorithm based
in two steps, where the first step is the boundssluation of the

is the number of cells. Consequently, algorithmsctviperform an
exhaustive covering of cells are found to be icéaffit
(computational cost ofO(n), spending a large portion of time
visiting cells which do not contribute to the camtpalso named as
empty cells. The CSG boundary is also named asrfsae.

The majority of the techniques for accelerating ekraction of
isocontours do so by limiting the number of celiattare visited,

CSG model, which converts the CSG model into a B-Rethereby reducing the overhead associated withrteeitable search

representation by computation of its boundary. okt al. (1996)
proposed an approach to convert CSG solid modelsBRep solid
models based on the marching cubes algorithm. Tdmsed on the
marching cubes algorithm and did not explain amghabout how
the B-Rep solid model is created. Kamel and Ché&91}) defined
an algorithm where the primitives are meshed, ardeshing is
performed on the interference region. This algamiik very hard to
implement and has several special cases.

A solution for the rendering of volumetric CSG misdés to
convert a CSG model into a voxel based volume sgmtation and
then construct a B-Rep solid model. This methoadaled CSG
voxelization, conceptually it is a set membershipssification
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for active cells. Newman and Yi (2006) classifibé methods that
minimize unnecessary operations on empty cellsrdoog to their

main processing characteristics: hierarchical géomepproaches
(Galin and Akkouche, 2000; Whilhems and Gelder,2)9thterval-

based and propagation-based (Bajaj et al., 1996; dt al., 2001;
Itoh and Koyamada, 1995; Shekkar et al., 1996).icBily, these

methods minimize the operations via representatitiveg can

efficiently encode regions of non-activity.

Wilhems and Van Gelder (1992) were the first to ostees to
avoid examining empty cells. The algorithm startghwa setup
phase that creates the octree. Each node of theeoobntains the
maximum and minimum scalar values among the celithé sub-
volume. When the user specifies an isovalue, therihm starts the
isosurface-finding phase, which examines the volbyéraversing
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from the root of the octree. All the sub-volumeshwminimum

values higher than the isovalue or maximum valoeget than the
isovalue are then excluded. Galin and Akkouche @2@doposed a
recursive octree subdivision algorithm until a givéevel of

precision is reached, converging to the implicitrfate. The
algorithm propagates through an octree inflatingl ateflating

strategy.

Interval-based representations are another classdath
structures that are useful in avoiding traversaémfpty cells. One
advantage of many interval-based approaches is tpeirational
flexibility; since these approaches operate inrdarval space rather
than in the geometric space of the mesh. Shen aimusdn (1995)
proposed an interval-based isosurface extractigorighm. The
algorithm is divided into two parts: setup and igfece extraction.
The algorithm uses the concept of cell's extremkievdhat is
defined as the maximum and minimum scalar valuebeatorners
of the cell. Straightforwardly, only those cellsathhave lower
minimum value and higher maximum value than a gisavalue
are intersected by an isosurface. To efficientlg ancurately locate
candidate cells without searching the entire setatd, they sort the
cells by their extreme values. The isosurface etita algorithm
locates all active cells and polygonizes them.

Several propagation-based approaches generatesdberface
by recursively visiting adjacent cells. The adjaogglls are inserted
into a queue. The cells inserted in the queue ar&ed, so that they
are not inserted twice. The cells are removed fthenqueue and
they are triangulated by the Marching Cubes mettrosome other
polygonization method. The cells adjacent to the processed cell
that are not marked, are inserted in the queuerePgating the
above, an isosurface is generated when the quextsries empty.
The cell propagation heuristic can be roughly df@ss as: (1)
propagate through isocurves with fixed coordinabeeddth-first
search) (Bajaj et al.,, 1996; Itoh and Koyamada, 5)992)
vertex/edge adjacency (Itoh et al.,, 2001), (3) mwristic at all
(Shekkar et al., 1996).

Propagation-based approaches to isosurface cotisiriavoid
traversal of empty cells since the propagation @secvisits only
active cells. Propagation-based approaches dogeotauward cube
by cube marching but rather propagate outward feome active
seed cell. Most propagation-based approaches esguianual
selection of seed cells since automatic selectionbe challenging.
For example, the method of Shekkar et al. (199&ursvely
propagates from a user specified cell using isasertonnectivity.
However, a few automatic seed cell selection sceerrist (Bajaj et
al., 1996; Itoh and Koyamada, 1995; Kreveld et¥97). Another
advantage to using a propagation approach over tgbbniques is
that surfaces are easily transformed into a trengitrip
representation for more efficient rendering. Aldoiraportance is
the fact that shared vertices between cells aree nafficiently
located, as we are considering only a single clasadour at any
given time. One drawback of the propagation-baskegrithms
proposed in the literature is that adjacent cellgiangles are stored
in a stack or queue.

A simple mesh can be enough for visualizations @sep.
However, when engineering processes are involved|id model is
necessary. A solid model ensures that all triangiethe mesh are
consistently oriented, i.e. have their verticestetis clockwise
counterclockwise. A finite element mesh is validyoifi the mesh
formed by the external faces of its elements isadioand orientable
(Mantyla, 1988). An algorithm for calculating voletnic properties
generates meaningful results only if the mesh nwdetlosed and
oriented surface. The solid model created through algorithm
proposed in this work explicitly guarantees all gboconditions.
Using a B-Rep data structure, the adjacency infaomaequired by
the algorithm presented in this paper is explicthailable.
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It is proposed in this work an algorithm for conugy a CSG
model into a triangulated B-Rep solid model throagpropagation
based marching cubes algorithm. The triangles #gbpio the
algorithm need not be coherently oriented; the rédtlgm itself finds
the correct orientation for the supplied triangl@fie technique
presented here is new as the propagation travalsesCSG's
boundary that is represented in the B-Rep datatstel It is not
necessary to mark visited cells and the algoritls@suno queue or
stack for adjacency cell storage. Further, therélym has only one
phase, eliminating the setup necessary in otheroappes. In the
CSG voxelization, the setup phase correspondsaluate the CSG
model over the entirely 3D domain.

The rest of the paper is organized as follows.dctien 2, the
concepts behind the CSG representation are bragyained and
the recursive algorithm to query CSG models is gthvin section
3, the concepts of the B-Rep and the Euler opevadoe briefly
explained. The Euler operators are used in thenidiefn of the
proposed algorithm. In section 4, the marching sudlgorithm is
briefly explained. In section 5, the proposed &than is presented.
Some results are presented in section 6. Discussidriuture works
are presented in section 7. Conclusions are pregémisection 8.

A A A A A
B B B B B
Figure 1. The five non-trivial Boolean combinations of two sets (from left
to right): A+B={a:aOAoraOdB},AnB={a:a0AandalOB} A-B={a:a

OA and a OB}, B-A={ a: a O A and a O B}, and the symmetric difference
(A-B)+(B-A).

[ Blockli 11|
[ Potate(Z.00) |

Figure 2. The instances A, B, and E are shown (left) superimposed on the
same reference grid. The solid S was specified by the following sequence
of commands: A=Block(2,1,4); B=Rotated(A,Z-axis,-90); C=A+B;
D=Block(1,1,1); E=Translated(D,1,0,1); S=C-E; The corresponding CSG
graph (right) has 2 leaf primitives, 2 transformation nodes, and 2
regularized Boolean operation nodes.

CSG Representation

Constructive representations capture a construcpiootess,
which defines the solid by a sequence of operatitira instantiate
or combine modeling primitives or the results ofepous
constructions. They often capture the user's ddsigmt in a high
level representation that may be easily editedpardmeterized.

CSG is the most popular constructive representatibs
primitives are parameterized solids, which may imepk shapes
(such as cylinders, cones, blocks) or more comfgatures suitable
for a particular application domain (such as stotsounter-bored
holes). The primitives may be instantiated multipiees (possibly
with different parameter values, positions, andemtdtions) and
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grouped hierarchically. Primitive instances and ug® may be
transformed through rigid body motions (which congbrotations
and translations) or scaling.

The transformed instances may be combined
regularized Boolean operations: union, intersectaomd difference.
These regularized operations perform the correspgndset
theoretic Boolean operations, and then transfoenékult into an r-
set by applying the topological interior operatifmiowed by the
topological closure. They always return valid (aligh possibly
empty) solids. Although other Boolean operations rha offered,
these three are convenient and sufficient, becaosengst the 16
different Boolean combinations of two setd, and B, 8 are
unbounded, 3 are trivial, and only 5 are usefuldolid modeling:
the unionA+B, the intersectioi\ n B, the differenceé\-B andB-A,
and the symmetric differenc@-B)+(B-A), as shown in Fig. 1.

Figure 2 illustrates how a simple syntax may bedusespecify
a solid in CSG. Parsing such syntax yields a roggeghh, whose
leaves represent primitive instances and whosernattenodes
represent transformations or Boolean operatiortspifraluce solids.
The root represents the solid corresponding taQ86& graph. CSG
representations are concise, always valid in tlsetrmodeling
domain, and easily parameterized and edited. Maligt modeling
algorithms work directly on CSG representation®tigh a divide-
and-conquer strategy, where results computed onletrees are
transformed and combined up the tree accordindn¢ooperations
associated with the intermediate nodes.
representations do not explicitly carry any infotima on the
connectivity or even the existence of the corregpansolid. These
topological questions are best addressed througie siorm of
boundary evaluation, where a whole or partial B-Remlerived
algorithmically from the CSG model.

Point Classification for CSG Solids

The CSG tree can be viewed as an implicit desoriptf the
modeled solid's geometry that must be evaluatenrdier to create
graphical output or perform calculations. A CSGresgntation is a
tree. This immediately suggests a divide and conaurerecursive
descent algorithm for computing the point clasaifen. The
algorithm is designed as follow (Requicha, 1980):

[* Evaluate property of a CSG tree */
P *Tree_ P (CSG_Tree S, arg9

if (S>op = = <primitive>)
return primitive P (S, args);
else
return combineP (Tree P (S->left, args),
Tree P (S>right, args), S->op);
}

/* Combine two evaluation d® with set operation®*/
P *Combine P (CSG_Tree *leftP, CSG_Tree *rightP, in Op)
{..}

[* EvaluateP for a primitive */
P *Primitive_P (CSG_Tree S arg9 { ...}

Boundary Representation (B-Rep)

B-Rep solid models emerged from the polyhedral nsdsed
in computer graphics for representing objects amas for hidden
line and surface removal. They can be viewed aares¥d graphical
models that attempt to overcome some problems blding a
complete description of the bounding surface of abgct. There
are three primitive entities face, edge and veriexe geometric
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information attached to them form the basic coustits of B-Rep
models. In addition to geometric information sushface equation
and vertex coordinates, a B-Rep model must alsesept how the

throudhces, edges and vertices are related to each. cdleeording to

Méntyla (1988), it is customary to bundle all infation of the
geometry of the entities under the term geometrya dfoundary
model and, similarly, information of their interaoections under the
term topology. It is possible to say that the togglis a glue that
ties the geometry. With the objective of algoritlsimplification,
mainly in the determination of the circuit of edgesround a face,
the halfedge entity was created. It was observatlttte edge in the
original winged-edge data structure (Baumgart, 1%i&8 two main
functions: represent the circuit of edges surrothml face and to
represent the real edge. The algorithm to deterrtfieecircuit of
edges surrounds a face was very complex with seudss. Some
researchers observed that separating these twotidosc the
algorithm becomes much simpler (Toriya and Chiyakut991).
This way, modern solid modelers have one entityefresent the
edge itself and the circuit of edges surroundsdbe is represented
by a circuit of halfedges. An edge participateswo circuits, each
one with opposite directions. The edge is represeriily two
halfedges, each halfedge is used in one circuite Torrect
orientation of the circuit of halfedges is fundataério guarantee
the integrity of a solid model. Fig. 3 shows citsuof halfedges
surround faces. A face can have holes inside t@sept protrusions

However, G CSor depressions. In this case a face has one aaerdnd zero or

more inner loops. The loop represents one cirduiatiedges.

Figure 3. Planar diagram of a B-Rep solid model with its oriented circuit of
halfedges.

Euler Operators

Euler operators were originally introduced by Baamd1975)
in the context of the winged-edge data structure.otder to
manipulate the topological entities and at the sdime ensure
validity of the model, the Euler operators are usaiisfying Euler's
law. The Euler-Poincaré law relates faces, edgesices and inner
loops in a quantitative manner for solid models:

v—e+f=2-2h+r (1)
wherev is the number of vertices,is the number of edgekis the
number of facesh is the number of through holes ands the
number of internal loops. It has been proved by tyar{1988), that
Euler operators form a complete set of modelingnjiies for
manifold solids. More precisely, every topologigallvalid
polyhedron can be constructed from an initial petfon by a finite
sequence of Euler operators. Euler operations septe a
conceptually clean way to modify a mesh. Inserod deletion of
edges, vertices, faces, rings and genus are exkautele a valid
orientated 2-manifold connectivity is maintainechdathey are
invertible. The five topological operators and thieverse operators
are illustrated in Fig. 4, basically following agposal from Mantyla
(1988).
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Figure 4. Planar diagrams of Euler operators.

The first operator i1 VSF (Make Vertex Solid Face), it creates

a new solid with just one vertex and one face. ¢tsresponding

inverse operatoKVSF (Kill Vertex Solid Face) is applicable to a

solid consisting of only one vertex and one fateremoves the
vertex and the face. The operatbtEV (Make Edge Vertex)
subdivides the circuit of edges surrounds the givamex, creating
one edge and one vertex. There is a special vedditine operator,
used in this work, to create a dangling edge. Tiverse operator
KEV (Kill Edge Vertex) removes an edge and a verteke T
operatorM EF (Make Edge Face) divides a face in two by adding
new edge between two vertices. Its inverse opekadt (Kill Edge
Face) must be applied to an edge that is adjacetwa distinct
faces.

The operatoMEKR (Make Edge Kill Ring) joins two distinct
circuits of halfedges. The new edge is interpretethelonging twice
to the new circuit of halfedges, once in its botfemtations. The
inverse operatoK EMR (Kill Edge Make Ring), is applicable to an
edge belonging twice to a circuit of edges. Theraioe KFM RH
(Kill Face Make Ring Hole) creates a hole throulgé $olid model.
Its inverse operatavl FKRH (Make Face Kill Ring Hole) removes
one hole through.

M ar ching Cubes Algorithm

Marching Cubes is an algorithm for computing trialag
meshes from discrete sampled volume data over Amasdd
volumes (Lorensen and Clide, 1987). The isosurfadecated in a
cube of eight voxels. The marching cubes algorittatermines how
the isosurface intersects this cube. Each vertexhef cube is
classified into positive and negative vertices,ateping whether the
sampled value associated to vertex is greatertothaa an isovalue.

Marcos de Sales G. Tsuzuki et al

ambiguities can appear on the boundary face odénglie cube.
Nielson (2003) introduced the concept of decidimgambiguous
faces by using bilinear interpolation on faces. Timernal
ambiguity arises when two diagonally opposite wediof a cube
can be connected through the interior of the catesting a kind of
tunnel. Lewiner et al. (2003) solved the internadb&guities by
using trilinear interpolation.

CSG to B-Rep Conversion Algorithm

The algorithm traverses the CSG boundary repreddnyethe
B-Rep data structure using three main conceptsa bpendary, B-
Rep/CSG voxelization mapping and constructive gidation of
active cells.

This algorithm classifies each vertex as internaleaternal
according to the point classification algorithm 866G solids. In
this context, the bilinear and trilinear interpdat are not useful.
Then, the ambiguity appearing in the boundary faceolved by
applying the point classification algorithm at tleenter of the
ambiguous boundary face (see Fig. 5). The ambi@ppearing in
the interior of the cube is solved by applying pént classification
algorithm at the center of the cube (see Fig. 6).

Figure 5. Ambiguity appearing on the boundary face. The point
@assification algorithm is applied to the center of the ambiguous
boundary face and resulted as external (case (a)) or internal (case (b)).
The configuration in (a) has no internal edges.

outside inside

(a) (b)

Figure 6. Ambiguity appearing in the center of the cube. The point
classification algorithm is applied to the center of the cube and resulted
as external (case (a)) or internal (case (b)).

The open boundary represents the external contéuthe
triangles already added to the B-Rep solid model aimulta-
neously defines the position where new triangleslmadded. It is
represented as a loop in the B-Rep data strucfinangles are

Thus, there are®2256 possible configurations of a cube. The usUghcrementally added to the open boundary. Whenvatriangle is

implementation stores those 256 configurations iloakup table
that encodes the tiling of the cube in each caskoéndary face is
one of the six sides of a cube. A border is ontheffour rims of a
face. An isovertex is the intersection of an istee with a border.
A boundary edge is the connection between two isimes within a
face and an internal edge is the connection betweerisovertices
within a cube.

The same configuration can be tiled in various ways the 256
entries lookup table does not distinguish betwdersd. Those
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added, the open boundary is recalculated. The dpmmdary
defines the traverse direction.

An active cell is triangulated, and its trianglesvé boundary
edges and in some configurations, internal edgespegsent (see
Figs. 5(b) and 6(b)). This set of triangles is atlde the open
boundary. After including a triangle with internadiges, the open
boundary will have internal edges in its compositiafter the set of
triangles associated to this active cell is conghjeincluded, the
open boundary is defined uniquely by boundary edges

ABCM
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The B-Rep/CSG voxelization mapping uses the coatdm
present in the B-Rep solid model to determine #sociated active
cells. The algorithm searches for new active celgontinue the
traverse when the open boundary is uniquely contbbgdoundary
edges. The boundary edge belongs to one creasedjigiand using
its three coordinates the proposed algorithm detersnthe active
cell that originated it. One boundary edge has tedices, and
based on their coordinates it is possible to oltaéncoordinates of
two adjacent active cells. Using these two resuhs, proposed
algorithm determines the next active cell to beduse

The triangulation of the next active cell happems a
constructive manner. At least the boundary edge was used to
find the next active cell is known. The proposegbathm checks if
adjacent boundary edges are present in any opemdaou This is
done by using the coordinates of the vertices iimgieach boundary
edge and checking if it is adjacent to the curmactive cell. The
active cell configuration is determined using tligaaent boundary
edges present in the open boundaries and theiciats triangle's
normals. The normal in a B-Rep solid model pointsvards. Using
this set of information some vertex classificatisndeterminated
without evaluating the point classification algbnt, as shown in
Fig. 7. The remaining vertex classification is det@ed using the
point classification algorithm.

Selected Boundary Edge
a

7
-~
”

P

Next Active Cell

Figure 7. The cube configuration is determined by processing its adjacent
boundary edges present in the open boundaries, the rest of the vertices
are classified by applying the point classification algorithm.

Once the set of triangles is determined, they aded to the
open boundary using Euler Operators (see Fig. 8)a A&onsequen-
ce, the open boundary is automatically updated #feeend of the
operation. There are only six different possilghtiof cases to
implement triangle attachment:

e

Figure 8. The open boundary is defined as a circuit of halfedges, a triangle
is attached to the open boundary.

 The first triangle;

« Triangle with one edge created;

« Triangle with two adjacent edges created;

« Triangle with one edge created and a vertex creatéahging
to the same open boundary. The vertex is not aafjaoethe
edge;

J. of the Braz. Soc. of Mech. Sci. & Eng.
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« Triangle with one edge created and a vertex creagéthging
to a different open boundary;
« The last triangle with three adjacent edges created

At the end, the final situation of the open boumgdaratches
exactly the last triangle to be attached. During ékecution of the
algorithm, there will be at least one open bound@here should be
multiple open boundaries in the case of objectsoltugically
equivalent to a torus or multiple torus. The opeamurmaries are
stored in a list.

The Algorithm

The algorithm is presented below. Initially, thegaithm
searches for the first isocube and then procebsefirst case. The
while loop is done while there are open boundandse processed.
The next isocube is obtained by processing the liaffedge from
the open boundary. The list of connected triangidjsicent to the
given halfedge is determined. The triangles areesddod the solid
model according to the case classification and aperopriate
processing is done.

C — retrieve First Cube ()

solid — process Case t)(

while < exist open boundary to be processeath>
he — < get boundary edge from open boundary >,
Cc — < get next active cell >h§),

triangle Stack-— < triangle active cell >,

while < exist triangle in stack do,

triangle — <get triangle from stack >,

:  <insert triangle using the appropriate routingriagle),
10: end while,

11: end while.

CoNoTRrONE

TheFirst Triangle

Figure 9 shows the steps to create the first th@ang is
necessary to firstly apply M VSF, two MEVs and oneM EF. Two
circuits of halfedges are created. The algorithnicutates the
normals of both faces and the face with a normahtpg to the
external side is an internal face. The other fametains the open
boundary and it is pushed in the stack..

1: processCaset)(

2: triangle — processCube],

3:v; « triangle.get_first_vertex (),

4:v, — triangle.get_second_vertex (),

5:v; ~ triangle.get_third_vertex (),

6: solid « MVSF (Vl),

7: MEV (solid, vy, V»); MEV (solid, v, v5); MEF (solid vy, v3),
8: openBoundaryList.Add (get_open_boundary (sajiy,

9: return solid.

v3

i/

o o . . -

(b) MEV (c) MEV (d) MEF

Opened

1

(a) MVSF

Figure 9. The first triangle is created.
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Triangle with One Edge Created

The third vertex does not belong to any open bognda is
necessary to apply oéMEV and oneM EF. The open boundary is
automatically updated. Fig. 10 shows the steps remte this
triangle.

1: processCase?2 (solide, v3)

2: MEV (solid,heget_start_vertex ()s),
3: MEF (solid,vs, heget_end_vertex ().

/

Open boundary

/% /

(b) MEV

,/

E D
(a) Initial

(c) MEF

Figure 10. Triangle with one edge created. The final open boundary is
represented by the following circuit of halfedges: A-Na-Nb-C-D-E.

Triangle with two Adjacent Edges Created

It is necessary to apply on®EF. There are two possible
situations, the third vertex is after or before #uge in the open
boundary. Fig. 11 shows the steps to create tlangie when the
third vertex is after the edge in the circuit.

1: processCase3 (solitle,vs)

2: if henext ().get_end_vertex () =5 then,
3: MEF (solid,heget_start_vertex (Js),
4: ese

5: MEF (solid,vs, heget_end_vertex (),
6: endif.

Open boundary

A

{b) MEF

Open boundary

/

(a) Initial

Figure 11. Triangle with two adjacent edges created. The final opened
boundary is represented by the following circuit of halfedges: A-Na-D-E-F.

Triangle with one Edge and the Third Vertex Created on
the same Open Boundary

The edge and the third vertex are on the same itiafu
halfedges. Then, it is necessary to create two edyes connecting
the third vertex with the edge. This is done bylgipg M EF twice
(see Fig. 12). A new open boundary is created ddeédto the list.
The sequence that the vertices are supplied tME is important,
the halfedge associated with the first vertex tesrtew circuit of
halfedges.

1: processCase4 (solide, v3)

2: new OpenBoundary MEV(solid, heget_start_vertex()s),
3: MEF (solid,heget_end_vertex (Vs),

4: openBoundaryList.Add (hew OpenBoundary).
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Figure 12. Triangle with one edge and the third vertex created on the same
open boundary. Initially, the solid model has one open boundary: A-B-...-
R-S. After the triangle attachment, the solid model has two open
boundaries: A-B-...-H-I-Na-P-Q-R-S

Triangle with one Edge and the Third Vertex Created on
Different Open Boundaries

The edge and the third vertex are on different dpamndaries.
This situation occurs in solids topologically ecalent to a torus.
This way, it is necessary to create a through holes case is
implemented by applying ot€FMRH, oneMEKR and oneM EF
(see Fig. 13). The open boundary is deleted andvedhfrom the
stack.

1: processCase5 (solide v;, open, aux_open)
2: KFMRH (solid, open, aux_open),

3: MEKR (solid,heget_start_vertex()s),

4: MEF (solid,v;, heget_end_vertex (),

5: openBoundaryList.Remove (aux_open).

—E . F 5

N NS

Open boundaries

LVAVAVAVA S VAVAVAVA

(b) KFMRH
R

D Q N T
(a} Initial

(c) MEKR

Figure 13. Triangle with one edge and the third vertex created on different
open boundaries. Initially, the solid model has two open boundaries: A-B-
..-M-N and 1-2-3-4-5-6. After the triangle attachment, the solid model has
only one open boundary: A-B-...-L-Nd-1-2-3-4-5-6-Na-N.

Triangle with Three Adjacent Edges Created

In this case the triangle is already created, ti@hing is done.
The associated open boundary is deleted and renfovadhe list.

1: processCase6 (open_Boundary),
2: openBoundaryList.Remove (open_Boundary).
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Converting CSG models into Meshed B-Rep Models Using ...

Results

In Fig. 14 the B-Rep model construction is illugtdh In a first
step the vertex of each cube that lies on the C®8ehboundary
are classified as being internal or external to sbkd (Fig. 14.a).
With this classification, the isopoints are easifientified (Fig.
14.b). The isopoints are connected (Fig. 14.c) upho the
development of one (Fig. 15.a) or more open boueslgFig. 15.b)
using Euler Operators. This approach avoids amtéguiand
generates a solid representation with a valid wgpl(Fig. 14.d).
More complex solids were used to test the algoridmmd can be
seen in Fig. 16, Fig. 17 and Fig. 18.

(c

Figure 16. Simple Boolean operations: (a) union with 143.698 triangles, (b)
subtraction with 76.796 triangles, (c) intersection with 61.184 triangles.

) .l'ingn'im' ‘
|

icl

Figure 14. Solid construction steps: (a) cubes with internal vertices

highlighted, (b) isopoints, (c) isopoints connected, (d) final solid. . . .
ghiig (b) P (c)isop @ Figure 17. Die constructed with one box and several spheres (246.272

triangles).

Figure 18. Complex solid with 553.632 triangles).

Conclusions and Future Works

The CSG representation defines an implicit repriegiem where
the 3D domairD must be discretized and evaluated. Then, the best
performance is provided by algorithms that evemdbexecute the
point classification algorithm at empty cells. Théct makes the
hierarchical geometric, interval-based and coneeti approaches
very costly.

When an active cell is visited, it is necessarkrow if a new
open boundary must be created or not. Conventiprigbagation
o 15 Sambles of 4 boundarics: bedinni - i based approaches cannot know when such happenslaags
cl)gnusrt?ucti-on SVTIE iil)?o:gi?)inedoggu:crjlaers);, ((l?)) infgrlggldr}gateostepewsi&ls pushes adjacent active cells to a stack or qume.'fac.t.mCreas.es
opened boundaries, (c) advanced step of the solid construction. too much the memory usage. Another drawback is¢hiéication if
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the adjacent active cell was already visited or Ipefore pushing
them.

Marching cubes algorithm implementation often usekup
table of predefined cube configurations. For eaohfiguration
encountered, a match has to be found in the prestkfookup table
with cube configurations, so that a set of triaeglpproximating the
isosurface can be determined. From the programpumng of view,
this method of predefining cube configurations émeir connected
triangles in the correct orientation is tedious anwr prone.

The proposed algorithm has a better computatioadbpnance
as only the vertices of the active cells are ingastd using the
point classification algorithm for CSG models.dtriot necessary to
verify if an adjacent cell was already visited ot,ras the proposed
algorithm has control over visited active cells.eThctive cell
triangulation is easier implemented, as it is netassary to produce
a table with predefined cube configurations, assitdone in a
constructive approach. Further, the triangles mostbe coherently
oriented, as the algorithm will insert the triargglim the correct
orientation.

The algorithm proposed here is based on three ow@icepts:
open boundary, B-Rep/CSG Voxelization mapping amtstructive
triangulation of active cells. The algorithm makese of several
types of adjacency information available in the &pRdata
structure. The proposed algorithm with very few ifiodtions can
be used to generate B-Rep solid models from 3D cakdinages.
Another possible application is the generationasfect B-Rep solid
models from unstructured triangular meshes. B-Rxid snodelers
export triangular meshes for rapid prototyping am@ome special
situations the exported model does not represetdsad boundary.
The algorithm proposed here can be used to findbmsgin the
unstructured triangular that remain open, and garéthm to correct
close them can be used.
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