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Converting CSG models into Meshed 
B-Rep Models Using Euler Operators 
and Propagation Based Marching 
Cubes 
The purpose of this work is to define a new algorithm for converting a CSG representation 
into a B-Rep representation. Usually this conversion is done determining the union, 
intersection or difference from two B-Rep represented solids. Due to the lack of explicit 
representation of surface boundaries, CSG models must be converted into B-Rep solid 
models when a description based on polygonal mesh is required. A potential solution is to 
convert a CSG model into a voxel based volume representation and then construct a B-Rep 
solid model. This method is called CSG voxelization, conceptually it is a set membership 
classification problem with respect to the CSG object for all sampling points in a volume 
space. Marching cubes algorithms create a simple mesh that is enough for visualization 
purposes. However, when engineering processes are involved, a solid model is necessary. 
A solid ensures that all triangles in the mesh are consistently oriented and define a closed 
surface. It is proposed in this work an algorithm for converting CSG models into 
triangulated solid models through propagation based marching cubes algorithm. Three 
main new concepts are used in the algorithm: open boundary, B-Rep/CSG Voxelization 
mapping and constructive triangulation of active cells. The triangles supplied by the 
marching cubes algorithm need not be coherently oriented; the algorithm itself finds the 
correct orientation for the supplied triangles. The proposed algorithm restricts the 
exploration to the space occupied by the solid's boundary. Differently from normal 
marching cubes algorithms that explore the complete sampled space. 
Keywords: solid model, marching cubes algorithm, triangular meshes 
 
 
 

Introduction 
1The Constructive Solid Geometry (CSG) representation allows 

users to define complex 3D solid objects by hierarchically 
combining simple geometric primitives using Boolean operations 
and affine transformations (Hoffmann, 1989). It is a very popular 
and powerful solid modeling scheme, and it is particularly suitable 
for interactive object manipulations and design. Traditionally, CSG 
primitives are defined by simple analytic objects, such as cubes, 
cylinders and spheres. Some recent CSG algorithms can also 
support primitives that are general solid models defined by their 
boundary surfaces. An explicit representation of the boundary is not 
available in a CSG model. 

CSG is a widely used modeling paradigm, but several 
algorithms in different fields, require a description based on 
polygonal mesh. Due to the lack of explicit representation of surface 
boundaries, CSG visualization is not directly supported by standard 
graphics systems. Boender et. al. (1994) showed that in order to 
derive an accurate finite element mesh from a CSG model, a B-Rep 
model has in fact to be derived. They proposed an algorithm based 
in two steps, where the first step is the boundary evaluation of the 
CSG model, which converts the CSG model into a B-Rep 
representation by computation of its boundary. Tobler et al. (1996) 
proposed an approach to convert CSG solid models into B-Rep solid 
models based on the marching cubes algorithm. They focused on the 
marching cubes algorithm and did not explain anything about how 
the B-Rep solid model is created. Kamel and Chen (1991) defined 
an algorithm where the primitives are meshed, and remeshing is 
performed on the interference region. This algorithm is very hard to 
implement and has several special cases. 

A solution for the rendering of volumetric CSG models is to 
convert a CSG model into a voxel based volume representation and 
then construct a B-Rep solid model. This method is called CSG 
voxelization, conceptually it is a set membership classification 
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problem with respect to the CSG object for all sampling points in a 
volume space. The marching cubes algorithm (Lorensen and Cline, 
1987) was originally proposed as a tool for CSG voxelization. 
Recently, several authors (Viceconti et al., 1999) have used the 
marching cubes as a tool for visualization of CSG models and/or 
medical images. Lee et al. (2005) used the marching cubes 
algorithm and improved the geometrical quality of the generated 
triangles, that is measured either by its angles and its edge´s length. 

Related Works 

It is estimated that in a 3D domain containing the CSG model, a 
well designed algorithm that visits only the cells intersected by the 
CSG model's boundary, from now refered as active cells, will have a 
computational cost of O(n2/3) (Itoh and Koyamada, 1995), where n 
is the number of cells. Consequently, algorithms which perform an 
exhaustive covering of cells are found to be inefficient 
(computational cost of O(n), spending a large portion of time 
visiting cells which do not contribute to the contour, also named as 
empty cells. The CSG boundary is also named as isosurface. 

The majority of the techniques for accelerating the extraction of 
isocontours do so by limiting the number of cells that are visited, 
thereby reducing the overhead associated with the inevitable search 
for active cells. Newman and Yi (2006) classified the methods that 
minimize unnecessary operations on empty cells according to their 
main processing characteristics: hierarchical geometric approaches 
(Galin and Akkouche, 2000; Whilhems and Gelder, 1992), interval-
based and propagation-based (Bajaj et al., 1996; Itoh et al., 2001; 
Itoh and Koyamada, 1995; Shekkar et al., 1996). Typically, these 
methods minimize the operations via representations that can 
efficiently encode regions of non-activity. 

Wilhems and Van Gelder (1992) were the first to use octrees to 
avoid examining empty cells. The algorithm starts with a setup 
phase that creates the octree. Each node of the octree contains the 
maximum and minimum scalar values among the cells in the sub-
volume. When the user specifies an isovalue, the algorithm starts the 
isosurface-finding phase, which examines the volume by traversing 
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from the root of the octree. All the sub-volumes with minimum 
values higher than the isovalue or maximum values lower than the 
isovalue are then excluded. Galin and Akkouche (2000) proposed a 
recursive octree subdivision algorithm until a given level of 
precision is reached, converging to the implicit surface. The 
algorithm propagates through an octree inflating and deflating 
strategy. 

Interval-based representations are another class of data 
structures that are useful in avoiding traversal of empty cells. One 
advantage of many interval-based approaches is their operational 
flexibility; since these approaches operate in an interval space rather 
than in the geometric space of the mesh. Shen and Johnson (1995) 
proposed an interval-based isosurface extraction algorithm. The 
algorithm is divided into two parts: setup and isosurface extraction. 
The algorithm uses the concept of cell's extreme value that is 
defined as the maximum and minimum scalar values at the corners 
of the cell. Straightforwardly, only those cells that have lower 
minimum value and higher maximum value than a given isovalue 
are intersected by an isosurface. To efficiently and accurately locate 
candidate cells without searching the entire set of data, they sort the 
cells by their extreme values. The isosurface extraction algorithm 
locates all active cells and polygonizes them. 

Several propagation-based approaches generate the isosurface 
by recursively visiting adjacent cells. The adjacent cells are inserted 
into a queue. The cells inserted in the queue are marked, so that they 
are not inserted twice. The cells are removed from the queue and 
they are triangulated by the Marching Cubes method or some other 
polygonization method. The cells adjacent to the just processed cell 
that are not marked, are inserted in the queue. By repeating the 
above, an isosurface is generated when the queue becomes empty. 
The cell propagation heuristic can be roughly classified as: (1) 
propagate through isocurves with fixed coordinate (breadth-first 
search) (Bajaj et al., 1996; Itoh and Koyamada, 1995), (2) 
vertex/edge adjacency (Itoh et al., 2001), (3) no heuristic at all 
(Shekkar et al., 1996). 

Propagation-based approaches to isosurface construction avoid 
traversal of empty cells since the propagation process visits only 
active cells. Propagation-based approaches do not use forward cube 
by cube marching but rather propagate outward from some active 
seed cell. Most propagation-based approaches require manual 
selection of seed cells since automatic selection can be challenging. 
For example, the method of Shekkar et al. (1996) recursively 
propagates from a user specified cell using isosurface connectivity. 
However, a few automatic seed cell selection schemes exist (Bajaj et 
al., 1996; Itoh and Koyamada, 1995; Kreveld et al., 1997). Another 
advantage to using a propagation approach over other techniques is 
that surfaces are easily transformed into a triangle strip 
representation for more efficient rendering. Also of importance is 
the fact that shared vertices between cells are more efficiently 
located, as we are considering only a single closed contour at any 
given time. One drawback of the propagation-based algorithms 
proposed in the literature is that adjacent cells or triangles are stored 
in a stack or queue. 

A simple mesh can be enough for visualizations purposes. 
However, when engineering processes are involved, a solid model is 
necessary. A solid model ensures that all triangles in the mesh are 
consistently oriented, i.e. have their vertices listed clockwise 
counterclockwise. A finite element mesh is valid only if the mesh 
formed by the external faces of its elements is closed and orientable 
(Mäntylä, 1988). An algorithm for calculating volumetric properties 
generates meaningful results only if the mesh models a closed and 
oriented surface. The solid model created through the algorithm 
proposed in this work explicitly guarantees all those conditions. 
Using a B-Rep data structure, the adjacency information required by 
the algorithm presented in this paper is explicitly available. 

It is proposed in this work an algorithm for converting a CSG 
model into a triangulated B-Rep solid model through a propagation 
based marching cubes algorithm. The triangles supplied to the 
algorithm need not be coherently oriented; the algorithm itself finds 
the correct orientation for the supplied triangles. The technique 
presented here is new as the propagation traverses the CSG's 
boundary that is represented in the B-Rep data structure. It is not 
necessary to mark visited cells and the algorithm uses no queue or 
stack for adjacency cell storage. Further, the algorithm has only one 
phase, eliminating the setup necessary in other approaches. In the 
CSG voxelization, the setup phase corresponds to evaluate the CSG 
model over the entirely 3D domain. 

The rest of the paper is organized as follows. In section 2, the 
concepts behind the CSG representation are briefly explained and 
the recursive algorithm to query CSG models is showed. In section 
3, the concepts of the B-Rep and the Euler operators are briefly 
explained. The Euler operators are used in the definition of the 
proposed algorithm. In section 4, the marching cubes algorithm is 
briefly explained. In section 5, the proposed algorithm is presented. 
Some results are presented in section 6. Discussion and future works 
are presented in section 7. Conclusions are presented in section 8. 

 

 
Figure 1. The five non-trivial Boolean combinations of two sets (from left 
to right): A+B= {a : a ∈∈∈∈ A or a ∈∈∈∈ B}, A∩∩∩∩B= {a: a ∈∈∈∈ A and a ∈∈∈∈ B }, A-B= {a : a 
∈∈∈∈ A and a ∉∉∉∉ B}, B-A= { a: a ∉∉∉∉ A and a ∈∈∈∈ B}, and the symmetric difference 
(A-B)+(B-A).  

 

 
Figure 2. The instances A, B, and E are shown (left) superimposed on the 
same reference grid. The solid S was specified by the following sequence 
of commands: A=Block(2,1,4); B=Rotated(A,Z-axis,-90); C=A+B; 
D=Block(1,1,1); E=Translated(D,1,0,1); S=C-E; The corresponding CSG 
graph (right) has 2 leaf primitives, 2 transformation nodes, and 2 
regularized Boolean operation nodes. 

CSG Representation 

Constructive representations capture a construction process, 
which defines the solid by a sequence of operations, that instantiate 
or combine modeling primitives or the results of previous 
constructions. They often capture the user's design intent in a high 
level representation that may be easily edited and parameterized.  

CSG is the most popular constructive representation. Its 
primitives are parameterized solids, which may be simple shapes 
(such as cylinders, cones, blocks) or more complex features suitable 
for a particular application domain (such as slots or counter-bored 
holes). The primitives may be instantiated multiple times (possibly 
with different parameter values, positions, and orientations) and 
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grouped hierarchically. Primitive instances and groups may be 
transformed through rigid body motions (which combine rotations 
and translations) or scaling. 

The transformed instances may be combined through 
regularized Boolean operations: union, intersection, and difference. 
These regularized operations perform the corresponding set 
theoretic Boolean operations, and then transform the result into an r-
set by applying the topological interior operation followed by the 
topological closure. They always return valid (although possibly 
empty) solids. Although other Boolean operations may be offered, 
these three are convenient and sufficient, because amongst the 16 
different Boolean combinations of two sets, A and B, 8 are 
unbounded, 3 are trivial, and only 5 are useful for solid modeling: 
the union A+B, the intersection A ∩ B, the differences A-B and B-A, 
and the symmetric difference, (A-B)+(B-A), as shown in Fig. 1.  

Figure 2 illustrates how a simple syntax may be used to specify 
a solid in CSG. Parsing such syntax yields a rooted graph, whose 
leaves represent primitive instances and whose internal nodes 
represent transformations or Boolean operations that produce solids. 
The root represents the solid corresponding to the CSG graph. CSG 
representations are concise, always valid in the r-set modeling 
domain, and easily parameterized and edited. Many solid modeling 
algorithms work directly on CSG representations through a divide-
and-conquer strategy, where results computed on the leaves are 
transformed and combined up the tree according to the operations 
associated with the intermediate nodes. However, CSG 
representations do not explicitly carry any information on the 
connectivity or even the existence of the corresponding solid. These 
topological questions are best addressed through some form of 
boundary evaluation, where a whole or partial B-Rep is derived 
algorithmically from the CSG model. 

Point Classification for CSG Solids 

The CSG tree can be viewed as an implicit description of the 
modeled solid's geometry that must be evaluated in order to create 
graphical output or perform calculations. A CSG representation is a 
tree. This immediately suggests a divide and conquer, or recursive 
descent algorithm for computing the point classification. The 
algorithm is designed as follow (Requicha, 1980): 

 
/* Evaluate property P of a CSG tree */ 
P *Tree_P (CSG_Tree *S, args) 
{ 

if (S->op = = <primitive>) 
return primitive_P (S, args); 

else 
return combine_P (Tree_P (S->left, args), 

Tree_P (S->right, args), S->op); 
} 
 
/* Combine two evaluation of P with set operation 0p */ 
P *Combine_P (CSG_Tree *left_P, CSG_Tree *right_P, in 0p) 
{ … } 
 
/* Evaluate P for a primitive */ 
P *Primitive_P (CSG_Tree  *S, args)  { … } 

Boundary Representation (B-Rep) 

B-Rep solid models emerged from the polyhedral models used 
in computer graphics for representing objects and scenes for hidden 
line and surface removal. They can be viewed as enhanced graphical 
models that attempt to overcome some problems by including a 
complete description of the bounding surface of the object. There 
are three primitive entities face, edge and vertex. The geometric 

information attached to them form the basic constituents of B-Rep 
models. In addition to geometric information such as face equation 
and vertex coordinates, a B-Rep model must also represent how the 
faces, edges and vertices are related to each other. According to 
Mäntylä (1988), it is customary to bundle all information of the 
geometry of the entities under the term geometry of a boundary 
model and, similarly, information of their interconnections under the 
term topology. It is possible to say that the topology is a glue that 
ties the geometry. With the objective of algorithm simplification, 
mainly in the determination of the circuit of edges surround a face, 
the halfedge entity was created. It was observed that the edge in the 
original winged-edge data structure (Baumgart, 1975) had two main 
functions: represent the circuit of edges surround the face and to 
represent the real edge. The algorithm to determine the circuit of 
edges surrounds a face was very complex with several rules. Some 
researchers observed that separating these two functions, the 
algorithm becomes much simpler (Toriya and Chiyokura, 1991). 
This way, modern solid modelers have one entity to represent the 
edge itself and the circuit of edges surrounds the face is represented 
by a circuit of halfedges. An edge participates in two circuits, each 
one with opposite directions. The edge is represented by two 
halfedges, each halfedge is used in one circuit. The correct 
orientation of the circuit of halfedges is fundamental to guarantee 
the integrity of a solid model. Fig. 3 shows circuits of halfedges 
surround faces. A face can have holes inside to represent protrusions 
or depressions. In this case a face has one outer loop and zero or 
more inner loops. The loop represents one circuit of halfedges. 

 

 
Figure 3. Planar diagram of a B-Rep solid model with its oriented circuit of 
halfedges. 

Euler Operators 

Euler operators were originally introduced by Baumgart (1975) 
in the context of the winged-edge data structure. In order to 
manipulate the topological entities and at the same time ensure 
validity of the model, the Euler operators are used satisfying Euler's 
law. The Euler-Poincaré law relates faces, edges, vertices and inner 
loops in a quantitative manner for solid models: 

 
v – e + f = 2 - 2 h + r (1) 
 

where v is the number of vertices, e is the number of edges, f is the 
number of faces, h is the number of through holes and r is the 
number of internal loops. It has been proved by Mäntylä (1988), that 
Euler operators form a complete set of modeling primitives for 
manifold solids. More precisely, every topologically valid 
polyhedron can be constructed from an initial polyhedron by a finite 
sequence of Euler operators. Euler operations represent a 
conceptually clean way to modify a mesh. Insertion and deletion of 
edges, vertices, faces, rings and genus are executed, while a valid 
orientated 2-manifold connectivity is maintained, and they are 
invertible. The five topological operators and their inverse operators 
are illustrated in Fig. 4, basically following a proposal from Mäntylä 
(1988). 
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Figure 4. Planar diagrams of Euler operators. 

 
The first operator is MVSF (Make Vertex Solid Face), it creates 

a new solid with just one vertex and one face. It’s corresponding 
inverse operator KVSF (Kill Vertex Solid Face) is applicable to a 
solid consisting of only one vertex and one face. It removes the 
vertex and the face. The operator MEV (Make Edge Vertex) 
subdivides the circuit of edges surrounds the given vertex, creating 
one edge and one vertex. There is a special version of the operator, 
used in this work, to create a dangling edge. The inverse operator 
KEV (Kill Edge Vertex) removes an edge and a vertex. The 
operator MEF (Make Edge Face) divides a face in two by adding a 
new edge between two vertices. Its inverse operator KEF (Kill Edge 
Face) must be applied to an edge that is adjacent to two distinct 
faces. 

The operator MEKR (Make Edge Kill Ring) joins two distinct 
circuits of halfedges. The new edge is interpreted as belonging twice 
to the new circuit of halfedges, once in its both orientations. The 
inverse operator KEMR (Kill Edge Make Ring), is applicable to an 
edge belonging twice to a circuit of edges. The operator KFMRH 
(Kill Face Make Ring Hole) creates a hole through the solid model. 
Its inverse operator MFKRH (Make Face Kill Ring Hole) removes 
one hole through. 

Marching Cubes Algorithm 

Marching Cubes is an algorithm for computing triangular 
meshes from discrete sampled volume data over voxel-based 
volumes (Lorensen and Clide, 1987). The isosurface is located in a 
cube of eight voxels. The marching cubes algorithm determines how 
the isosurface intersects this cube. Each vertex of the cube is 
classified into positive and negative vertices, depending whether the 
sampled value associated to vertex is greater or not than an isovalue. 
Thus, there are 28=256 possible configurations of a cube. The usual 
implementation stores those 256 configurations in a lookup table 
that encodes the tiling of the cube in each case. A boundary face is 
one of the six sides of a cube. A border is one of the four rims of a 
face. An isovertex is the intersection of an isosurface with a border. 
A boundary edge is the connection between two isovertices within a 
face and an internal edge is the connection between two isovertices 
within a cube. 

The same configuration can be tiled in various ways and the 256 
entries lookup table does not distinguish between those. Those 

ambiguities can appear on the boundary face or inside the cube. 
Nielson (2003) introduced the concept of deciding on ambiguous 
faces by using bilinear interpolation on faces. The internal 
ambiguity arises when two diagonally opposite vertices of a cube 
can be connected through the interior of the cube, creating a kind of 
tunnel. Lewiner et al. (2003) solved the internal ambiguities by 
using trilinear interpolation. 

CSG to B-Rep Conversion Algorithm 

The algorithm traverses the CSG boundary represented by the 
B-Rep data structure using three main concepts: open boundary, B-
Rep/CSG voxelization mapping and constructive triangulation of 
active cells. 

This algorithm classifies each vertex as internal or external 
according to the point classification algorithm for CSG solids. In 
this context, the bilinear and trilinear interpolation are not useful. 
Then, the ambiguity appearing in the boundary face is solved by 
applying the point classification algorithm at the center of the 
ambiguous boundary face (see Fig. 5). The ambiguity appearing in 
the interior of the cube is solved by applying the point classification 
algorithm at the center of the cube (see Fig. 6). 

 

 
Figure 5. Ambiguity appearing on the boundary face. The point 
classification algorithm is applied to the center of the ambiguous 
boundary face and resulted as external (case (a)) or internal (case (b)). 
The configuration in (a) has no internal edges. 

 

 
Figure 6. Ambiguity appearing in the center of the cube. The point 
classification algorithm is applied to the center of the cube and resulted 
as external (case (a)) or internal (case (b)). 

 
The open boundary represents the external contour of the 

triangles already added to the B-Rep solid model and simulta-
neously defines the position where new triangles can be added. It is 
represented as a loop in the B-Rep data structure. Triangles are 
incrementally added to the open boundary. When a new triangle is 
added, the open boundary is recalculated. The open boundary 
defines the traverse direction. 

An active cell is triangulated, and its triangles have boundary 
edges and in some configurations, internal edges are present (see 
Figs. 5(b) and 6(b)). This set of triangles is added to the open 
boundary. After including a triangle with internal edges, the open 
boundary will have internal edges in its composition. After the set of 
triangles associated to this active cell is completely included, the 
open boundary is defined uniquely by boundary edges. 
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The B-Rep/CSG voxelization mapping uses the coordinates 
present in the B-Rep solid model to determine the associated active 
cells. The algorithm searches for new active cells to continue the 
traverse when the open boundary is uniquely composed by boundary 
edges. The boundary edge belongs to one created triangle and using 
its three coordinates the proposed algorithm determines the active 
cell that originated it. One boundary edge has two vertices, and 
based on their coordinates it is possible to obtain the coordinates of 
two adjacent active cells. Using these two results, the proposed 
algorithm determines the next active cell to be used.  

The triangulation of the next active cell happens in a 
constructive manner. At least the boundary edge that was used to 
find the next active cell is known. The proposed algorithm checks if 
adjacent boundary edges are present in any open boundary. This is 
done by using the coordinates of the vertices limiting each boundary 
edge and checking if it is adjacent to the current active cell. The 
active cell configuration is determined using the adjacent boundary 
edges present in the open boundaries and their associated triangle's 
normals. The normal in a B-Rep solid model points outwards. Using 
this set of information some vertex classification is determinated 
without evaluating the point classification algorithm, as shown in 
Fig. 7. The remaining vertex classification is determined using the 
point classification algorithm. 

 

 
Figure 7. The cube configuration is determined by processing its adjacent 
boundary edges present in the open boundaries, the rest of the vertices 
are classified by applying the point classification algorithm. 

 
Once the set of triangles is determined, they are added to the 

open boundary using Euler Operators (see Fig. 8). As a consequen-
ce, the open boundary is automatically updated after the end of the 
operation. There are only six different possibilities of cases to 
implement triangle attachment: 

 

 
Figure 8. The open boundary is defined as a circuit of halfedges, a triangle 
is attached to the open boundary. 

• The first triangle; 
• Triangle with one edge created; 
• Triangle with two adjacent edges created; 
• Triangle with one edge created and a vertex created belonging 

to the same open boundary. The vertex is not adjacent to the 
edge; 

• Triangle with one edge created and a vertex created belonging 
to a different open boundary; 

• The last triangle with three adjacent edges created. 
 
At the end, the final situation of the open boundary matches 

exactly the last triangle to be attached. During the execution of the 
algorithm, there will be at least one open boundary. There should be 
multiple open boundaries in the case of objects topologically 
equivalent to a torus or multiple torus. The open boundaries are 
stored in a list. 

The Algorithm 

The algorithm is presented below. Initially, the algorithm 
searches for the first isocube and then processes the first case. The 
while loop is done while there are open boundaries to be processed. 
The next isocube is obtained by processing the first halfedge from 
the open boundary. The list of connected triangles adjacent to the 
given halfedge is determined. The triangles are added to the solid 
model according to the case classification and the appropriate 
processing is done. 

 
1:  c ← retrieve First Cube () 
2:  solid ← process Case 1 (c), 
3:  while < exist open boundary to be processed > do, 
4:  he ← < get boundary edge from open boundary >, 
5:  c ← < get next active cell > (he), 
6:  triangle Stack ← < triangle active cell > (c), 
7:  while < exist triangle in stack > do, 
8:  triangle ← <get triangle from stack >, 
9:  < insert triangle using the appropriate routine > (triangle),  
10: end while, 
11: end while. 

The First Triangle 

Figure 9 shows the steps to create the first triangle. It is 
necessary to firstly apply a MVSF, two MEVs and one MEF. Two 
circuits of halfedges are created. The algorithm calculates the 
normals of both faces and the face with a normal pointing to the 
external side is an internal face. The other face contains the open 
boundary and it is pushed in the stack.. 

 
1: processCase1 (c) 
2: triangle ← processCube (c), 
3: v1 ← triangle.get_first_vertex (), 
4: v2 ← triangle.get_second_vertex (), 
5: v3 ← triangle.get_third_vertex (), 
6: solid ← MVSF (v1), 
7: MEV (solid, v1, v2); MEV (solid, v2, v3); MEF (solid v1, v3), 
8: openBoundaryList.Add (get_open_boundary (solid, c)), 
9: return solid. 
 

 
Figure 9. The first triangle is created. 



Marcos de Sales G. Tsuzuki et al 

/ Vol. XXIX, No. 4, October-December 2007 ABCM 342 

Triangle with One Edge Created 

The third vertex does not belong to any open boundary. It is 
necessary  to apply one MEV and one MEF. The open boundary is 
automatically updated. Fig. 10 shows the steps to create this 
triangle. 

 
1: processCase2 (solid, he, v3) 
2: MEV (solid, he.get_start_vertex (), v3), 
3: MEF (solid, v3, he.get_end_vertex ()). 
 

 
Figure 10. Triangle with one edge created. The final open boundary is 
represented by the following circuit of halfedges: A-Na-Nb-C-D-E. 

Triangle with two Adjacent Edges Created 

It is necessary to apply one MEF. There are two possible 
situations, the third vertex is after or before the edge in the open 
boundary. Fig. 11 shows the steps to create this triangle when the 
third vertex is after the edge in the circuit. 

 
1: processCase3 (solid, he, v3) 
2: if he.next ().get_end_vertex () == v3 then, 
3:  MEF (solid, he.get_start_vertex (), v3), 
4: else, 
5:  MEF (solid, v3, he.get_end_vertex ()), 
6: end if. 
 

 
Figure 11. Triangle with two adjacent edges created. The final opened 
boundary is represented by the following circuit of halfedges: A-Na-D-E-F. 

Triangle with one Edge and the Third Vertex Created on 
the same Open Boundary 

The edge and the third vertex are on the same circuit of 
halfedges. Then, it is necessary to create two new edges connecting 
the third vertex with the edge. This is done by applying MEF twice 
(see Fig. 12). A new open boundary is created and added to the list. 
The sequence that the vertices are supplied to the MEF is important, 
the halfedge associated with the first vertex has the new circuit of 
halfedges.  

 
1: processCase4 (solid, he, v3) 
2: new OpenBoundary ← MEV(solid, he.get_start_vertex(), v3), 
3: MEF (solid, he.get_end_vertex (), v3), 

4: openBoundaryList.Add (new OpenBoundary). 

 
Figure 12. Triangle with one edge and the third vertex created on the same 
open boundary. Initially, the solid model has one open boundary: A-B-…………-
R-S. After the triangle attachment, the solid model has two open 
boundaries: A-B-…………-H-I-Na-P-Q-R-S 

Triangle with one Edge and the Third Vertex Created on 
Different Open Boundaries 

The edge and the third vertex are on different open boundaries. 
This situation occurs in solids topologically equivalent to a torus. 
This way, it is necessary to create a through hole. This case is 
implemented by applying one KFMRH, one MEKR and one MEF 
(see Fig. 13). The open boundary is deleted and removed from the 
stack. 

 
1: processCase5 (solid, he, v3, open, aux_open) 
2: KFMRH (solid, open, aux_open), 
3: MEKR (solid, he.get_start_vertex(), v3), 
4: MEF (solid, v3, he.get_end_vertex ()), 
5: openBoundaryList.Remove (aux_open). 
 

 
Figure 13. Triangle with one edge and the third vertex created on different 
open boundaries. Initially, the solid model has two open boundaries: A-B-
…………-M-N and 1-2-3-4-5-6. After the triangle attachment, the solid model has 
only one open boundary: A-B-…………-L-Nd-1-2-3-4-5-6-Na-N. 

Triangle with Three Adjacent Edges Created 

In this case the triangle is already created, then nothing is done. 
The associated open boundary is deleted and removed from the list. 

 
1: processCase6 (open_Boundary), 
2: openBoundaryList.Remove (open_Boundary). 
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Results 

In Fig. 14 the B-Rep model construction is illustrated. In a first 
step the vertex of each cube that lies on the CSG model boundary 
are classified as being internal or external to the solid (Fig. 14.a). 
With this classification, the isopoints are easily identified (Fig. 
14.b). The isopoints are connected (Fig. 14.c) through the 
development of one (Fig. 15.a) or more open boundaries (Fig. 15.b) 
using Euler Operators. This approach avoids ambiguities and 
generates a solid representation with a valid topology (Fig. 14.d). 
More complex solids were used to test the algorithm and can be 
seen in Fig. 16, Fig. 17 and Fig. 18. 

 

 
Figure 14. Solid construction steps: (a) cubes with internal vertices 
highlighted, (b) isopoints, (c) isopoints connected, (d) final solid. 

 

 
Figure 15. Samples of opened boundaries: (a) beginning of the solid 
construction with only one opened boundary, (b) intermediate step with 5 
opened boundaries, (c) advanced step of the solid construction. 

 
Figure 16. Simple Boolean operations: (a) union with 143.698 triangles, (b) 
subtraction with 76.796 triangles, (c) intersection with 61.184 triangles. 

 

 
Figure 17. Die constructed with one box and several spheres (246.272 
triangles). 

 

 
Figure 18. Complex solid with 553.632 triangles). 

Conclusions and Future Works 

The CSG representation defines an implicit representation where 
the 3D domain D must be discretized and evaluated. Then, the best 
performance is provided by algorithms that even do not execute the 
point classification algorithm at empty cells. This fact makes the 
hierarchical geometric, interval-based and conventional approaches 
very costly. 

When an active cell is visited, it is necessary to know if a new 
open boundary must be created or not. Conventional propagation 
based approaches cannot know when such happens and always 
pushes adjacent active cells to a stack or queue. This fact increases 
too much the memory usage. Another drawback is the verification if 
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the adjacent active cell was already visited or not before pushing 
them. 

Marching cubes algorithm implementation often use lookup 
table of predefined cube configurations. For each configuration 
encountered, a match has to be found in the predefined lookup table 
with cube configurations, so that a set of triangles approximating the 
isosurface can be determined. From the programming point of view, 
this method of predefining cube configurations and their connected 
triangles in the correct orientation is tedious and error prone. 

The proposed algorithm has a better computational performance 
as only the vertices of the active cells are investigated using the 
point classification algorithm for CSG models. It is not necessary to 
verify if an adjacent cell was already visited or not, as the proposed 
algorithm has control over visited active cells. The active cell 
triangulation is easier implemented, as it is not necessary to produce 
a table with predefined cube configurations, as it is done in a 
constructive approach. Further, the triangles must not be coherently 
oriented, as the algorithm will insert the triangles in the correct 
orientation. 

The algorithm proposed here is based on three main concepts: 
open boundary, B-Rep/CSG Voxelization mapping and constructive 
triangulation of active cells. The algorithm makes use of several 
types of adjacency information available in the B-Rep data 
structure. The proposed algorithm with very few modifications can 
be used to generate B-Rep solid models from 3D medical images. 
Another possible application is the generation of correct B-Rep solid 
models from unstructured triangular meshes. B-Rep solid modelers 
export triangular meshes for rapid prototyping and in some special 
situations the exported model does not represent a closed boundary. 
The algorithm proposed here can be used to find regions in the 
unstructured triangular that remain open, and an algorithm to correct 
close them can be used. 
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