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Density Currents at Steady Regime 
This work brings as its main contribution the study of the phenomenon of density 
currents in non-stratified reservoirs, with flows in steady regimes. Flows are analyzed 
for a wide range of Reynolds and Richardson numbers in the entrance of the reservoir. 
Based on this hypothesis, a hybrid numeric model is presented considering the Reynolds 
Transport’s Equation – focusing on the conservation for volume, mass and momentum – 
with the intention of obtaining three-dimensional components of velocities, reduced 
acceleration of gravity and geometric characteristics of currents along the reservoir. It 
is possible to notice in the numeric simulations, mainly, the need of complementation of 
the model that refers to the inclusion of the entrainment coefficient and the analysis in 
the unsteady regime. 
Keywords: density current, laser velocimetry, stratified flowsyword 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1According to Alavian et al. (1992) within the area of 

Environmental Fluid Mechanics density currents represent an 
important sub-area of the stratified turbulent flows. Those are 
nothing else than the insertion of the flow of a fluid into a reservoir 
that contains another fluid of lower or higher density than the first 
one, i.e. density currents or gravity currents are the result of the 
interaction of two or more fluids of different density – a widely 
common natural phenomenon. 

These density differences may be the result of fluids having 
different temperatures, concentrations of sediments in suspension or 
concentration of dissolved solids, of different salinity or distinct 
fluids (Birman and Meiburg, 2006). 

The subject can be studied in several areas of science and 
engineering, cited by Tsihrintzis and Alavian (1997): geophysics, 
hydraulics, limnology, heat and mass transfer and weather forecast. 
Its application within the environmental area has been drawing 
significant attention in recent times. 

We may see density currents resulting from dense and not very 
dense inflows, whether they occur in stratified lakes or reservoirs or 
not. 

Density currents are governed by the following equations: 
momentum, continuity and volume conservations, mentioned by 
Hauenstein and Dracos (1984). They also include forcing functions, 
boundary conditions and mixing locating regions. A combination of 
laboratory and field experiences and analytical and/or numerical 
approximations are necessary for a better understanding of these 
phenomena. 

Field experiments can be carried out for situations when the 
geometric features of the reservoirs and inflows have little 
complexity. Such experiments must attain measures of the general 
condition of the reservoir and of the behavior of the density currents 

                                                           
Paper accepted February, 2010. Technical Editor: Francisco Ricardo Cunha 
 

and, simultaneously, detailed measures for the definition of mixture 
turbulent processes (according to Barbosa, 1999; Alavian et al., 
1992). It is important to evolve to a greater understanding of how 
the phenomenon can influence the transport and the mixture of 
materials, on the heat transfer and on the dissolved and suspended 
substances. 

It is extremely urgent to carry out a reasonable number of 
laboratory experiments. This offers an important advantage 
regarding controlled visual inspections, programmable conditions 
and rapid flow variations for the simulation of density currents. The 
input data and those attained by these experiments are essential for 
the modeling that may be used for a better arrangement of the 
reservoirs and environmental forecasts that are, at least, minimally 
reliable. 

The development of currents in channels with variable 
inclination and in stratified water environments (with different 
densities) demands more studies, given that they are localized 
events. In these cases, the modern optical devices for two-dimension 
instantaneous observations offer new opportunities for data 
collections, studied by Barbosa (1999). For example, it is possible to 
mention the LDV (Laser Doppler Velocimetry), the PIV (Particle 
Image Velocimetry) and the LIF (Laser Induced Fluorescence), 
among others. 

In addition, new advances in the development of analytical 
and/or numerical modeling of the currents inside the reservoirs, 
conciliating the large scale behavior and the appearance of localized 
turbulent events, are still necessary (Akiyama et al., 1994). 

This study may serve as a basis to connect density current 
models and global dynamic behavior models of lakes and reservoirs. 

Nomenclature 

A = cross-section area of density current, cm2

b = width of density current, cm 
Cf = drag coefficient, dimensionless 
d = infinitesimal quantities  
E = entrainment coefficient, dimensionless 
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F = force, N 
Fr = Froude number, dimensionless 
fsi  = proportionality factor for the implicit simulation 
g’ = reduced gravity acceleration, m/s2

h = thickness (depth) of density current, cm 
L = length of reservoir, cm 
Q = volumetric flux, cm3/s 
Re = Reynolds number, dimensionless 
Rh = hydraulic radius, cm 
Ri = Richardson number, dimensionless 
S = declivity, dimensionless 
SC = closed surface 
t = time, s 
u = x-component velocity, cm/s 
v = y-component velocity, cm/s 
V = Volume, cm3

Ve = Vendernikov number, dimensionless 
V = velocity field, cm/s 
VC = control volume 
w = z-component velocity, cm/s 
m = mass, g 
s = direction, surface 
Greek Symbols 
ρ = density, kg/m3 
θ  = slope angle, degrees 
Subscripts 
ms  relative to mass 
ss relative to surface 
r reservoir 
sub submersion point 
o entrance of reservoir 
1 relative to the internal diameter of the internal tube 
2 relative to the external diameter of the internal tube 
3 relative to the internal diameter of the external tube 

Explaining the Phenomenon 

The main studies on the insertion of affluents in reservoirs that 
have been developed so far deal with density currents that spread in 
the inclined bottom of the reservoir, as shown in Fig. 1. It is possible 
to observe that for a determined depth the flow of the density 
current gets separated in the bottom. This takes place due to the fact 
that the density of the fluid of the reservoir is the same or higher 
than the density of the current. It is important to highlight that many 
times not all of the five flow zones manifest themselves in all of the 
cases. It is possible, for example, the occurrence of only two of them 
(zones 2 and 3). 

 

 
Figure 1. Density current spreading in a reservoir. 

 
The approximation region (zone 1) consists of a density flow ρo 

and can be analyzed by using the hydraulic approach of channels 

with free surface, using experimental data and empirical relations, 
according to Chow (1959). Zones 4 and 5 will not be portrayed by 
this study. 

After establishing the density current, there is a flow steady 
regime (expected when there is amplification and overlapping of 
vortical waves).  

The most complex cases regarding density currents can be 
separated into two domains, which are based on the Richardson 
number at the entrance. They are: 

• momentum domain; 
• density difference domain. 
For extremely critical regimes at the entrance, these two 

domains will exist and for subcritical regimes, just the latter will be 
present. 

Figure 2 shows both domains for a three dimensional density 
current. 

 

 
Figure 2. Three dimensional density current on a slope. 

 
The boundaries of the submersion point, hsub, are given by Eq. 

(1), which refers to data of laboratory experiments: 
 

4
1

)08.17.0( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

o

o
oosub h

SbFrhh
 (1) 

 
This equation is valid to hsub > ho. 
Both domains will be treated by one-dimensional integral forms 

of the equations of volume, continuity and momentum applied to a 
prismatic control volume of infinitesimal length and finite width and 
thickness. 

Phenomenon Governing Equations 

Based on Reynolds Transport’s Equation, the referred equations 
in their general forms are: 

 
Volume conservation: 
 

0=⋅+
∂
∂

∫∫∫ SCVC
AdVdV

t

rr

 (2) 
 
Mass conservation:  
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ρρ

 (3) 
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Momentum equation: 
 

ssmsSC sVC s FFAdVudVu
t

+=⋅+
∂
∂

∫∫∫
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ρρ
 (4) 

 
where: 

• VC is the control volume; 
• SC is closed surface A, which recovers the control 

volume; 
•  is the field of flow velocity; kwjviuV

rrrr
++=

• us is the velocity component of the referred direction; 
• Δρ is the density difference between the density current 

and the receptor reservoirs; 
• Fms and Fss are the mass and surface forces acting on the 

control volume towards the referred direction 

Simplifying Hypotheses 

• Permanent and one-dimensional flow; 
• Hydrostatic distribution of the pressures; 
• Isotropic and homogeneous turbulence; 
• Similar velocity and density profiles; 
• Incompressible flow; 
• Velocity and density uniform profiles at the entrance and 

exit of the control volume; 
• Drag at the liquid-liquid interface is considerably small; 
• There is only moment flow through the perpendicular 

sections towards x. 

Control Volume 

The configuration of the control volume, shown in Fig. 3, is 
valid for both domains. 

 

 
Figure 3. Control volume of a density current. 

 
The additional variables in Fig. 3 are: 
• x, y and z refers to coordinate system; 
• u, v and w are velocities components of density current in 

directions x, y and z, respectively; 
• the subscript “r” refers to reservoir conditions; 
• infinitesimal quantities are denoted for differential “d”. 
In the first domain, the upper face of the control volume is under 

the action of the atmospheric pressure, and in the second, of the 
water column of the reservoir (the flow is submerged). 

According to Barbosa (1999), solving the Eqs. (2), (3) and (4) 
for both domains, the differentials equations are: 

Equations for the Control Volume – First Domain 
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( ) Euhuhb
dx
d 2=

 (6) 
 

( ) 0=′uhbg
dx
d

 (7) 
 

( ) ( ) buCbhg
dx
dhbsenghbu

dx
d

f
222 cos

2
1

−′−′= θθ
 (8) 

 

( ) bvCbhg
dx
duvhb

dx
d

f
22

2
1cos

2
1

−′= θ
 (9) 

 

( ) θcoshbguwhb
dx
d ′−=

 (10) 

Equations for the Control Volume – Second Domain 
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In order to simplify the numerical solutions of differentials 

equations, the explicit derivatives are established. 

Explicit Differential Equations – First Domain 
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• entrainment coefficient, E; 
• the calculation grid; 
• and the proportionality factor for the implicit simulation of 

the differential equations, fsi. 
 

Explicit Differential Equations – Second Domain 

( )
hb

bhEg
dx
gd +′

−=
′ 2

 (21) 

The output variables are presented in a table with values of the 
desired calculation distances for each calculation section: 

• longitudinal reduced acceleration g’; 
• three components of the velocity (u, v and w) along x; 
• thickness h;  

k

E
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v
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 (22) 

• width b; 
• hydraulic radius, Rh; 
• and the Richardson (Ri), Reynolds (Re) and Vendernikov 

(Ve) numbers of the flow.  
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In addition, there is also the coefficient and the forces that can 
be calculated, but they were not presented. 
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Results 
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 (25) 

The simulations that were carried out were compared to 
experimental data developed by the authors using an experimental 
apparatus of the Engineering School of São Carlos – University of 
São Paulo. 

 
( )

hb
wbhE

dx
dw +

−=
2

 (26) 

All the simulations were carried out with longitudinal spacing (x 
direction) of the control volume of 0.01 cm. Some simulated 
quantities such as velocity components v and w, the hydraulic radius 
of the current and the Richardson, Reynolds and Vendernikov 
numbers, as shown in charts (c) and (d) of Figs. 4, 5, 6 and 7, do not 
present experimental proof, either because they are indirectly 
attained from basic variables or because this work does not deal 
with their experimental measures (in this case they fit as velocity 
components v and w); 

 
In the equations above: 

• h is the depth; 
• b is the width; 

Other variables could have also been plotted such as forces and 
drag coefficient. They were not, but the program allows their 
calculation. 

• g´ is the reduced gravity; 
• E is the entrainment coefficient; 
• θ is the reservoir slope angle; 

Each simulation in the laboratory is identified by a number that 
has five digits representing: 

• Cf is the drag coefficient of current density. 

• the 1st digit shows the type of declivity: 1 for angles of 
12.5 degrees and 2 for those ranging from 4 to 12.5 
degrees; 

Numerical Solution of the Explicit Differential Equations 

According to Akyiama et al. (1994) and Barbosa (1999), the 
equations of the topic above are numerically solved through the 
regressive and central finite differences of first and second orders 
with implicit approximation. 

• the 2nd digit shows the type of roughness: 1 for smooth 
bottoms and 2 for rough ones; 

• the 3rd digit represents the density of the inflow mixture: 
1 for d = 1.005, 2 for 1.015, 3 for 1.025 and 4 for 1.035; The program used for the calculation of the previous equations 

was developed using Visual Basic Windows–Excel®.  • the 4th digit represents the width of the channel or the 
hydraulic depth at the entrance: 1 for b = 4.9 cm, 2 for b = 2 
cm and 3 for ho ≠ 0.7 cm; 

The program is self-explanatory regarding the entrance 
variables: 

• fluid viscosity (assumed as constant and invariable); • the 5th digit shows the amount of inflow: from the smallest 
ones (1) to the quantity defined for each series (the 
maximum value of the last digit corresponds to the highest 
attained flow). In order to vary the flow of the inflow, an 
option was made towards the valve control. The flow can 
be varied from 4 to 160 cm3/s. 

• geometric features of the entrance section, ho and bo; 
• velocity and the reduced acceleration of the inflow at the 

entrance, uo and g’o; 
• slope angle, θ ; 
• length of the reservoir, L; 

Figures 4 to 7 display the simulations carried out and their 
comparisons with some experimental data. 

• calculation grid (towards x); 
• length between the calculations points. 
 

The calibration parameters are: 
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Figure 4. Simulation of experiment 21433 (E = 0.07; fsi = 0). 

Comments and Conclusions 

• Besides being second order for finite differences (first order for 
the first calculation station), the numerical treatment method 
still brings a better accuracy to most of the calculations by 
means of implicit approximations of the second member of the 
ordinary differential equations; 

• iterative calculations were carried out for all of the equations, 
aiming at refining the value of the referred variable for each 
calculation station; 

• the chosen base-variable to attain the refinement of the 
convergence is the longitudinal velocity u, for it is calculated 
through the most complex differential equation. Generally, the 
number of necessary iterations for such convergence is no 
higher than four; 

• the Runge-Kutta method was tested for some cases, but in 
relation to the experimental data it did not present good results, 

neither regarding convergence nor accuracy; 
• depending on the values adopted for the entrainment 

coefficient (E) and on the characteristics of the implicit 
calculation (fsi) of the forcing function, there are instabilities 
and not convergences for certain simulations. However, it is 
possible to work within a range of values for fsi and E where 
the convergence is attained without problems, and whose 
accuracy is in charge of the refinement of such parameters; 

• for the cases that are supercritical at the entrance, it is possible 
to work with fsi values between 0.45 and 0.50 and E values 
between 0.10 and 0.16. In such cases, the accuracy of the result 
does not vary significantly. It is also possible to work with fsi 
values between 0 and 0.05 and E between 0.065 and 0.08 in 
subcritical cases. 
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Figure 5. Simulation for experiment 21434 (E = 0.082; fsi = 0). 

 
• for cases of approximated forecast, it is possible to work with 

fsi = 0 and E = 0.075 for the subcritical cases and with fsi = 0.47 
and E = 0.13 for the supercritical ones; 

• experiments 21433 and 21434 do not present submerging 
points. On the other hand, experiments 21435 and 21436 
present them, and the program identifies them with 
satisfactory precision. The validity of the program does not 
lie on the fact regarding the identification of the submerging 
point, given that it is carried out at the beginning of the 
program through Eq. (1), but by the fact that the behavior of 
the features of the density currents follows what was 
experimentally observed, that is: 
1. a growth until the submerging point and then a drop in the 

thickness of the current; 

2. a constant drop and a reversion of the direction of 
component w of the velocity so that, right afterwards, it 
will come close to zero at large distances from the 
entrance of the reservoir; 

• for the cases where there is a hydraulic jump (the submersion 
itself), it is possible to notice from Figs. 6 and 7 that the 
tendency of velocity components w is to reduce at the area 
presenting a large amount of movement, become negative at 
the submerging area and afterwards reduce intensity, tending 
towards a value close to zero; 

• the simulation also confirms the rise in component v at the 
same time there is a drop in the value of component u. Also, 
the transversal velocity tends toward zero values when the 
current moves away from the reservoir entrance; 
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Figure 6. Simulation for experiment 21435 (E = 0.11; fsi = 0.475). 

 
• all of the simulated cases portray situations when the Reynolds 

and Richardson numbers tend to constant values when the 
longitudinal distance is increased, confirming the suppositions 
considered by other authors: Ellison and Turner (1959), 
Hauenstein and Dracos (1984), Alavian (1986), Akiyama et al. 
(1994), Tsihrintzis and Alavian (1996), Barbosa (1999). 

• the cases in which the entrances are extremely supercritical – 
experiments 21435 and 21436 – show a better agreement (and 
also convergence) between the experiment and the simulation; 
the subcritical cases, experiments 21433 and 21434, are 
considerably more unstable and, sometimes, present simulated 
results that show fluctuations that do not exist in a real context. 
Such behavior is explained by the slight variation of the 
variables along each calculation station, i.e., the rises in x 
places the calculation points very close to each other, causing 
the truncation errors to be the same as the differences itself; 

• for the same reasons explained above, it is not advisable to 
reduce the increase in the calculation significantly for the 
subcritical cases of the previous item, because this may cause 

simulation instability and the impossibility of attaining results; 
• for the regions where the quantity of movement present 

considerable values, mainly close to the entrance, the simulated 
behavior of the density current width lies on a level that is far 
lower than what was experimentally observed. This happens 
because the equations used for the calculation do not take the 
evolution of the current spreading caused by the diffusive 
effects into account; however, what is observed in terms of 
width – the convective and diffusive effects – is not portrayed 
by the modeling; 

• based on what was explained in the previous item, the inclusion 
of such terms in the modeling for both calculation domains in 
future studies would be interesting; 

• in order to keep the same density current global features, there 
must be an interdependence of the variables. In the subcritical 
cases, it is possible to notice that the longitudinal velocities are 
generally under-dimensioned. On the other hand, the thickness 
of the current usually becomes higher than the real value, so 
that certain compensation can be carried out. 
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Figure 7. Simulation for experiment 21436 (E = 0.15; fsi = 0.48). 

 
As the contributions of this work it can be considered: 
• there are few studies published about evaluations of cross-

sectional component of velocity (y-component); 
• for the evaluation of z-component, this is the first study; 
• there is reasonable agreement between model and 

experimental results; 
• the possibility of modeling with changes in slope bottom of 

the reservoir (e.g. 4.5 to 12.5 degrees at position x = 150 cm). 
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