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An Integrated Control for a Biped 
Walking Robot 
The main objective of this work is to present and discuss some results of an integrated 
control system for a biped robot machine in the dynamic gait. We divided the integrated 
control system in two sub-systems: a control of the trajectories for the legs and the 
Automatic Generator of Trajectory. We designed the Automatic Generator of Trajectory by 
employing a neural network, which updates online the conditions of trajectory for the 
trunk, from the evolution of the gait, with the objective to reduce the magnitude of the 
resultant force and moment. We consider that this scheme is a new and interesting 
approach to generate online the trajectory for the trunk, giving so reflexes for the biped-
walking robot. 
Keywords: Biped-walking robot, dynamic gait, center of pressure, zero moment point 
 
 
 
 
 
 
 
 

Introduction  

One can classify the biped walking robot by its gait. There are 
two major research areas in biped walking robot: the static gait and 
the dynamic gait. When the biped walking robot is in static gait, the 
ground projection of its global center of mass (GCoM) must be in 
the foot-support area (support polygon or stability region). In this 
case, the localization of the center of pressure (CoP) is identical to 
the GCoM. Otherwise, when the GCoM leaves the support polygon, 
the biped-walking robot is in dynamic gait; but the CoP always falls 
within the foot-support area (Goswami, 1999). When the GCoM is 
in front of the CoP, the distance between themselves can provide a 
measure of the walking stability, which defines the static threshold 
of stability. Existing inertial and gravitational forces, this distance 
adds torques that cause turns around the CoP and the possible fall of 
the biped walking robot. Figure 1 presents a scheme for this 
problem.1 
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Figure 1. Biped walking robot in the dynamic gait. 

 
According Figure 1, one can measure the inertial and 

gravitational forces for each center of mass of the link, relative to 
the inertial coordinate system. Resultant force R and moment M are 
caused because the interaction between the foot-support and the 
foot-support area, which are applied to the point P (CoP). In 
addition, one can describe the dynamic of the biped walking robot 
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using a resultant force Fa and a moment Ma. Therefore, one can 
guarantee the postural stability of the dynamic gait if the values of 
the components Fa, Ma, R and M on the foot-support area, are null. 
In this case, one can identify the point P as zero-moment point 
(ZMP). 

The challenge is to endow the biped walking robot with a trunk 
(inverted pendulum) and provide a trajectory for the trunk to 
compensate torques inherent to the dynamic gait. Since the inertial 
and gravitational forces are considered, the dynamic modeling of the 
trunk considers the dynamic interaction between the legs and the 
trunk, establishing a system of non-linear equations whose input is 
the trajectories of the legs. One can design the trajectories to the legs 
and then determine the trajectory for the trunk that assures the 
walking stability (Li, Q. et al., 1992). 

Many papers have proposed to assure the dynamic gait for the 
biped-walking robot, discussing the walking stability, dynamic gait 
design and dynamic control. Goswami (1999) presented a stability 
indicator named FRI-point (foot-rotation indicator), which might be 
restricted to the support polygon. Nevertheless, the FRI-point can 
leave the support polygon; one can use this distance as a measure of 
the walking stability.  

Typically, one can use the trajectories of the trunk to guarantee 
the walking stability for the biped-walking robot. In this case, one 
might design a dynamic gait for the biped-walking robot and, next, 
compute the trajectories of the trunk by considering the ZMP. One 
can look for this algorithm in Yamaguchi et al. (1993), Li et al. 
(1992), Kajita et al. (1991), Takanishi (1989) and Park et al. (1998). 

Shibata et al. (2000) proposed a scheme to control a biped-
walking robot whose objective is to reduce the magnitude of the 
resultant force R and moment M by controlling the acceleration of 
the GCoM. He proved this scheme by considering a biped-walking 
robot with eight degree-of-freedom, without a trunk. Cheng et al. 
(1997) proposed a control system based on a genetic algorithm (GA) 
whose objective was to optimize dynamic gait of the biped-walking 
robot. The project of the control system and the gait generator to the 
biped-walking robot were formulated as an optimized problem, and 
a GA scheme was designed to solve it, using several criteria. 
Hasegawa et al. (2000) designed a hierarchical control system based 
on a GA whose objective was to optimize the consumption of 
energy, by finding a natural gait for the biped-walking robot. They 
proposed an optimized problem, with constraints to compute the 
trajectories to the legs that result in a low power consumption by the 
actuators. 

 The main objective of this work is to present and discuss some 
results obtained from the implementation of an integrated control 
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system for a biped walking robot in the dynamic gait. We divided 
the integrated control system in two sub-systems: a control of the 
trajectories for the legs and the trunk, based on adaptive control 
system, and an automatic generator of trajectory (AGT) for the 
trunk. We designed a AGT by employing a neural network, which 
updates online the conditions of trajectory for the trunk, from the 
evolution of the gait, with the objective to reduce the magnitude of 
the resultant force R and moment M. We considered that the AGT 
scheme is a new and interesting approach to generate online the 
trajectory for the trunk, giving reflexes for the biped-walking robot. 

Nomenclature  

A = Matrix Associated to the Reference State Vector.  

A1 = Diagonal Matrix Associated to the A  Matrix. 

A2 = Diagonal Matrix Associated to the A  Matrix. 

B = Matrix Associated to the Source Vector. 

bd = Dynamic Friction. 
bs= Static Friction (Coulomb Friction). 
C = Couriolis and Centripetal Forces Vector. 
D = Matrix Mass. 
e = Error Vector. 
e = Length of the link, m. 
F = Dissipative Force Vector. 
Fa = Resultant Force Vector, N. 
G = Gravitational Force Vector. 
g = Gravitational force, Ns2/m. 
I = Moment of Inertia, kgm2. 
M = External Resultant Moment Vector, Nm. 
m = Mass of the link, kg. 
Ma = Resultant Moment Vector, Nm. 
P = Center of Pressure. 
R = Resultant Force Vector, N. 
Rn = Normal Force Vector, N. 
Rt = Tangential Force Vector, N. 
sgn(•) = Signal Function. 
{ }ccC zyx = Coordinates of the Center of Mass, m. 

Greek Symbols 

ξ  = Damping Factor. 
θθθθ = Angular Position Vector, rad. 
ττττ = External Force Vector. 
κκκκ = Gain Vector. 
ω = Natural Frequency, rad/s. 
∆∆∆∆ = Resultant Generalized Force Vector between hip and trunk. 
γ = Small Positive Parameter. 
ΩΩΩΩ = State Vector. 
Ω  = Reference State Vector. 

Γ∆̂  = Parametric uncertainties about non-linear term. 
 

Biped Robot Machine 

We conceived our prototype of the biped walking robot by using 
the Solidworks® software (Predabon, E. and Bocchese, C., 2003), 
whose basic philosophy was to elaborate a three-dimensional 
prototype, divided in subsystems properly joined to impose the 
restrictions of the relative movements. The physical parameters 
(mass, volume, moments of inertia, etc) of the prototype are 
calculated automatically, from the characteristics of the materials to 
be used, from the forms, geometric dimensions and coordinate 
systems.  

The biped walking robot comprises rigid links (ankles, lower 
legs, upper legs and hip) interconnected by revolute joints, which 
constitute the legs. Solidary to the hip there is an inverted pendulum, 
with two perpendicular revolute joints that allow a three-
dimensional pendulum movement. Figure 2 illustrates the biped 
walking robot. We employed the rules of Denavit-Hartenberg to 
distribute the Cartesian coordinates systems; in this case, links and 
joints are marked in a systematic way. 
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Figure 2. Biped walking robot model. 

 
Table 1 presents the information about the physical parameters 

of the model. The nth link has its moment of inertia computed in 
relation to the nth Cartesian system, located in the corresponding 
center of mass. The crossed moments of inertia are null. 
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Table 1. The physical parameter of the biped walkin g robot. 

 
 

Length m Mass Kg 
Moments of inertia 

Kg m2 
Center of Mass 

m 
% 

Coordinates 
system 

Link ej mj Ix Iy Iz xC yC zC mj/MT  

0 0.036 0.51 0.004 0.004 0 -0.02 0 -0.04 3.35 SC0 

1 0.061 0.93 0.003 0.001 0.003 -0.01 0 0 6.10 SC1 

2 0.316 0.88 0.001 0.009 0.009 -0.07 0 0 5.77 SC2 

3 0.316 1.12 0.002 0.011 0.010 -0.09 0 -0.01 7.35 SC3 

4 0.110 0.98 0.003 0.003 0.003 -0.03 0 -0.02 6.43 SC4 

5 0.316 0.65 0.008 0.002 0.006 0 0 -0.01 4.27 SC5 

6 0.110 0.98 0.003 0.003 0.003 0.03 0 0.02 6.43 SC6 

7 0.316 1.12 0.002 0.011 0.010 0.09 0 0.01 7.35 SC7 

8 0.316 0.88 0.001 0.009 0.009 0.07 0 0 5.77 SC8 

9 0.061 0.93 0.003 0.001 0.003 0.01 0 0 6.10 SC9 

10 0.036 0.51 0.004 0.004 0 0.02 0 0.04 3.35 SC10 

11 0.050 0.65 0 0.260 0.250 0 0 0 0.04 SC11 

12 0.680 5.10 0 0.430 0.430 0 0 0 37.73 SC12 

Total Mass, MT 15.24 

  

Dynamic Model  

We considered the biped walking robot as a mechanism in an 
open chain. By using the formalism of Denavit-Hartenberg to 
describe its kinematics characteristics, we derived the inverse 
kinematics and the dynamic modeling. For the dynamic modeling, 
the software Maple® V (Geddes et al. 1997) was used to implement 
the formularization of Newton-Euler (Craig, 1995), which permitted 
the automation of the process of symbolic modeling (acronym 
NEROBOT). The basic data necessary to use the program 
NEROBOT are the parameters of Denavit-Hartenberg, the moments 
of inertia, the mass, and the center of mass of each link. Therefore, 
the result is a dynamic model in the matrix form, given in Eq. (1). 

 

( ) ( ) ( ) ∆−−=+++ MFGCD τθθθθθ ɺɺɺɺɺ ,  (1) 
 
We considered the biped walking robot as two subsystems: the 

legs and the trunk (inverted pendulum). The interaction between the 
subsystems is caused by the generalized forces of reaction in the 
joint between the trunk and the hip (∆∆∆∆), which is caused by their 
relative movements. Thus, we admitted that the dynamics of the 
mounted inverted pendulum on a car in movement represents the 
main characteristics of coupling between these subsystems.  

Using the NEROBOT, we obtained the dynamic model of the 
legs, presented in the literal form, due to the complexity and the 
great extension of its model. For simplifications we considered M=0 
in Eq. (1), resulting Eq. (2). 

 

( ) ( ) ( ) ∆−=+++ τθθθθθ GFCD ɺɺɺɺɺ ,  (2) 
 

According Shilling, R. J. (1990), we used the followed friction term: 
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Equation (3) is composed by a viscous friction bv (coefficient of 

viscous friction), by a dynamic friction bd and by a static friction bs 

(Coulomb friction.) Sign stand for the sign function, and γ is a small 
positive parameter. If the speed of the biped-walking robot is 
reduced, the relative effects of static friction become more 
pronounced, as represented in Eq. (3). Otherwise, if the biped-
walking machine speed increases, the viscous friction term becomes 
larger, in comparison with the other friction terms. According to Eq. 
(3), we considered the dynamic friction 62.0bd

j = Ns/m, the static 

friction 91.0bs
j =  Ns/m and γ = 0.2. 

By using the NEROBOT, one can derive a dynamic model for 
the trunk, in which, for simplification, we considered M = 0 and F = 
0 in Eq. (1), resulting Eq. (4) and Eq. (5).  
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Where: 

 

( )[ ] ( )[ ]{ }++++= 12cos12cos
2

1
1212

2
121222 θθ yIemd  

( ) ( )1211
2
113121112 cos2 mmeeem +++ θ   (6) 

 

  ( )( ) ( )[ ] 121112121112
2
1212122 sin22sin θθθθ ɺɺeemIemc y ++−=  (7) 

 

  ( )( ) ( ) 2
1212121112

2
1212123 sin2sin

2

1 θθθ ɺ







 ++= eememIc y  (8) 

 
 ( )( ) ( ) ( ){ }gemmmeg 12111212121111112 coscossin θθθ ++−=  (9)  
 

 ( ) ( )gemg 121112123 sinsin θθ−=   (10) 
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The term 5
0zɺɺ  of the Eq. (4) is an acceleration of the link e5, with 

respect to the inertial frame SC0. The dynamic of the legs of the 
biped-walking robot is considered on the left side of Eq. (4); and the 
generalized force of reaction vector is considered on the right side. 
We considered the generalized forces of reaction vector as 
disturbances to the movement of the biped walking robot.  

Similarly, the terms on the left and the right side of the Eq. (5) 
are related to the dynamic of the inverted pendulum and to the 
generalized forces of reaction vector (which is considered a 
disturbance to the movement of the inverted pendulum), 
respectively. Therefore, Eq. (4) and Eq. (5) show the influences of 
the movements of the dynamic legs in the movement of the inverted 
pendulum and vice-versa.  

Integrated Control System 

The integrated control system is considered by two subsystem 
controls: the first, which uses feedback linearization and adaptive 
control approach and, the second, which is an automatic generator 
of trajectories for the trunk. Similarly, to the control of the 
trajectories of the legs, one can control the trajectories of the trunk 
by employing the computed torque technique (Craig, 1995) whose 
control law contains the terms of the nominal model of the robot, the 
reference model and the uncertainties. Neural networks using radial 
basis functions (RBF) provide the on-line identification of the 
uncertainties. The automatic generator of the trajectories for the 
trunk uses a recurrent neural network (RNN) that manipulates the 
positions and velocities of the legs to compute the positions for the 
trunk, based on the zero moment point (ZMP) criterion. Figure 3 
illustrates the proposed scheme for the integrated control system.  

 

 
Figure 3. Scheme for the integrated control system.  

Feedback Linearization and the Adaptive Control Approach 

Project of the Reference Model 

One can consider a second-order reference model, whose 
locations of the poles in the complex plan agree with the project 
specifications, so that the servomechanism simulates the analogous 
behavior of the standard second-order systems (Ge et. al. 1998). 
This control technique is similar to the supervised learning. The 
reference model provides the desired patterns (targets) for the input 
(references trajectories). To adjust the parameters of the 
compensator and of the model of the plant is used the error between 
the desired patterns and the measured variables.  

By considering a second-order model for each degree of 
freedom, Eq. (11) represents the reference model in the state space 
form. 

 

uBA +Ω=Ωɺ   (11) 
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Diagonal matrix with n products between ζ (damping factor) 
e ω (natural frequency)   
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Diagonal Matrix with n natural frequency (ω), rad/s; 

Project of the Adaptive Control System  

Equation (17) represents a biped walking robot in the state space 
form. One can suppress the dependence of the angular variable to 
simplify the notation. 

 

 ( )∆−Γ++Ω=Ω − τ1BDAɺ  (17) 
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Matrix associated to the state vector, ∈ ℜ2n×2n 

 









≡

×

×

nn

nn

I
B

0
 Matrix associated to the source vector, ∈ ℜ2n×n; (19) 

 









≡Ω
θ
θ
ɺ  State vector, ∈ ℜ2n; (20) 

 
( )FGC ++−≡Γ  Non-linear terms of the model of the robot;  (21) 

 
By admitting that the uncertainties are null, Equation (22) 

defines a control law that includes terms of the dynamic model of 
the robot and the reference model.  

 
 [ ]( ) ∆+Ω−Ω+= −

21
1 AADuBBDτ  (22)  
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Using Eq. (16) into (21) results: 
 

[ ]( ) uBAABA +Ω+=Ω 21
ɺ  

uBA +Ω=Ωɺ  (23) 
 
Equation (23) describes a linear, stable and not-connected 

model. One can define the error of tracking Ω−Ω≡e  as the 

difference between Eq. (23) and Eq. (11), which results:  
 

eAe =ɺ  (24) 
 
By analyzing Eq. (24), one can guarantee the asymptotic 

tracking by an adequate choice of the matrix associated to the state 
vector for the reference model. However, it is necessary the full 
knowledge of the dynamics of the plant to be controlled in order to 
make it possible to cancel the nonlinear effect of the model. 

Inclusion of the Parametric Uncertainties  

The full knowledge about a dynamic model is not possible in the 
practical application. Thus, we admitted the parametric uncertainties 
related to Eq. (21), which does not allow the exact cancellation of 
this term. One can define ττττM, the term based on the model, and ττττR, 
the robust term. Thus, according Ge, et al. (1998) Eq. (22) can be 

changed by Eq. (25), which presents Γ
⌢

 an estimated of the Eq. (20).  
 

[ ]( ) ( )
����������� ������� ��

RM

eAADuBBD
ττ

κτ sgnˆ
21

1 −+∆+Γ−Ω+= −  (25) 

 
Where: 
 
κ  Gain vector; 

( )•sgn  Signal function; 
e  Error of the model  
 
Using Eq. (17) into Eq. (25), one can write: 
 

[ ]( )Γ++Γ−Ω++Ω=Ω −−
RAADuBBDBDA τˆ

21
11ɺ  

 

    [ ]( ) ( )Γ−Γ+++Ω+=Ω − ˆ1
21 RBDuBAABA τɺ  (26) 

 

    ( )Γ
− ∆+++Ω=Ω ˆ1

RBDuBA τɺ   (27) 
 
The difference between Eq. (27) and Eq. (11) results: 
 

( )Γ
− ∆++= ˆ1

RBDeAe τɺ   (28) 
 
Analyzing Eq. (28), we conclude that the objective of the ττττR 

term is to suppress the error in the process of identification of the 

estimated term Γ∆̂ .  

Equation (29) can give the estimated term vectorΓ∆̂ . In this 

context, neural network is an interesting way to emulate the 
unknown terms. In special, we employed a radial base function 
(RBF) neural network because one can adaptively adjust their 
weights based on the Lyapunov stability theory, when the radial 
base function vector is considered fixed (Ge et. al. 1998.) In this 
paper, we employed for each neuron of the RFB network the inverse 
Hardy’s multiquadric. 
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Where the k-th component is: 
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According to GE et al. (1998), one can rewrite Eq. (28) with Eq. 

(29) to assure the stability in the Lyapunov sense. 
 

{ } R
T BDBDvBDeAe τρ 111 −−− +Ξ+•+=ɺ  (31) 

 
In addition, one can consider the following Lyapunov function: 

 

( ) ∑ Π+=
=

−n

i
ii

T
i

T vvPeeevV
1

1,  (32) 

 
Where: 
 

P = PT     Solution of the Lyapunov equation: QAPPAT −=+ ; (33) 

 
ΠΠΠΠI Constant matrix definite positive (34) 

 
Taking the time derivative of the Eq. (32) and using Eq. (31) 

results: 
 

( ) { } ( )[ ] ∑ Π++Ξ+•+=
=

−−− n

i
ii

T
iR

TT vvBDvBDeAPeveV
1

111 22, ɺɺ τρ (35) 

 
According to Eq. (35), one can choose Eq. (36) as an 

adaptability law for the parameters of the RBF net.  
 

1−Π−= DbPev i
T

iii ρɺ   (36) 
 
Using Eq. (35) into Eq. (36) results: 
 

( ) ( )R
TT PBDeeAPeveV τ+Ξ+= −122,ɺ   (37) 

 
Using Eq. (30) and Eq. (33) to rewrite Eq. (37) results: 
 

( ) ( )( )11 sgn2, −− −Ξ+−= PBDekPBDeQeeveV TTTɺ  (38) 
 
The matrixes P and B are definite positive and D is a non-

singular matrix. One can assure the stability in closed loop by 
choosing the components of matrix k according to Eq. (39).  

 

iiik Γ∆≥ ˆ  (39) 

 
Therefore, Eq. (38) is definite negative: 
 

( ) 02, 1 <−−= −PBDeQeeveV TTɺ  (40) 

 
 



João B. Gonçalves and Douglas Eduardo Zampieri 

/ Vol. XXVIII, No. 4, October-December 2006  ABCM  458 

The Automatic Generator Trajectories of the Trunk  

Commonly, to compensate the inertial and gravitational forces 
intrinsic to the dynamic gait, one can endow the biped walking robot 
with a trunk (inverted pendulum). However, this addition causes 
inherent problems to the stability. First, we must to keep the trunk 
under control in the vertical position; we solved this problem by 
employing a servomechanism as showed in section 4.1. The 
generation of trajectory of the trunk that can assure postural stability 
is the second problem. It is worthy to consider the dynamic of the 
contact between the support foot and the ground. The ZMP criterion 
can provide a system of nonlinear dynamic equations to obtain the 
trajectories of the trunk (Takanishi, 1989).  

Gonçalves and Zampieri (2003) addressed the second problem 
by employing a recurrent neural network (RNN) to generate the 
trajectories of the trunk in the automatic form, based on the ZMP 
criterion. They designed an identification scheme to obtain the 
parameters vector of the RNN, utilizing a first-order standard back-

propagation with momentum. This way, a compensative trunk 
motion makes the actual ZMP get closer to the planned ZMP.  

Here, we utilized the same scheme, using an RNN with 2 
intermediate layers, and 20 neurons in each layer. The stop criterion 
was 0.0001 m that is the mean-square error between the actual ZMP 
and the planned ZMP. 

Simulations and Results 

We considered the biped walking robot as two subsystems: 
trunk (inverted pendulum) and the legs. Equations (2), (4) and (5) 
define the dynamic model of the biped walking robot. We 
implemented this model in Matlab/Simulink®, by using the S-
functions (Harman, T. L. and Dabney, J. B., 2003.) Figure 4 
illustrates the disturbances caused by the trunk in the legs (Right 
Side of Eq. 4) and vice versa (Right Side of Eq. 5). The connection 
named "u-trunk" receives the trajectories of the trunk from the 
generator of trajectories for the trunk. The connection "u-legs" 
receives the planned gait from the gait automatic generator.   

 

Mux
Dynamic Model for the Trunk

Eqs. (4) and (5)
1
s

Mux
Dynamic Model for the Legs

Eq. (2)
1
s

1

2

u-trunk

u-legs

Mux MatLab
Function

MatLab
Function

Right Side of Eq. (4)

Right Side of Eq. (5)

Trunk's
Trajectories

Legs'
Trajectories

 
Figure 4. The biped walking model implementation. 

 
Figure 5 illustrates the integrated control system for the biped 

walking robot. The block "Biped Robot’s Model" contains the 
models of the subsystems and the disturbances. The adaptive control 
systems for the trunk and for the legs, in despite of independent, are 

similar. The automatic generator of trajectories for the trunk 
receives the angular signals of position and acceleration from the 
gait generator and the trunk, to compose the input signals to the 
RNN. 

 

Biped Walking Model
(Figure 4)

Feedback Linearization
and Adaptive Control

for the Legs

Feedback Linearization
and Adaptive Control

for the Trunk

u-legs
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Automatic Generator
of Trajectories for the

Trunk

Off-line
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Legs'
Trajectories

Trunk's
Trajectories

 
Figure 5. Implementation of the integrate control s ystem. 

 



A  Integrated Control for a Biped Walking Robot 

J. of the Braz. Soc. of Mech. Sci. & Eng.     Copyr ight  2006 by ABCM       October-December 2006, Vol. XXVIII, No. 4 / 459

For the simulation, we utilized a dynamic gait with the 
following characteristics: the pelvis remains parallel in relation to 
the ground; the step length is 0.17 m; the speed walking is 0.55 m/s; 
the angle between the foot and the ground is 0.2 rad; and the 
maximum height for the balancing foot is 0.0386 m. The total time 
to complete a step is 0.3 s. We considered that twenty percent of the 
total time is time expended in the bi-support phase.  

For this gait characteristic, we computed the angular positions 
by using inverse kinematics techniques, and the speeds, by 
employing Jacobian computation. 

Figure 5 and Fig. 6 show the results of the simulation, which 
describe the angular and the velocity trajectories for the first (θ1), 
second (θ2), third (θ3) joints, and so on.  

 

 
Figure 6. Angular position for the legs. 

 

 
Figure 7. Angular velocities for the legs. 

 
Figure 8 shows the trajectories for the angular position and the 

velocity of the trunk that were used for the reference of the trunk. 
The RNN decides the problem of the angular positioning of the 
trunk and the angular velocities of the trunk are decided from the 
reference model.  

Figure 9 shows the tracking errors obtained from the control 
system of the trunk. The angular position error is around ± 1.5××××10-3 
rad and presents a decreasing oscillatory behavior. The 
corresponding angular speeds present similar behavior. 

 

 
Figure 8. Reference signals for the trunk. 

 

 
Figure 9. Tracking errors for the trunk. 

 
Figures 10 and 11 present the corresponding errors ( E = θ - θ jj j ) 

of the tracking of the position and of the velocities associates to the 
legs, respectively. The angular position errors are limited around 
0.06 rad in the beginning of the movement, reaching around 0.02 
rad in approximately 0.1 s and around zero rad after 0.2 s (with 
exception of the balancing leg). Similar behavior is verified for the 
corresponding velocity errors. 
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Figure 10. Tracking error of the legs’ position. 

 

 
Figure 11. Tracking error of the legs’ velocity. 

Conclusions and Comments  

This work aimed at contributing to the area of biped walking 
robots that explore the dynamic gait. We designed a biped walking 
robot endowed with trunk, composed by a chain of rigid links 
interconnected by rotating joints, totalizing twelve joints that enable 
positioning in the three-dimensional space. For the symbolic 
modeling, we implemented the formalism of Newton-Euler in the 
environment of the Maple®, offering an automatic symbolic 
modeler. 

We projected and implemented the integrated adaptive control 
system. The control law includes terms of the dynamic model of the 
robot, of the reference model and of the uncertainties. We employed 
an RBF neural network for the on-line identification of the 
parametric uncertainties; and, we design and implement an 
automatic gait generator, adaptable to the local conditions of the 

land, functioning perfectly in terms of passage speed, length of the 
step and maximum height for the foot in balance. After planning the 
gait, was determined the trajectory for the trunk by a RNN, 
integrated to the control system, which could update online the 
angular positioning of the trunk from the evolution of the legs. The 
system of control and the automatic generator of trajectories for the 
trunk constituted the adaptive mechanisms, developed to solve the 
dynamic gait control. 

In the simulation, we synthesized a gait for the robot with 
requirements similar to those of the human being gait, with a 
walking speed of 2 km/h. By using the inverse kinematics 
computation, was computed the corresponding angular position. The 
angular speeds were computed by using Jacobian matrix, as show in 
Fig. 6 and Fig. 7. 

The integrated control system presents a steady behavior and, 
besides tracking signals of reference for the legs and for the trunk, 
allows rejecting the disturbances caused by the coupling between 
the legs and trunk.  
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