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Optimization of End Milling 
Parameters under Minimum Quantity 
Lubrication Using Principal 
Component Analysis and Grey 
Relational Analysis 
Machining is the major reliable practice in accomplishment of metal cutting industries. 
The accelerated growing competition demands top superior and large quantity with low 
cost products. Metal working fluids have significant fragment of manufacturing cost and 
causes ecological impacts and health problems. This work attempts to advance a 
competent machining alignment with no ecological impacts. The prediction of quality 
characteristics and enhancement of machining field are consistently accepting great 
interest in machining sectors to compress the accomplishment costs. In this paper, GA 
based ANN prediction model proposes to envisage the quality characteristics of surface 
roughness and tool wear. The comparison of predicted and experimental values 
acknowledges the precision of the model. The end milling experiments are conducted 
beneath minimum quantity lubrication. This paper as well deals with the multiple objective 
optimization with principal component analysis, grey relational analysis and Taguchi 
method. ANOVA was carried out to determine each parameter contribution percentage on 
quality characteristics. The results show that cutting speed is the most influencing 
parameter followed by feed velocity, lubricant flow rate and depth of cut. The confirmation 
tests acknowledge that the proposed multiple-objective methodology is able in determining 
optimum machining parameters for minimum surface roughness and tool wear. 
Keywords: end milling, MQL, principal component analysis, grey relational analysis, 
optimization 

 
 

Introduction1 

The metal cutting industries are facing a lot of adverse 
complexities during machining in particular with attainment of 
higher surface quality and tool life. David et al. (2006) mentioned 
that in a machining system, cutting tool is the most diagnostic 
element. The cutting tools are subjected to acute loads due to 
rubbing of work and chip, high stress and temperature, and their 
gradients. Persistent all-encompassing analysis has been carried out 
to advance the adequacy of cutting tools. Jacob and Joseph (2005) 
pointed out that the product quality and ability of machining action 
depend on cutting tool condition. The tool wear is provoked by 
adhesion, abrasion, diffusion and/or oxidation (Lorentzon and 
Jarvstrat, 2009). Biswas et al. (2008) reported that the tool wear 
directly influences the power consumption, quality of the surface 
finish, tool life, productivity, etc. Hence, tool wear leads to poor 
surface finish, decrease in accuracy and increase in cutting forces, 
temperature and vibration.  

Authors (Sundara Murthy and Rajendran, 2010) addressed the 
surface roughness prediction and analysis forth with the significance 
and characteristics of machined surface. Figure 1 describes the three 
stages of cutting tool wear, i.e. initial wear stage, progressive wear 
stage and a rapid wear stage. Micro-cracking is developed and 
propagated during the initial wear stage, then almost constant in 
progressive wear stage and added in accelerated amount in rapid 
wear stage which leads to the cutting tool failure. The crater and 
flank wear on the faces of the cutting tool during machining are 
shown in Fig. 2. Flank wear occurs on relief or flank face of the tool 
due to abrasion of tool with part machined surface. Generally, it is 
initiated at the cutting edge and propagated downwards. Crater wear 
is a concave scar caused by erosion due to sliding of chip on tool 
rake face. Notch wear is an aggregate of flank and crater which 
occurs abreast to the intersection of cutting tool and machined 
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surface. Chipping is abatement of micro-particles of tool material. 
The absolute dismissal of cutting point is alleged as critical failure. 
But Yong et al. (2007) identified that the flank and crater wears are 
the major wear patterns. 

Abrasive wear is a mechanical wear which occurs at low speeds, 
chiefly due to the scratching of hard impurities of work material. 
One of the means to abstain this wear is providing harder coating on 
cutting tool. Adhesive wear is due to strong sticking of work 
material on the cutting tool surfaces and this can occur at high 
temperatures and pressures caused by high cutting speeds. High hot 
hardness and thermal conductivity can reduce the adhesive wear. 
Diffusion wear is because of atomic transfer between the work and 
tool materials and can occur in two ways. Tool elements can diffuse 
into the work material or work elements can diffuse into the tool 
material. Rajesh (2010) revealed that metallurgical bonding 
attraction between tool and work material leads to diffusion and this 
could increase rapidly at elevated temperatures. Nouari and Molinari 
(2005) acknowledged that the work material flow rate nearest to 
rubbed area and the average contact temperature between tool-work 
are the major authoritative factors of diffusion wear. Oxidation can 
be observed on the rack and flank faces of the tool due to high 
temperatures, atmospheric air and coolant. The oxidation can 
prevent adhesion and diffusion to a certain extent. The soft 
oxidation layers are quickly washed out by chip and work, but 
continuation leads to oxidation wear. Chun (2010) presented that 
high cutting speed and feed rate could increase the oxidation rate 
due to reduction of hardness and strength of the tool. The 
parameters which could cause the tool wear are shown in Fig. 3. 
Tool wear has major impact on product quality and process cost. 
The tool wear also resulted in increased cutting force, cutting 
temperature, machine vibration and surface roughness. Because of 
the importance of tool wear, there have been several attempts to 
foretell and analyze the wear through mathematical and soft 
computing techniques. 
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Figure 1. Various stages of cutting tool wear. 

 

 
Figure 2. Flank and crater wear on the faces of cutting tool. 

 

 
Figure 3. Factors influencing tool wear. 

 
Milling tests on titanium alloys with uncoated and coated 

carbide tool were conducted and performance in terms of tool life 
and surface quality was evaluated and presented by Nagi et al. 
(2008). Dimla (2002) machined EN24 with coated inserts; observed 
wear through vibration signals against time and suggested that the 
analysis of vibration signals are very effective in tool-wear 
monitoring. A coherence function model was developed by Mantana 
and Asa (2008) to describe the relationship between tool wear and 
tangential and feed vibration components. A fuzzy logic on line 
monitoring technique was proposed by Susanto and Chen (2003) for 

face milling with resultant cutting force and selected machining 
parameters and demonstrated its adequacy. Thamizhmnaii et al. 
(2008) reported that higher flank wear occurred in low cutting speed 
with high feed rate and depth of cut in turning of SS 440 C stainless 
steel. A spanking new Transductive-Weighted Neuro-Fuzzy 
Inference Technique (TWNFIS) was proposed (Agustin et al., 2009) 
to model tool wear in turning and proved the accuracy by comparing 
with experimental values. Li et al. (2002) used vibration signals to 
find out drill wear and proposed a relationship between the vibration 
and the tool wear with fuzzy neural network model. It was also 
demonstrated that features of vibration signals can be used to 
determine the drill wear with greater accuracy. Tansel et al. (2000) 
proposed cutting force wear relation by Force-variation-based 
encoding (FVBE) and Segmental-average-based encoding (SABE) 
methods and proved both are excellent performance in wear 
estimation. Neural network was applied to predict the wear during 
hard turning of AISI H-13 steel and the proposed model provided 
better prediction capabilities (Tugrul and Yigit, 2005). An efficient 
and successful relationship was established by Choudhury and 
Bartarya (2003) between tool wear and surface roughness along 
with cutting temperature. An online tool wear monitoring technique 
was developed (Silva et al., 1998) with input signals as cutting 
force, spindle current, sound and vibration in turning and 
demonstrated efficiency of the suggested technique. Jurkovic et al. 
(2005) presented direct tool wear measurement methodology using 
machine vision with 3D picture of tool relief surface. An analytical 
computation of flank wear was expressed and predicted wear at 
various cutting speeds was compared with experimental values 
(Bouzid, 2005). Palanisamy et al. (2008) suggested regression 
analysis and artificial neural network model to forecast the flank 
wear which were validated through experiments.  

Many researchers accept, focused on multiple objective 
optimization techniques, to be positive the maximum advantage 
from a set of optimum machining parameters. Wang et al. (2006) 
optimized multi-pass milling with two objectives of less machining 
time and cost reduction using parallel genetic simulated annealing. 
The optimum machining parameters during single pass turning were 
determined by Yang and Natarajan (2010) with objectives of 
minimum tool wear and maximum material removal by application 
multi-objective differential evolution (MODE) algorithm and non 
dominated sorting genetic algorithm (NSGA-II). The minimum 
production cost during multi-pass turning was determined with a 
proposed hybrid arrangement of real-parameter genetic algorithm 
(RGA) and sequential quadratic programming (SQP) (Abburi and 
Dixit, 2007). The hot turning of manganese was optimized (Tosun 
and Ozler, 2004) with different objectives of maximum tool life and 
minimum surface roughness. Ramon et al. (2006) optimized the 
turning parameters with multiple objectives of minimum tool wear 
and operation time with genetic algorithm. Tian (2009) optimized 
the CNC turning by applying Taguchi method and Technique for 
Order Preference by Similarity to Ideal Solution (TOPSIS) and 
analyzed the after-effects by MINITAB with assorted objectives 
optimization.  

The achievement of nontraditional machining was also 
attempted with multiple objectives by many researchers to 
determine the optimum parameters. Debabrata et al. (2007) applied 
multi-objective methodology non-dominating sorting genetic 
algorithm-II to optimize circuitous EDM parameters with ANN 
prediction model and evaluated by experimental results. Yih-fong 
and Fu-chen (2007) used fuzzy logic with Taguchi method in 
enhancement of EDM and determined pulsed duration, duty cycle, 
and peak current as a lot of influencing factors among the various 
parameters. The wire EDM parameters were optimized (Shajan and 
Shunmugam, 2005) to improve the performance by Non-Dominated 
Sorting Genetic Algorithm (NSGA). 
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From the literature study, it was found that there was no 
comprehensively application of multiple objectives optimization in 
Minimum Quantity Lubrication (MQL) machining technique. This 
proposed work attempts to optimize the machining parameters in 
adjustment to accord minimum surface roughness and tool wear 
during the end milling of aluminum 6063 beneath MQL technique. 

Nomenclature 

F = fitness function 
Xi…..Xm  = n response variables from m experiments 
Xi*(k) = normalized data  
Xob(k) = desired value of response variable 
Xi*(j) = normalized value of jth element in ith sequence 
Yi(k) = principal component 

Greek Symbols 

βkj  = jth element of eigen vector  
βkσQj & σQk = standard deviation of jth and kth response 
ξ =  coefficient value (normally 0.5) 

Methods and Materials 

End milling experiments were carried out at different 
combinations of cutting parameters, cutting speed, feed velocity, 
depth of cut and cutting liquid flow rate in a milling machine. The 
specifications of milling machine are given in Table 1. The 
workpiece material used to conduct milling experiments was 
aluminum 6063-T6. The chemical composition and other important 
properties of 6063 are given in Table 2 and Table 3, respectively. 
The dimensions of the workpiece were 300 × 200 × 50 mm. An 

end mill cutter (LT740WWL) of 20 mm diameter and unique 
coated inserts APGT 1003 PDER-Alu LT05, manufactured by 
Lamina Technologies (Swiss), were used in milling experiments. 
The schematic representation of experimental set up is apparent in 
Fig. 4. The milling experiments were done at various levels of 
cutting speeds, feed velocities, depths of cut and liquid flow rates. 
The levels and parameters used are given in Table 4. The 
experiments were conducted under Maximum Quantity 
Lubrication (MQL). The vegetable oil coolube 2210, 
manufactured by UNIST (USA), was employed as oil under MQL. 
To supply oil in MQL condition, an MQL setup was used. This 
setup prepares the air-lubricant mixture and supplies it at cutting 
point through a nozzle. This setup is also able to adjust the air and 
lubricant ratios and the flow rate separately. The flow rate of 
mixture can also be varied and the air pressure was maintained at 
4 bars. In each experiment, the surface roughness and flank wear 
of cutting tool were measured using tool room microscope and 
surface roughness tester. 

 

Table 1. Specifications of milling machine. 

Type Universal-geared 
Power 3 HP 
Working surface 1100 X 250 mm 
Cutting speed (m/min) 15-88 m/min 
Feed velocity (mm/min) 75-355 mm/min 
Longitudinal travel  (X) 725 mm 
Cross travel (Y) 300 mm 
Vertical travel (Z) 250 mm 

 
 

Table 2. Chemical composition of Al 6063 in % of weight.

Mg Si Fe Cu Mn Cr Zn Ti 
Others 

Al 
each total 

0.45-0.9 0.2-0.6 Max 0.35 Max 0.1 Max 0.1 Max 0.1 Max 0.1 Max 0.1 0.05 0.15 Max 97.5 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Experimental setup.
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Table 3. Various properties of Al 6063. 

Physical 
Density 2.7 g/cc 

Mechanical 
Hardness (Brinell) 73 
Ultimate Tensile Strength 241 Mpa 
Tensile Yield Strength 214 Mpa 
Elongation 12% 
Modulus of Elasticity 68.9 Gpa 
Machinability 50% 
Fatigue Strength 68.9 Gpa 
Shear Modulus 25.8 Gpa 
Shear Strength 152 Mpa 
Poisson's Ratio 0.33 

Thermal 
Melting Point 616 - 654°C 
Thermal Conductivity 200 W/m-K 
Specific Heat Capacity 0.9 J/g-°C 

 
 

Table 4. Machining parameters and their levels. 

Designation Parameters Level 1 Level 2 Level 3 

A 
Cutting speed 

(m/min) 
35 56 88 

B 
Feed velocity 

(mm/min) 
180 250 355 

C 
Depth of cut 

(mm) 
1 1.2 1.4 

D 
Fluid flow rate 

(ml/hr) 
300 600 900 

Genetic Algorithm Based BPN 

All the engineering issues will have plenty of solutions. The 
greatest task is to select the best from the available solutions. 
Artificial Neural Network (ANN) is a model of biological neuron 
system. ANN can be trained by known results and the knowledge 
acquired from training can be used to foretell or compute the 
unknown output. The most popular and broadly acclimated ANN is 
Multi Layer Back Propagation Network (MLBPN). In BPN the 
weights of input-hidden layers and hidden-output layers are 
computed using gradient search method. This will lead the network 
to local optimum solutions. Moreover, the BPN is unable to work 
with new occurrence far from training. This research work aims to 
abbreviate the drawbacks of BPN by affiliation of Genetic 
Algorithm (GA) with a back propagation network. Although GA is 
not an assuring global solution it is found that GA is able of bearing 
adequate acceptable solutions. GA may even be accomplishing the 
results with less number of iterations. GA was visualized by Holland 
in 1975 and applied auspiciously in structural engineering. Later it 
was extended to all fields due to its distinctive features like random 
search based on natural genetics, population of points at time, etc. 
Anatomy of proposed hybrid genetic algorithm —neural networks 
system is shown in Fig. 5. The program generates preliminary 
population randomly. The fitness of each chromosome in population 
will be evaluated by weights of genes. If convergence is not 
reached, genetic operations reproduction, crossover and mutation 
will be carried out to decide the new population. Again, the fitness 
of new population is checked and this system will continue until the 
function is converged. If the convergence is attained, the program 
stops and gives the result. The various steps of proposed genetic 
algorithm based neural network system to predict the tool wear are 
discussed as following. In this study, an artificial neural network 
with input, hidden and output layers was thought about. The number 
of neurons and parameters used in each layer is shown in Table 5. 

 
 

 

 

Figure 5. Hybrid GA and ANN prediction model.

Input parameters 

Cutting speed 
Feed velocity 
Depth of cut 
Fluid flow rate 

 

Functions: Genetic algorithm 
- initial population generation 
- weights calculation 
- fitness evaluation 
- reproduction 
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- new population generation 

Functions: BPN 
- training 
- inference 
- prediction as output 
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Table 5. Details of ANN topology. 

S. No. Name of 
the layer 

Number of 
neurons Parameters 

1 Input 4 

cutting speed 
feed velocity 

depth of cut 

fluid flow rate 
2 Hidden 4 - 

3 Output 2 
surface roughness 

tool wear 
 
 
The primary step in the hybrid system is random generation of 

preliminary population for each input. The gene length was taken as 
five and string length of each chromosome was 80. The fitness 
function of each chromosome is given by 

 

1/F E=  
 

where   
1 2 3 4( ) / 4E E E E E= + + +  

2
1 1 1( )r cE O O= +  

 
For each chromosome in preliminary population, the fitness value 

was computed. The fitness function ought to be converged at least for 
95% of preliminary population. In case of less, the mating pool was 
formed by replacing all the least fitness chromosomes with highest 
fitness chromosome. From this mating pool, new parent pairs were 
selected randomly for cross over. Offspring chromosomes were 
generated by a single point crossover. At randomly selected cross site 
the genes were swapped. Sometimes, cross over is unable to continue 
the regeneration. Then the bits of strings are muted independently. 
Mutation makes search space globally and restores the lost genetic 
knowledge. A low mutation rate of 0.05% was selected, because 
higher values could affect the fitness of the strings. After all genetic 
operations, a new set of population was generated to evaluate the 
fitness. Once fitness function was satisfied, the computed weights 
were accustomed to BPN model to predict the tool wear and surface 
roughness as outputs. 

Optimization Methodology 

Principal Component Analysis (PCA) and Grey Relational 
Analysis (GRA) are combined to optimize the cutting parameters for 
minimum surface roughness and tool wear. PCA is a variable 
reduction method which is widely applied from science to 
engineering issues because of its ability to receive the significant 
information from the more number of observed variables. The 
redundancy in the observed variables is determined by correlating 
each other. This redundancy will help reducing the number of 
observed variables into smaller number of principal components. 
The variance in the observed variables is represented by the 
principal components. These principal components are used to find 
the grey relational coefficient and corresponding S/N ratios. From 
the S/N ratios the optimum cutting parameters are determined. The 
step by step procedure followed to find the optimum cutting 
parameters is as follows: 

Step 1. Collection of response variables 

The response variables are represented as: 

( ){ ( ) ( )}

( ){ ( ) ( )}

1 , 2 ..........

1 , 2 ..........

i i i i

m m m m

X X X X n

X X X X n

=

⋅
⋅

=  
 

In this study,  2n = , surface roughness and tool wear and 

 9m = , number of experiments. 

Step 2. Normalization of response variables 

There are three different characteristics of normalization. They are: 
(i) Higher-the-Better (HB) 

 ( ) ( ) ( )maxi i iX k X k X k∗ =  
 

(ii)  Nominal-the-Better (NB) 

 
( ) ( ){ } ( )} ( ){ } ( )}0 0min , max ,i i b i bX k X k X k X k X k∗ =

 
 

(iii)  Lower-the-Better (LB) 

 ( ) ( ) ( )mini i iX k X k X k∗ =  

 1, 2,.......i m=  and 1,2,.......k n=  

Step 3. Correlation between the responses 

The correlation coefficient is given by 
 

,( ) /
j kjk j k Q QCov Q Qρ σ σ= ×

 
 

where  * * * *
0 1 2{ ( ), ( ), ( )......... ( )}i mQ X i X i X i X i=   

 , & 1, 2,...........i j k n=  but j k≠  
 
Hypothesis for correlation checking: 
 

0 : 0jkH ρ =  no relation 

1 : 0jkH ρ ≠  relation exist 

Step 4. Principal component score calculation 

The principal component ( )iY k  can be determined by 

 

*

1

( ) ( )
n

i i kj
j

Y k X j β
=

=∑  

Step 5. Individual grey relational coefficients 

The grey relational coefficient is computed by 
 

0, min max 0, max( ) ( ) /( ( ) )j jr k kξ ξ= ∆ + ∆ ∆ + ∆
 

 
where

 
* *

0
min

0

min min ( ) ( )

min min ( ) ( )

ii k

ii k

X k X k

Y k Y k

−
∆ =

−
 

 
* *

0
max

0

max max ( ) ( )

max max ( ) ( )

ii k

ii k

X k X k

Y k Y k

−
∆ =

−
 

 
* *

0
0,

0

( ) ( )
( )

( ) ( )

i

j

i

X k X k
k

Y k Y k

−
∆ =

−
  and 

 ξ =  coefficient value (normally 0.5) 
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Step 6. Overall grey relational grade calculation  

The responses of surface roughness and tool wear are combined 
and a single overall grey relational grade is calculated by using: 

 

0, 0,
1

( )
n

j k j
k

w r k
=

Γ =∑
 

 
Then, the Taguchi method is applied to compute the S/N ratios for 
overall grey relational grade. The optimum machining parameters 
are determined from the S/N ratios.  

Results and Discussion 

GA and ANN hybrid prediction model 

The surface roughness and tool wear quality characteristics are 
predicted in this research work using genetic algorithm based 
artificial neural network. To foretell the surface roughness and 
tool wear cutting speed, feed velocity, depth of cut and cutting 
liquid flow rate are used as input parameters. The hybrid of GA 
and ANN is aided to foretell the outputs exactly. The results of the 
hybrid prediction method are given in Table 6. The predicted 
values are validated by experimental values. The positive and 
negative errors in prediction of surface roughness are +2.9% and 
−1.0%. Similarly, the errors in the prediction of tool wear are 
−3.3% and +1.3%. The accuracy of hybrid prediction model for 
surface roughness is ±2.9% and for tool wear is ±3.3%. The errors 
of the model are within the accustomed limit. So, it is apparent 
that the predicted values of hybrid prediction model have good 
agreement with experimental values. 

 

Table 6. Experimental results and comparison with prediction. 

Exp. 
No. 

Surface roughness (Ra) (µm) Flank wear (mm) 

predicted Exp. 
prediction 
error (%) 

predicted Exp. 
prediction 
error (%) 

1 0.776 0.799 2.879 0.252 0.256 1.563 

2 0.765 0.746 −2.547 0.237 0.24 1.25 

3 0.983 0.973 −1.028 0.283 0.274 −3.285 

4 0.766 0.752 1.305 0.205 0.202 −1.485 

5 0.857 0.868 1.267 0.321 0.329 2.432 

6 0.459 0.449 −2.227 0.359 0.37 2.973 

7 0.638 0.649 1.695 0.325 0.316 −2.848 

8 0.668 0.678 1.475 0.373 0.383 2.611 

9 0.762 0.747 −2.008 0.388 0.395 1.772 

 

Optimization of cutting parameters 

The experimental results of surface roughness and tool wear 
quality characteristics in end milling of aluminum 6063-T6 under 
maximum quantity lubrication are shown in Table 6. Using Lower-
the-Better (LB) criterion both surface roughness and tool wear 
experimental information have been normalized. The normalized 
information set is given in Table 7. Computation has been carried 
out subsequently, to find the correlation between the responses. 
Table 8 shows the Pearson’s coefficient of correlation between 
surface roughness and tool wear. Based on this, it is obvious that 
both the responses are correlated. The Principal Component 
Analysis (PCA) has been used to eliminate the response correlation. 

The PCA matrix which consists of Eigen values, Eigen vectors, 
Accountability Proportion (AP) and Cumulative Accountability 
Proportion (CAP) is also given in Table 8. The independent 
principal component for each experiment is calculated by converting 
the correlated responses. Since the AP of the responses is non-zero 
value, the principal component scores are determined for both 
responses and are listed in Table 9. The quality loss estimated for 
each response is given in Table 10. 
 

Table 7. Normalized data set of experimental results. 

Exp. No. Surface  
roughness Flank wear 

Ideal 1.000 1.000 

1 0.562 0.789 

2 0.602 0.842 

3 0.461 0.737 

4 0.597 1.000 

5 0.517 0.614 

6 1.000 0.546 

7 0.692 0.639 

8 0.662 0.527 

9 0.601 0.511 

 
Table 8. Eigen values, Eigen vectors, AP and ACP of responses. 

 ψ1 ψ2 

Eigen value 1.332 0.668 

Eigen vector 

 
 
 
 
 

 
 
 
 
 

AP 0.666 0.334 

CAP 0.666 1.000 

 

Table 9. Principal component scores. 

S. No. 
Principal component scores 

ψ1 ψ2 

Ideal 1.4140 0.0000 

1 0.9488 −0.1697 

2 1.0209 −0.1697 

3 0.8548 −0.1888 

4 1.1128 −0.3012 

5 0.8003 −0.0693 

6 1.0937 0.3203 

7 0.9332 0.0452 

8 0.8413 0.0947 

9 0.7869 0.0629 
 

Here, analyses of quality characteristics such as surface 
roughness and tool wear were made to optimize the cutting 
parameters. To optimize the multiple performance characteristics, it 
was converted into single aim issue by applying grey relational 
analysis. Table 11 shows the grey relational coefficients for the 

0.707

0.707

+
+

0.707

0.707

+
−
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principal components. These grey relational coefficients are 
combined and a single grey relational grade is calculated. The grey 
relational grade and corresponding S/N ratios are given in Table 12. 

 
 Table 10. Quality loss for each response. 

S. No. 

Quality loss corresponding to 
individual principal 

components 
ψ1 ψ2 

Ideal 1.414 0.000 

1 0.459 0.161 

2 0.393 0.17 

3 0.567 0.195 

4 0.285 0.285 

5 0.614 0.068 

6 0.321 −0.321 

7 0.473 −0.037 

8 0.573 −0.095 

9 0.627 −0.063 
 

Table 11. Grey relational coefficients of principal components. 

S. No. 

Grey relational coefficients for 
individual principal 

components 
ψ1 ψ2 

1 0.796 0.688 

2 0.869 0.668 

3 0.698 0.619 

4 1.027 0.491 

5 0.663 0.977 

6 0.969 0.454 

7 0.782 1.140 

8 0.693 0.870 

9 0.653 1.000 

 
Table 12. Grey relational grade and S/N ratio. 

S. No 
Grey 

relational 
grade 

S/N ratio 

1 0.742 2.595 

2 0.769 2.283 

3 0.659 3.625 

4 0.759 2.393 

5 0.82 1.724 

6 0.711 2.961 

7 0.961 0.349 

8 0.782 2.138 

9 0.827 1.654 
 

 
The S/N ratios are computed by Taguchi methodology. Table 13 

shows the S/N ratio response at each level and also reveals the 
influencing order of machining parameters. The cutting speed is a 
highly influencing parameter for surface roughness and tool wear. 

This is in acceding with beforehand studies on tool wear in turning 
by Joshi et al. (1999), Erol and Ali (2006) and Jenn et al. (2008) and 
milling by Caldeirani and Diniz (2002). Increased abrasion between 
the cutting tool and work material in the work of higher cutting 
speed causes higher tool wear and surface roughness. The cutting 
speed is followed by feed rate, lubricant flow rate and finally the 
depth of cut. From Fig. 6, the optimal levels of machining 
parameters are identified as A3B1C3D2. 
 

Table 13. Response of S/N ratio. 

Factors/levels level 1 level 2 level 3 max- 
min rank 

Cutting speed 2.834 2.359 1.381 1.454 1 

Feed velocity 1.779 2.048 2.747 0.968 2 

Depth of cut 2.565 2.11 1.899 0.665 4 

Fluid flow 
rate 

1.991 1.864 2.719 0.727 3 

 

Table 14. ANOVA result of S/N ratio. 

Factors Sum of  
squares 

Degree of 
freedom Variance % 

Contribution 

Cutting 
speed 

3.297 2 1.648 48.75 

Feed 
velocity 

1.496 2 0.748 22.124 

Depth 
of cut 

0.694 2 0.347 10.262 

Fluid 
flow rate 

1.276 2 0.638 18.864 

Total 6.762 8 
 

100 

 
 

 

 
Figure 6. S/N ratio response graph. 

 
The values of optimum parameters are cutting speed of 88 m/min, 

feed velocity of 180 mm/min, depth of cut of 1.4 mm and coolant flow 
rate of 600 ml/hr. To exactly decide the contribution of each cutting 
parameter, ANOVA was applied for S/N ratio of grey relational 
grade. The result of ANOVA is shown in Table 14. The cutting 
speed is the highest influencing parameter with 48.75% of 
contribution. The next significant parameter is feed velocity 
(22.12%) followed by lubricant flow rate (18.86%). The depth of cut 
is the least influencing factor when compare with other cutting 
parameters with 10.26% of contribution. 
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Validation tests 

The optimum levels of machining parameters determined for 
maximum surface roughness and tool wear are A3B1C3D2. To 
confirm the obtained optimum set of parameters validation tests 
were conducted. The results of these tests show that the mean 
values of surface roughness and flank wear are 0.542 µm and 
0.266 mm respectively. This shows that the quality characteristics 
thought about in the study can be optimized by adopted 
optimization methodology. 

Conclusion 

In this paper, genetic algorithm based artificial neural network 
hybrid prediction model is proposed to foretell surface roughness 
and tool wear. A multiple objective optimization methodology, by 
using principal component analysis, grey relational analysis and 
Taguchi method is also proposed to optimize the machining 
parameters of Al 6063 under maximum quantity lubrication. The 
following conclusions are made: 

• The optimum machining parameters for minimum surface 
roughness and tool wear are cutting speed of 88 m/min, feed 
velocity of 180 mm/min, depth of cut of 1.4 mm and coolant 
flow rate of 600 ml/hr. 

• Among the machining parameters: cutting speed, feed 
velocity, depth of cut and lubricant flow rate, the cutting speed 
is the most significant with percentage contribution of 
48.75%, followed by feed velocity with 22.12%, liquid flow 
rate with 18.86% and at last depth of cut with 10.26%. 

• The proposed GA based ANN hybrid prediction model has 
excellent agreement with experimental values, with errors of 
only 3.3%. 

• The validity tests demonstrated that the proposed multiple 
objective optimization methodology is able in determining the 
optimum machining parameters in end milling. 

References 

Abburi, N.R., Dixit, U.S., 2007, “Multi-Objective Optimization of 
Multipass Turning Processes”, Int. J. Adv. Manuf. Technol., Vol. 32, pp. 
902-910. 

Agustin Gajate, Rodolfo E. Haber, José R. Alique, and Pastora I. Vega, 
2009, “Transductive-Weighted Neuro-fuzzy Inference System for Tool Wear 
Prediction in a Turning Process”, E. Corchado et al. (Eds.): HAIS, LNAI 
5572, pp.113-120. 

Biswas, C.K., Chawla, B.S., Das, N.S., Srinivas, E.R.K.N.K., 2008, 
“Tool Wear reduction using Neuro- Fuzzy System”, IE(I) Journal (PR), Vol. 
89, pp. 42-46. 

Bouzid Sai, W., 2005, “An investigation of tool wear in high-speed turning 
of AISI 4340 steel”, Int. J. Adv.. Manuf. Technol., Vol. 26, pp. 330-334. 

Caldeirani Filho, J. and Diniz, A.E., 2002, “Influence of Cutting 
Conditions on Tool Life, Tool Wear and Surface Finish in the Face Milling 
Process”, J. Braz. Soc. Mech. Sci., Vol. 24, No. 1, pp. 10-14. 

Choudhury, S.K., Bartarya, G., 2003, “Role of temperature and surface 
finish in predicting tool wear using neural network and design of 
experiments”, International Journal of Machine Tools and Manufacture, 
Vol. 43, No. 7, pp. 747-753. 

Chun-Pao Kuo, Sen-Chieh Su, Shao-Hsien Chen, 2010, “Tool life and 
surface integrity when milling inconel 718 with coated cemented carbide 
tools”, Journal of the Chinese Institute of Engineers, Vol. 33, No. 6, pp. 
915-922. 

David Kerr, James Pengilley, Robert Garwood, 2006, “Assessment and 
visualization of machine tool wear using computer vision”, Int J Adv Manuf. 
Technol. Vol. 28, pp. 781-791. 

Debabrata Mandal, Surjya K. Pal and Partha Saha, 2007, “Modeling of 
electrical discharge machining process using back propagation neural 
network and multi-objective optimization using non dominating sorting 
genetic algorithm-II”, Journal of Materials Processing Technology, Vol. 
186, pp. 154-162. 

Dimla Snr., D.E., 2002, “The Correlation of Vibration Signal Features to 
Cutting Tool Wear in a Metal Turning Operation”, Int. J. Adv. Manuf. 
Technol., Vol. 19, pp. 705-713. 

Erol Kilickap and Ali Inan, 2006, “A study on machinability of Al Si7 
Mg2/SiCp metal matrix composite”, International Journal of Machining and 
Machinability of Materials”, Vol. 1, No. 4, pp. 463-475. 

Jacob C. Chen, Joseph C. Chen, 2005, “An artificial-neural-networks-
based in-process tool wear prediction system in milling operations”, Int. J. 
Adv. Manuf. Technol., Vol. 25, pp. 427-434. 

Jenn-Tsong Hornga, Nun-Ming Liua and Ko-Ta Chiang, 2008, 
“Investigating the machinability evaluation of Hadfield steel in the hard 
turning with  Al2O3/TiC mixed ceramic tool based on the response surface 
methodology”, Journal of Materials Processing Technology, Vol. 208, No.1-
3, pp. 532-541. 

Joshi, S.S, Ramakrishnan, N., Nagarwalla, H.E. and Ramakrishnan, P., 
1999, “Wear of Rotary Carbide Tools in Machining of Al/SiCp 
Composites”, Wear, Vol. 230, pp. 124-132. 

Jurkovic, J., Korosec, M. and Kopac, J., 2005, “New approach in tool 
wear measuring technique using CCD vision system”, International Journal 
of Machine Tools and Manufacture, Vol. 45, No. 9, pp. 1023-1030. 

Li, X., Dong, S. and Venuvinod, P.K., 2002, “Hybrid Learning for Tool 
Wear Monitoring”, The International Journal of Advanced Manufacturing 
Technology, Vol. 16 No. 5, pp. 303-307. 

Lorentzon, J., Jarvstrat, N., 2009, “Modelling the influence of carbides 
on tool wear”, Archives of Computational Materials Science and Surface 
Engineering, Vol. 1, No. 1, pp. 29-37. 

Mantana Srinang and Asa Prateepasen, 2008, “Coherence function 
model for tool wear monitoring”, Songklanakarin J. Sci. Technol., Vol. 30, 
No. 1, pp. 93-99. 

Nagi Elmagrabi, Che Hassan, C.H., Jaharah, A.G. and Shuaeib, F.M., 
2008, “High Speed Milling of Ti-6Al-4V Using Coated Carbide Tools”, 
European Journal of Scientific Research, Vol. 22, No. 2, pp. 153-162. 

Nouari, M., Molinari, A., 2005, “Experimental verification of a 
diffusion tool wear model using a 42CrMo4 steel with an uncoated cemented 
tungsten carbide at various cutting speeds”, Wear, Vol. 259, pp. 1151-1159. 

Palanisamy, P., Rajendran, I. and Shanmugasundaram, S., 2008, 
“Prediction of tool wear using regression and ANN models in end-milling 
operation”, The International Journal of Advanced Manufacturing 
Technology, Vol. 37, pp. 29-41. 

Rajesh Y. Patil, 2010, “Cutting tool wear-mechanisms”, Journal of Sci. 
Engng. & Tech. Mgt., Vol. 2, No. 1, pp. 38-42. 

Sardina, S.Q., Santana, M.R. and Brindis, E.A., 2006, “Genetic 
algorithm based multi-objective optimization of cutting parameters in 
turning processes”, Engineering Applications of Artificial Intelligence, Vol. 
19, pp. 127-133. 

Shajan Kuriakose and Shunmugam, M.S., 2005, “Multi-objective 
optimization of wire-electro discharge machining process by Non-
Dominated Sorting Genetic Algorithm”, Journal of Materials Processing 
Technology, Vol. 170, pp. 133-141. 

Silva, R.G., Reuben, R.L., Baker, K.J. and Wilcox, S.J., 1998, “Tool 
wear  Monitoring of turning operations by neural network classification of a 
feature set generated from multiple sensors”, Mechanical Systems and Signal 
Processing, Vol. 12, pp. 319-332. 

Sundara Murthy, K. and Rajendran, I., 2010, “A study on optimization 
of cutting parameters and prediction of surface roughness in end milling of 
aluminium under MQL machining”, International Journal of Machining and 
Machinability of Materials, Vol. 7, No. 1/2, pp. 112-128. 

Susanto, V. and Chen, J.C., 2003, “Fuzzy Logic Based In-Process Tool-
Wear Monitoring System in Face Milling Operations”, Int. J. Adv. Manuf. 
Technol., Vol. 3, pp. 186-192. 

Tansel, I.N., Arkan, T.T., Bao, W.Y., Mahendrakar, N., Shisler, B., 
Smith, D., McCool, M., 2000, “Tool wear estimation in micro-machining: 
Part I: tool usage–cutting force relationship”, International Journal of 
Machine Tools & Manufacture, Vol. 40, pp. 599-608. 

Thamizhmnaii, S., Bin Omar, B., Saparudin, S., Hasan, S., 2008, “Tool 
flank wear analyses on martensitic stainless steel by turning”, Archives of 
Materials Science and Engineering, Vol. 32, No. 1, pp. 41-44. 

Tian-Syung Lan, 2009, “Taguchi optimization of multi-objective CNC 
machining using TOPSIS”, Information Technology Journal, Vol. 8, No. 6, 
pp. 917-922. 

Tosun, N. and Ozler, L., 2004, “Optimisation for hot turning operations 
with multiple performance characteristics”, Int. J. Adv. Manuf. Technol., 
Vol. 23, pp. 777-782. 



Optimization of End Milling Parameters under Minimum Quantity Lubrication Using Principal Component Analysis and Grey Relational Analysis 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2012 by ABCM July-September 2012, Vol. XXXIV, No. 3 / 261 

Tugrul O zel and Yigit Karpat, 2005, “Predictive modeling of surface 
roughness and tool wear in hard turning using regression and neural 
networks”, International Journal of Machine Tools & Manufacture, Vol. 45, 
pp. 467-479. 

Wang, G., Wong, Y.S., Rahman, M. and Sun, J., 2006, “Multi-objective 
optimization of high-speed milling with parallel genetic simulated 
annealing”, Int. J. Adv. Manuf. Technol., Vol. 31, pp. 209-218. 

Yang, S.H. and Natarajan, U., 2010, “Multi-objective optimization of 
cutting parameters in turning process using differential evolution and non- 

dominated sorting genetic algorithm-II approaches”, Int. J. Adv. Manuf. 
Technol., Vol. 49, pp. 773-784. 

Yih-fong Tzen and Fu-chen Chen, 2007, “Multi-objective optimization 
of high-speed electrical discharge machining process using a Taguchi fuzzy-
based approach”, Materials and Design, Vol. 28, pp. 1159-1168. 

Yong Huang, Kevin Chou, Y. and Liang, S.Y.,  2007, “CBN tool wear 
in hard turning: A survey on research progresses”, Int. J. Adv. Manuf. 
Technol., Vol. 35, pp. 443-453. 

 
  


