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Machining is the major reliable practice in accoispiment of metal cutting industries.
The accelerated growing competition demands togrsoipand large quantity with low

cost products. Metal working fluids have signifitétagment of manufacturing cost and
causes ecological impacts and health problems. Wisk attempts to advance a
competent machining alignment with no ecologicapdntis. The prediction of quality
characteristics and enhancement of machining fietd consistently accepting great
interest in machining sectors to compress the aptishment costs. In this paper, GA
based ANN prediction model proposes to envisageytiadity characteristics of surface
roughness and tool wear. The comparison of predicéand experimental values
acknowledges the precision of the model. The erlhgniexperiments are conducted
beneath minimum quantity lubrication. This papemes! deals with the multiple objective
optimization with principal component analysis, greelational analysis and Taguchi
method. ANOVA was carried out to determine eaclampater contribution percentage on
quality characteristics. The results show that iogtt speed is the most influencing
parameter followed by feed velocity, lubricant flmate and depth of cut. The confirmation
tests acknowledge that the proposed multiple-obehethodology is able in determining

optimum machining parameters for minimum surfacgtmess and tool wear.
Keywords: end milling, MQL, principal component analysis,egrrelational analysis,

optimization

I ntroduction

The metal cutting industries are facing a lot ofveade
complexities during machining in particular withtaament of
higher surface quality and tool life. David et @006) mentioned
that in a machining system, cutting tool is the mdggnostic
element. The cutting tools are subjected to acoteld due to
rubbing of work and chip, high stress and tempeeatand their
gradients. Persistent all-encompassing analysideas carried out
to advance the adequacy of cutting tools. JacobJasdph (2005)
pointed out that the product quality and abilitynafchining action
depend on cutting tool condition. The tool wearpievoked by
adhesion, abrasion, diffusion and/or oxidation @ndron and
Jarvstrat, 2009). Biswas et al. (2008) reported tha tool wear
directly influences the power consumption, quabfythe surface
finish, tool life, productivity, etc. Hence, toolear leads to poor
surface finish, decrease in accuracy and increasmitting forces,
temperature and vibration.

Authors (Sundara Murthy and Rajendran, 2010) addcbshe
surface roughness prediction and analysis forth thi¢ significance
and characteristics of machined surface. Figurestribes the three
stages of cutting tool wear, i.e. initial wear stagrogressive wear
stage and a rapid wear stage. Micro-cracking iseld@ed and
propagated during the initial wear stage, then atnmonstant in
progressive wear stage and added in acceleratedranmo rapid
wear stage which leads to the cutting tool failuFee crater and
flank wear on the faces of the cutting tool durimgchining are
shown in Fig. 2. Flank wear occurs on relief onKdace of the tool
due to abrasion of tool with part machined surf&enerally, it is
initiated at the cutting edge and propagated dowdsveCrater wear
is a concave scar caused by erosion due to slifirghip on tool
rake face. Notch wear is an aggregate of flank emader which
occurs abreast to the intersection of cutting tant machined
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surface. Chipping is abatement of micro-particlé$ool material.
The absolute dismissal of cutting point is allegsdcritical failure.
But Yong et al. (2007) identified that the flankdacrater wears are
the major wear patterns.

Abrasive wear is a mechanical wear which occutsvatspeeds,
chiefly due to the scratching of hard impuritiesvabrk material.
One of the means to abstain this wear is provitiergler coating on
cutting tool. Adhesive wear is due to strong stigkiof work
material on the cutting tool surfaces and this oanur at high
temperatures and pressures caused by high cufteegls. High hot
hardness and thermal conductivity can reduce theside wear.
Diffusion wear is because of atomic transfer betwte work and
tool materials and can occur in two ways. Tool eleta can diffuse
into the work material or work elements can diffust® the tool
material. Rajesh (2010) revealed that metallurgitminding
attraction between tool and work material leadditfusion and this
could increase rapidly at elevated temperaturesaN@nd Molinari
(2005) acknowledged that the work material floweratearest to
rubbed area and the average contact temperatwedretool-work
are the major authoritative factors of diffusionaneOxidation can
be observed on the rack and flank faces of the doe@ to high
temperatures, atmospheric air and coolant. The atioidl can
prevent adhesion and diffusion to a certain extérite soft
oxidation layers are quickly washed out by chip amork, but
continuation leads to oxidation wear. Chun (201Bspnted that
high cutting speed and feed rate could increaseotidation rate
due to reduction of hardness and strength of thd. tdhe
parameters which could cause the tool wear are showFig. 3.
Tool wear has major impact on product quality amdcess cost.
The tool wear also resulted in increased cuttingeefp cutting
temperature, machine vibration and surface roughrigecause of
the importance of tool wear, there have been skwatampts to
foretell and analyze the wear through mathematimad soft
computing techniques.
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Figure 2. Flank and crater wear on the faces of cutting tool.
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Figure 3. Factors influencing tool wear.

Milling tests on titanium alloys with uncoated amated
carbide tool were conducted and performance ingesfrtool life
and surface quality was evaluated and presentedNdmyi et al.
(2008). Dimla (2002) machined EN24 with coated itsseobserved
wear through vibration signals against time andgested that the
analysis of vibration signals are very effective iool-wear
monitoring. A coherence function model was devetbpg Mantana
and Asa (2008) to describe the relationship betweehwear and
tangential and feed vibration components. A fuzagid on line
monitoring technique was proposed by Susanto areth C2003) for
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face milling with resultant cutting force and seéét machining

parameters and demonstrated its adequacy. Thamihren al.

(2008) reported that higher flank wear occurretbim cutting speed
with high feed rate and depth of cut in turningS& 440 C stainless
steel. A spanking new Transductive-Weighted Neuwrnzly

Inference Technique (TWNFIS) was proposed (Agustial., 2009)

to model tool wear in turning and proved the accyitay comparing

with experimental values. Li et al. (2002) usedrailon signals to
find out drill wear and proposed a relationshipazsin the vibration
and the tool wear with fuzzy neural network modelwas also

demonstrated that features of vibration signals banused to
determine the drill wear with greater accuracy. Sedret al. (2000)
proposed cutting force wear relation by Force-vEmabased

encoding (FVBE) and Segmental-average-based ergd&iABE)

methods and proved both are excellent performamcewéar

estimation. Neural network was applied to prediet tvear during
hard turning of AISI H-13 steel and the proposeddei@rovided

better prediction capabilities (Tugrul and Yigif@5). An efficient

and successful relationship was established by dhay and

Bartarya (2003) between tool wear and surface noegth along
with cutting temperature. An online tool wear monitg technique
was developed (Silva et al., 1998) with input signas cutting

force, spindle current, sound and vibration in iwgn and

demonstrated efficiency of the suggested technidukovic et al.

(2005) presented direct tool wear measurement rdetbgy using

machine vision with 3D picture of tool relief sucéa An analytical
computation of flank wear was expressed and predietear at
various cutting speeds was compared with experimhevellues

(Bouzid, 2005). Palanisamy et al. (2008) suggestgression
analysis and artificial neural network model toefast the flank
wear which were validated through experiments.

Many researchers accept, focused on multiple dbgect
optimization techniques, to be positive the maximadvantage
from a set of optimum machining parameters. Wangl.e{2006)
optimized multi-pass milling with two objectives kgfss machining
time and cost reduction using parallel genetic ed annealing.
The optimum machining parameters during single passng were
determined by Yang and Natarajan (2010) with objest of
minimum tool wear and maximum material removal ppla&ation
multi-objective differential evolution (MODE) algthm and non
dominated sorting genetic algorithm (NSGA-II). Timeinimum
production cost during multi-pass turning was dateed with a
proposed hybrid arrangement of real-parameter gemdgorithm
(RGA) and sequential quadratic programming (SQF)b{Ai and
Dixit, 2007). The hot turning of manganese was rojated (Tosun
and Ozler, 2004) with different objectives of magmmtool life and
minimum surface roughness. Ramon et al. (2006)mop¢d the
turning parameters with multiple objectives of mmim tool wear
and operation time with genetic algorithm. Tian G2p optimized
the CNC turning by applying Taguchi method and Tégphe for
Order Preference by Similarity to Ideal SolutionOFSIS) and
analyzed the after-effects by MINITAB with assortebjectives
optimization.

The achievement of nontraditional machining waso als
attempted with multiple objectives by many researsh to
determine the optimum parameters. Debabrata ¢2@0D7) applied
multi-objective  methodology non-dominating sortingenetic
algorithm-Il to optimize circuitous EDM parameterdgth ANN
prediction model and evaluated by experimental ltesiih-fong
and Fu-chen (2007) used fuzzy logic with Taguchithoe in
enhancement of EDM and determined pulsed duratioty, cycle,
and peak current as a lot of influencing factoromagnthe various
parameters. The wire EDM parameters were optim{8&djan and
Shunmugam, 2005) to improve the performance by Nominated
Sorting Genetic Algorithm (NSGA).
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From the literature study, it was found that thevas no
comprehensively application of multiple objectivegstimization in
Minimum Quantity Lubrication (MQL) machining techyie. This
proposed work attempts to optimize the machinintapeters in
adjustment to accord minimum surface roughness taotl wear
during the end milling of aluminum 6063 beneath M@thnique.

Nomenclature

F = fitness function

Xi....Xm =nresponse variables from m experiments
Xi*(k) = normalized data

Xon(K) = desired value of response variable

Xi*(j) = normalized value of'§ element inf sequence
Yi(k) = principal component

Greek Symbols

B = j" element of eigen vector

Bioqj & ook = standard deviation ofjand K' response
= coefficient value (normally 0.5)

end mill cutter (LT740WWL) of 20 mm diameter andigue
coated inserts APGT 1003 PDER-Alu LT05, manufactuby
Lamina Technologies (Swiss), were used in millixgpeariments.
The schematic representation of experimental sés @pparent in
Fig. 4. The milling experiments were done at vasidevels of
cutting speeds, feed velocities, depths of cutlandd flow rates.
The levels and parameters used are given in Tablefhe
experiments were conducted under Maximum Quantity
Lubrication (MQL). The vegetable oil coolube 2210,
manufactured by UNIST (USA), was employed as odemMQL.
To supply oil in MQL condition, an MQL setup waseds This
setup prepares the air-lubricant mixture and segpii at cutting
point through a nozzle. This setup is also abledjust the air and
lubricant ratios and the flow rate separately. Tlwv rate of
mixture can also be varied and the air pressuremaistained at
4 bars. In each experiment, the surface roughnedslank wear
of cutting tool were measured using tool room nscape and
surface roughness tester.

Table 1. Specifications of milling machine.

M ethods and Materials Type Universal-geared
Power 3 HP

End milling experiments were carried out at diffdre Working surface 1100 X 250 mmi
combinations of cutting parameters, cutting spdedd velocity, : : : .
depth of cut and cutting liquid flow rate in a nmfjy machine. The 'C::utt(;ng Tpgted (m/r;nn) 7l: ggsm/mlln -
specifications of milling machine are given in Tabl. The ee .ve _oc' y (mm/min - mm/min
workpiece material used to conduct milling experitse was Longitudinal travel (X)| 725 mm
aluminum 6063-T6. The chemical composition and oitmportant Cross travel (Y) 300 mm
properties of 6063 are given in Table 2 and Tablee8pectively. Vertical travel (Z) 250 mm
The dimensions of the workpiece were 300 x 200 xB0. An

Table 2. Chemical composition of Al 6063 in % of weight.
) ) Others
Mg Si Fe Cu Mn Cr Zn Ti Al
each | total
0.45-0.9 0.2-0.6 Max 0.35 Max 0.1 Max 0.1 Max 01 axw.1 | Max 0.1 0.05 0.1% Max97.p
Spinde
End mill cutter Lubricant MQL

Y

Table

Base

Figure 4. Experimental setup.
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Table 3. Various properties of Al 6063.

Physical

Density | 2.7 glcc
M echanical

Hardness (Brinell) 73
Ultimate Tensile Strength 241 Mpa
Tensile Yield Strength 214 Mpa
Elongation 12%
Modulus of Elasticity 68.9 Gpa
Machinability 50%
Fatigue Strength 68.9 Gpa
Shear Modulus 25.8 Gpa
Shear Strength 152 Mpa
Poisson's Ratio 0.33

Thermal
Melting Point 616 - 654°C
Thermal Conductivity 200 W/m-K
Specific Heat Capacity 0.9 J/g-°C

Table 4. Machining parameters and their levels.

Designation Parameters Level 1 | Level 2 | Level 3
A Cutting §peed 35 56 88
(m/min)
B Feed velocity | 44, 250 355
(mm/min}
c Depth of cut 1 12 14
(mm)
D Fluid flow rate 300 600 900
(ml/hr)

Sundara Murthy and Rajendran

Genetic Algorithm Based BPN

All the engineering issues will have plenty of smns. The
greatest task is to select the best from the alail@olutions.
Artificial Neural Network (ANN) is a model of biolgcal neuron
system. ANN can be trained by known results andkitmvledge
acquired from training can be used to foretell ompute the
unknown output. The most popular and broadly actén ANN is
Multi Layer Back Propagation Network (MLBPN). In BPthe
weights of input-hidden layers and hidden-outpuyeta are
computed using gradient search method. This waldl lthe network
to local optimum solutions. Moreover, the BPN isable to work
with new occurrence far from training. This resbawork aims to
abbreviate the drawbacks of BPN by affiliation oferf@tic
Algorithm (GA) with a back propagation network. Adtugh GA is
not an assuring global solution it is found that GAble of bearing
adequate acceptable solutions. GA may even be alishing the
results with less number of iterations. GA was &lmed by Holland
in 1975 and applied auspiciously in structural eegring. Later it
was extended to all fields due to its distinctieattires like random
search based on natural genetics, population oftpait time, etc.
Anatomy of proposed hybrid genetic algorithm —néuratworks
system is shown in Fig. 5. The program generatetinpnary
population randomly. The fitness of each chromosonpopulation
will be evaluated by weights of genes. If convergeris not
reached, genetic operations reproduction, crossamdr mutation
will be carried out to decide the new populatiogai, the fitness
of new population is checked and this system vatitiue until the
function is converged. If the convergence is a#djrthe program
stops and gives the result. The various steps ggsed genetic
algorithm based neural network system to predietttol wear are
discussed as following. In this study, an artifiai@ural network
with input, hidden and output layers was thouglaLabThe number
of neurons and parameters used in each layer versimoTable 5.

Input parameters

Cutting speed
Feed velocity
Depth of cut

Fluid flow rate

A 4

Functions: Genetic algorithm
- initial population generation
- weights calculation

- fitness evaluation

- reproduction

- cross over

- mutation

- hew population generation

Output parameters

A A

Surface roughness
Tool wear

Functions: BPN
- training
- inference
- prediction as output

Figure 5. Hybrid GA and ANN prediction model.
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Table 5. Details of ANN topology. X, ={ Xi (1) X (2) ......... X ( r)}
Nameof | Number of U
S-No. thelayer neurons Parameters 0
cutting speed X ={ X0 (1), X(2) corveve X.( 0}
feed velocity
! Input 4 depth of cut
- p In this study, N~ 2, surface roughness and tool wear and
fluid flow rate m=9 ber of iment
5 Hidden 7 . , number of experiments.
3 Output 5 surface roughness Step 2. Normalization of response variables
tool wear There are three different characteristics of ndeatibn. They are:

(i) Higher-the-Better (HB)
_ . : . : X7 (k) = X (K9 /max X (K
The primary step in the hybrid system is randomegation of

preliminary population for each input. The genegternwas taken as

five and string length of each chromosome was &8fte Tithess (i NoEminaI-th-e-Better (NB)
function of each chromosome is given by X (k) =min{ X (K}, X, (K}/max{ X( B} . % ( B
F=1/E (i) Lower-the-Better (LB)
X7(K)=min X (K/ % (Q
where E=J(E+E+E+E)/4 i=1,2,....mandk=12,...0n
— 2
£=(0.+Q) Step 3. Correlation between the responses
For each chromosome in preliminary population fitness value The correlation coefficient is given by
was computed. The fitness function ought to be emyed at least for
95% of preliminary population. In case of less, thating pool was Py =CoUQ Q)/a, xag,

formed by replacing all the least fitness chromas®mwith highest

fitness chromosome. From this mating pool, new irs were . . . .
selected randomly for cross over. (%flfospring chTa;a?;es were where Q ={Xy(), Xy(), Xy(D--oereoe. XQm ()}
generated by a single point crossover. At randaelgcted cross site ihj&k=12,...... nbut j £K
the genes were swapped. Sometimes, cross ovealideulo continue
the regeneration. Then the bits of strings are dhiridependently.
Mutation makes search space globally and restbredost genetic
knowledge. A low mutation rate of 0.05% was selbcteecause
higher values could affect the fitness of the ggimAfter all genetic
operations, a new set of population was generateevaluate the H,:p, # 0 relation exist

fitness. Once fitness function was satisfied, tbenguted weights

were accustomed to BPN model to predict the toalrvad surface step 4. Principal component score calculation
roughness as outputs.

Hypothesis for correlation checking:

H,: p, =0 no relation

The principal componen¥ (k) can be determined by
Optimization M ethodology

Principal Component Analysis (PCA) and Grey Relwmio Y(H=> X'()4
Analysis (GRA) are combined to optimize the cuttpagameters for =t
minimum surface roughness and tool wear. PCA isadable

reduction method which is widely applied from scento St€P S.Individual grey relational coefficients

engineering issues because of its ability to rex¢he significant The grey relational coefficient is computed by
information from the more number of observed vdeab The
redundancy in the observed variables is determiedorrelating rO,j(k) =D, + &0, ) /(A oj(k)"'fA )

each other. This redundancy will help reducing thenber of
observed variables into smaller number of principamponents.

The variance in the observed variables is repredemty the Where miin "li”|Xo*(k)—)§*(k)|
principal components. These principal componergsuaed to find A=
the grey relational coefficient and correspondiriy &atios. From mi'n"l'n |Yo(k)_ Y( |<)|
the S/N ratios the optimum cutting parameters a&terchined. The max maxx * (k) - X'
step by step procedure followed to find the optimentting A = ka* o (=X (k)‘
parameters is as follows: e max max Y, (K= Y(R
Step 1. Collection of response variables * *
X, (k)= X
a, (o= (9= X (8] ang

The response variables are represented as:

Yo (K- Y(R

& = coefficient value (normally 0.5)
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Step 6. Overall grey relational grade calculation

The responses of surface roughness and tool weamanbined
and a single overall grey relational grade is dated by using:

Mo = ZWk Mo, (k)
=

Then, the Taguchi method is applied to computeSie ratios for
overall grey relational grade. The optimum machinparameters
are determined from the S/N ratios.

Results and Discussion

GA and ANN hybrid prediction model

The surface roughness and tool wear quality cheriatics are
predicted in this research work using genetic atgor based
artificial neural network. To foretell the surfaceughness and
tool wear cutting speed, feed velocity, depth of and cutting
liquid flow rate are used as input parameters. fylerid of GA
and ANN is aided to foretell the outputs exactlpeTresults of the
hybrid prediction method are given in Table 6. Tedicted
values are validated by experimental values. Thsitipe and
negative errors in prediction of surface roughrass +2.9% and
-1.0%. Similarly, the errors in the prediction ofotovear are
-3.3% and +1.3%. The accuracy of hybrid predictioodsi for
surface roughness is +2.9% and for tool wear i8%3.The errors
of the model are within the accustomed limit. Soisiapparent
that the predicted values of hybrid prediction modave good
agreement with experimental values.

Table 6. Experimental results and comparison with prediction.

Exp Surface roughnegR;) (um) Flank wear (mm)
No. | predicted Exp. F:r?g'rc(tg/oogl predicted Exp. %rﬁg'rc(té/c());‘
1| 0.776 [0.799 2.879 0.252 |0.256) 1.563
2 | 0.765 |0.7460 -2.547 | 0.237 | 0.24| 125
3 | 0.983 |0.973 -1.028 | 0.283 |0.274 -3.285
4 | 0.766 |0.752 1.305 0.205 |0.202] -1.485
5 | 0.857 |0.868 1.267 0.321 |0.329 2.432
6 | 0.459 |0.449 -2.227 | 0.359 | 0.37| 2.973
7 | 0.638 |0.649 1.695 0.325 |0.316 -2.848
8 | 0.668 |0.678 1.475 0.373 |0.383 2.611
9 | 0.762 |0.747) -2.008 | 0.388 |0.395 1.772

Optimization of cutting parameters

The experimental results of surface roughness aot wear
quality characteristics in end milling of aluminud®63-T6 under
maximum quantity lubrication are shown in TabldJ&ing Lower-
the-Better (LB) criterion both surface roughnessl dool wear
experimental information have been normalized. Toemalized
information set is given in Table 7. Computatiors leeen carried

out subsequently, to find the correlation betwelka tesponses.

Table 8 shows the Pearson’s coefficient of cori@iatbetween
surface roughness and tool wear. Based on this, abvious that
both the responses are correlated. The PrincipanpBaoent
Analysis (PCA) has been used to eliminate the mespcorrelation.

258 / Vol. XXXIV, No. 3, July-September 2012
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The PCA matrix which consists of Eigen values, Bigectors,
Accountability Proportion (AP) and Cumulative Accaability
Proportion (CAP) is also given in Table 8. The ipeledent
principal component for each experiment is cal@ddty converting
the correlated responses. Since the AP of the neggas non-zero
value, the principal component scores are detednifoe both
responses and are listed in Table 9. The qualgg Estimated for
each response is given in Table 10.

Table 7. Normalized data set of experimental results.

Exp. No. rgﬂé;ic;s Flank wear
Ideal 1.000 1.000
1 0.562 0.789
2 0.602 0.842
3 0.461 0.737
4 0.597 1.000
5 0.517 0.614
6 1.000 0.546
7 0.692 0.639
8 0.662 0.527
9 0.601 0.511

Table 8. Eigen values, Eigen vectors, AP and ACP of responses.

Y1 Y2
Eigen value 1.332 0.668
) +0.70 +0.70
Eigen vector +0.70 ~0.70
AP 0.666 0.334
CAP 0.666 1.000

Table 9. Principal component scores.

Principal component scores
S. No.
Y1 W2
Ideal 1.4140 0.0000
1 0.9488 -0.1697
2 1.0209 -0.1697
3 0.8548 -0.1888
4 1.1128 -0.3012
5 0.8003 -0.0693
6 1.0937 0.3203
7 0.9332 0.0452
8 0.8413 0.0947
9 0.7869 0.0629

Here, analyses of quality characteristics such agace
roughness and tool wear were made to optimize tiiing
parameters. To optimize the multiple performancaratteristics, it
was converted into single aim issue by applyingy grelational
analysis. Table 11 shows the grey relational coefiits for the

ABCM
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principal components. These grey relational coigffits are This is in acceding with beforehand studies on weéhr in turning

combined and a single grey relational grade isutaied. The grey by Joshi et al. (1999), Erol and Ali (2006) andrjehal. (2008) and

relational grade and corresponding S/N ratios arengn Table 12.  milling by Caldeirani and Diniz (2002). Increasdatasion between
the cutting tool and work material in the work dfjtrer cutting

Table 10. Quality loss for each response. speed causes higher tool wear and surface roughfiesscutting

speed is followed by feed rate, lubricant flow rated finally the
depth of cut. From Fig. 6, the optimal levels of cmaing

Quality loss corresponding to

S. No individual principal parameters are identified as A3B1C3D2.
e components
Y1 2 Table 13. Response of S/N ratio.
Ideal 1.414 0.000 A
1 0.459 0.161 Factorsllevels | level 1 | level 2 | level 3 | . " | rank
2 0.393 0.17 Cutting speed| 2.834| 2359 1381 1454 1
3 0.567 0.195 :
4 0.285 0.285 Feed velocity 1.779 2.048 2747  0.968 2
5 0.614 0.068 Depth of cut 2.565 211 1.899 0.665 4
6 0.321 -0.321 Fluid flow
7 0473 0037 rate 1.991 1.864 2.719] 0.727 3
8 0.573 -0.095
9 0.627 —0.063 Table 14. ANOVA result of S/N ratio.
Sumof | Degreeof . %
Factors Variance o
Table 11. Grey relational coefficients of principal components. squares freedom Contribution
Grey relational coefficientsfor Cuttlng 3.297 2 1.648 48.75
S No individual principal spee
e components Feed |1 496 2 0.748 22.124
velocity
Y1 v2 Debth
1 0.796 0.688 of Eut 0.694 2 0.347 10.262
2 0.869 0.668 Fluid
3 0.698 0.619 flow rate 1.276 2 0.638 18.864
4 1.027 0.491 Total 6.762 8 100
5 0.663 0.977
6 0.969 0.454
7 0.782 1.140
8 0.693 0.870 ' e
2.8
9 0.653 1.000 e \ / N /
2.4
Table 12. Grey relational grade and S/N ratio. k-] 2.2 ‘\ J/ \\ /
Grey z \ / SN
S. No relational S/Nratio o L8 \ *
grade L6 \
1 0.742 2.595 14 A
2 0.769 2.283 ‘-i
3 0.659 3.625 Al A2 A3 31 B2 B3 cl Cc2 3 D1 D2 D3
4 0.759 2.393
5 0.82 1.724 Figure 6. S/N ratio response graph.
6 0.711 2.961
7 0.961 0.349 The values of optimum parameters are cutting spe88 m/min,
. . feed velocity of 180 mm/min, depth of cut of 1.4 rand coolant flow
8 0.782 2.138 rate of 600 mi/hr. To exactly decide the contribntbf each cutting
9 0.827 1.654 parameter, ANOVA was applied for S/N ratio of grelational

grade. The result of ANOVA is shown in Table 14.eTtutting
speed is the highest influencing parameter with7%%. of

The SIN ratios are computed by Taguchi methodoldgple 13 contribution. The next .significant parameter is dfegelocity
shows the S/N ratio response at each level and ralseals the (22-12%) followed by lubricant flow rate (18.86%he depth of cut
influencing order of machining parameters. Theiogtspeed is a IS the least influencing factor when compare witheo cutting
highly influencing parameter for surface roughnasd tool wear. Parameters with 10.26% of contribution.
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Validation tests

The optimum levels of machining parameters deteechifor
maximum surface roughness and tool wear are A3BRC3D
confirm the obtained optimum set of parametersdedion tests
were conducted. The results of these tests shotvthgamean
values of surface roughness and flank wear are2054 and
0.266 mm respectively. This shows that the qualitgracteristics
thought about in the study can be optimized by &etbp
optimization methodology.

Conclusion

In this paper, genetic algorithm based artificialral network
hybrid prediction model is proposed to foretellfane roughness
and tool wear. A multiple objective optimization ttmedology, by
using principal component analysis, grey relatioanhlysis and
Taguchi method is also proposed to optimize the hinangy
parameters of Al 6063 under maximum quantity lutian. The
following conclusions are made:

e The optimum machining parameters for minimum swfac

roughness and tool wear are cutting speed of 88m/fieed
velocity of 180 mm/min, depth of cut of 1.4 mm acmblant
flow rate of 600 ml/hr.

« Among the machining parameters: cutting speed,
velocity, depth of cut and lubricant flow rate, theting speed
is the most significant with percentage contributiof
48.75%, followed by feed velocity with 22.12%, lidulow
rate with 18.86% and at last depth of cut with 5062

* The proposed GA based ANN hybrid prediction modas$ h

excellent agreement with experimental values, \eittors of

only 3.3%.

The validity tests demonstrated that the proposedtipte

objective optimization methodology is able in detgring the

optimum machining parameters in end milling.
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