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I ntroduction

In deterministic design optimization, the uncert@s of the
structural system (i.e. dimensions, models, mdteriaads, etc)
are taken into account in a subjective and indivezy, by means
in design codess a
consequence, deterministic optimal solutions mayl l® reduced
reliability levels (Beck and Gomes, 2012). ReliébilBased
Design Optimization (RBDO) has emerged as an atere to
the safety-under-uncertainty aspedt the
optimization problem. With RBDO, one can ensurettl@a
minimum (and measurable) level of safety, chosgmiari by the
designer, is maintained by the optimum structure.

of partial safety factors specified

properly model

The RBDO problem may be stated as:
Minimize:  J(d,X)

subjectto:  fi

Pf - P(Gf (d,X) < 0) < Ffj;\llowable

Rafael Holdorf Lopez and André Tedfilo Beck

Reliability-Based Design Optimization
Strategies Based on FORM: A Review

In deterministic optimization, the uncertaintiestbé structural system (i.e. dimension,
model, material, loads, etc) are not explicitlyeakinto account. Hence, resulting optimal
solutions may lead to reduced reliability level§ieTobjective of reliability based design
optimization (RBDO) is to optimize structures gu#eeing that a minimum level of
reliability, chosen a priori by the designer, is imained. Since reliability analysis using
the First Order Reliability Method (FORM) is an opization procedure itself, RBDO (in
its classical version) is a double-loop stratedye reliability analysis (inner loop) and the
structural optimization (outer loop). The couplionf these two loops leads to very high
computational costs. To reduce the computationatiéu of RBDO based on FORM,
several authors propose decoupling the structupimization and the reliability analysis.
These procedures may be divided in two groupse(igl single loop methods and (i) uni-
level methods. The basic idea of serial single lohods is to decouple the two loops
and solve them sequentially, until some convergeniterion is achieved. On the other
hand, uni-level methods employ different stratetpesbtain a single loop of optimization
to solve the RBDO problem. This paper presentsviewe of such RBDO strategies. A
comparison of the performance (computational cokthe main strategies is presented for
several variants of two benchmark problems from literature and for a structure
modeled using the finite element method.
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wheref,(x) is the joint probability density function (PDF)mndom
vector X. In practice, it is impossible to obtain the joiRDF
because of scarcity of joint observations for agdanumber of
random variables. At best, what is known are thergmal
probability distributions of each random variabladapossibly
correlations between pairs of random variables.tAeodifficulty in
solving Eq. (2) is the fact that the limit stateuations,G;, are
sometimes given in implicit form, as the responfénite element
models (Beck and da Rosa, 2006). Such difficultisée motivated
the development of various approximate reliabititgthods.

Intensive research has been carried out to prowidthods to
approximate the integral in Eq. (2). These methody bedivided
into three major classes: (i) simulation methods; rfumerical
integration and (iii) analytical methods (Lopezaét 2011a). For a
detailed review on these methods, the reader éresf to Lee and
Chen (2008) and Melchers (1999).

i. Simulations methods using sampling and estimatrenveell
known in the literature, the most widely used bdimg Direct
Monte Carlo simulation (MCS) method (Rubinstein 810
The main drawback of MCS is that it requires a hageunt

i=1.n (1)

whered 00" is the design vector (e.g. structural configuratmd
dimensions), x JO™ contains all the random variables of the
system under analysis (e.g. random loads, uncewssinctural
parameters),) is the objective function to be minimized (e.g. the
structural weight, volume or manufacturing cosB; is the
probability of failure ofi™ constraint G)), and Py "3 js the
allowable (maximum) failure probability for thé" constraint.

Although the objective function is generally a randvariable, it is i.

usual to consider it as a deterministic value bigwating it using
only the mean values of the random variab{edHence, from now
on, the objective function it written d¢d). The reader is referred to
Minguez and Castillo (2009) and references thefeinproblems

dealing with probabilistic quantities in the objeetfunction. M.

The failure probabilityP; for each constraint may be obtained
by evaluating the integral in Eq. (2), which is thendamental
expression of the structural reliability problem:

P = _[ f, (x) o @)
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of calculations. Several improvements of the MC8ehlaeen
developed to reduce the computational effort, sashthe
quasi-MCS (Niederreiter and Spanier, 2000), dioecti
simulation (Nie and Ellingwood, 2000) and importanc
sampling (Engelund and Rackwitz, 1993). In practM€S is
consideredhe referencaesponse and is used to validate the
results of other, approximate methods.

The multi-dimensional integral to determine thehaoilistic
characteristics of random output is evaluated nigally (Seo
and Kwak, 2002; Lee and Kwak, 2006; Rahman and Xu,
2004). Numerical integration is limited, in pra€icto
dimension 5 or 6.

The main approaches of this class are the FirstSeubnd
Order Reliability Methods (FORM and SORM, respesliy.
FORM and SORM are said to be transformation methods
because the integral in Eq. (2) is not solved & dhniginal
space X), but is mapped to the Standard Gaussian sp#ce (
In this space, the Most Probable Point of failiiP) is also
the point, from all points in the failure domairtpsest to the
origin. The reliability index3 (Hasofer and Lind, 1974), which
is a measure of the reliability, can be evaluatetha distance
between the MPP point and the origin, in the tramséd
Standard Gaussian spatée main advantage of FORM-based
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approaches is their computational cost, which fsaetion of
the cost of crude Monte Carlo simulation, for insta

Hence, FORM based approaches have been widely getpto
evaluate Eq. (2) in RBDO problems. As detailed éetidn 2, these
approaches are optimization problems themselvesamnskequently,
the RBDO using FORM is a double-loop strategy:

« the inner loop is the reliability analysis,

« the outer loop the structural optimization;
that is, the two optimizations are coupled. Suchuptiag of
optimization loops: structural optimization and iabllity
assessment - leads to very high computational .cbetseduce the
computational burden of RBDO, several authors dgleou the
structural optimization and the reliability analisiTechniques for
de-coupling the optimization loops may be dividadtwo groups:
(i) serial single loop methods and, (ii) unilevettimods.

This paper presents a review of RBDO methods based
FORM. First, the two main (coupled) FORM based apphes,
Reliability Index Approach (RIA) and Performance &8are
Approach (PMA) are described and compared. Themveew on
decoupling methodologies is presented, and two sty
methodologies are described in detail. A comparisin the
performance (computational cost) of the main sgieteis presented
for several variants of two benchmark problems fithen literature
in the Numerical Analysis Section. The articleirgshed with some
concluding remarks.

It should be noted that the review presented hedeies not
intend to cover all the papers published on thgestibut to present
the main techniques, in order to serve as a guidadse entering
this exciting and challenging subject.

Coupled Form-Based Approaches

This section briefly details the approximation af.&2) using
RIA and PMA, then presents a review of the comparibetween
these two approaches. The interested reader iseéfto Madsen et
al. (1986), Melchers (1999) and Haldar and Mahad€2800) for
more details on the RIA, and to Tu et al. (1999)adull description
of the PMA.

Theiso-probabilistic transformation

In order to approximate the integral in Eq. (2)isitusual to
introduce a vector of normalized and statisticaltylependent
random variableyy oO™ and a transformatiom (Fig. 1), so that

U = T(d,X). The most common transformations are the Rosé&nbla

and the Nataf ones (Lemaire et al., 2005; Melch2€89). The
mapping T transforms every realization of X in the physical

space into a realizatiamin the normalized space. Note that it also

holds for the constraints:

G (d.X)=G(d, T"(d,U)) = g(d.U). @3)

whereg; is thei'™ constraint in the normalized space.

The main advantage in the use of this transformascahat the
probability distribution on the resulting space egs only on its
norm. This fact is illustrated in Fig. 1 by theatitar reliability
levels of the normalized space. It must be highédhthat this
transformation is the first approximation proposedolve Eq. (2):

it only is exact whenX is comprised of independent Gaussian

random variables. However, even with this simpdifion, it is still
not an easy task to evaluate Eq. (2). The FORMqapation is
used to simplify this evaluation.

J. of the Braz. Soc. of Mech. Sci. & Eng.
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Figure 1. Transformation T and the First Order Reliability Method (FORM).

Rédliability Index Approach (RIA) and Performance
M easure Approach (PMA)

The main idea of the FORM is simple: it consistgéplacing
the limit state functionG; by a tangent hyper-plane at the most
probable point of failure (MPP). Figures 1 and Risirate the
approximation made by this hyper-plane. The FORMraxmates
the probability of failure and the allowable faguyprobability for the
i constraint by:

pf‘ = ®(-B,) and F)f?llmmablez (D(_Bitarge) , @)

where® is the standard Gaussian cumulative distributiomcfion
(CDF) andp®®is the target reliability index for th& constraint.
This is the second approximation proposed to silge(2) and it
only provides an exact result when the constraitihear.

G(d, X): non-linear

X,

Figure 2. lllustration of the FORM approximation.

Now, recall that in order to evaludig one first needs to obtain
the MPP: the point in the failure domain closesth® origin of the
normalized space. The difference between the Rid\tae PMA is
the manner in which the MPP is calculated. The ofeihg
optimization problems detail this difference:

RIA
for a given desigd
finds u*RIA which

minimizesﬂuH =8

PMA
for a given desigd
finds Upya which

minimizes: g (d,u)

subject to: g (d,u)=0 subject to: |y =p =

The optimal solutioru*RIA of the RIA yields the reliability index
B :HU;IAH of thei™ constraint on the current designOn the other
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hand, the optimal solutioru*PMA of the PMA is the minimum
performance target point (MPTP) on the target bélig sphere

(defined byHuH =[3%%) and it provides the so-called performance

_ * :th .
measure P = 0, (d,upw,\) of the i™ constraint on the current

designd. The performance measui@, is related to the reliability
indexp; by the following relation:

P = F5 (®(-B) (5)

where F is CDF of thei™ constraint. It is important to note that

u;,Ai and U*F,MAi will be equal only when the reliability
constraint is active, e.g., at the final desigmd®BDO problem. At

any other point, U;MA_ only represents the point of minimal
performance on the target reliability sphere.

RIA versusPMA

RIA corresponds to minimization of a quadratic fiimcal (the
norm) under non-linear equality constraints, forichkh efficient
methods exist. Moreover, the equality constrainti¢de replaced
by an inequality constraint, which simplifies théARsolution. The
efficiency of such alternatives is yet to be exptbr

In the paper that introduced the PMA, Tu et al.9@)9showed
that PMA is inherently robust and yields a higheerall RBDO rate
of convergence when compared to a conventional Riun et al.
(2003), although reaching the same conclusionsywsetiahat the
PMA is far more effective when the probabilistimstraint is either
very feasible or very infeasible. In a differenppg Youn and Choi
(2004a) concluded that the PMA is quite attractidreen compared
to other probabilistic approaches in RBDO, sucthasRIA and the
approximate moment approach (Lee et al., 2002).

The first main difference between the RIA and tiAPis the
type of optimization problem which is solved in leacase. It is
easier to minimize a complicated function subjestat simple
constraint (PMA) than to minimize a simple functisabject to a
complicated constraint (RIA). Different from the/Rlin the PMA
only the direction vector needs to be determined thking
advantage of the spherical equality constrﬁillwg p et tO find the
MPPU,,, -

Still regarding the type of optimization problerhetconceptual
iteration history during the search facilitates BiMdA. Usually, the
RIA search requires several iterations to reachf#ilare surface

given by g, (d,u) =0, while the PMA search immediately lies on
the Huuzgitarget sphere; in other words, the number of iteratiohs o

RIA increases with the reliability index while tHRMA search is
independent of the target performance (Lee e280D2). A second
consequence is that, in the case of non-activatedt@ints, the
PMA becomes even more effective.

Regarding non-linearities in the RBDO problem (use of non-
normal random variables), Youn and Choi (2004b)wstb that
PMA is more stable, efficient and has a lower deleece on the
distribution of the random variables, since it anlnces small non-
linearities in the space-transformations. PMA chost handle a
variety of distributions without significantly ineasing the number
of function evaluations. Furthermore, RIA divergetlen uniform
or Gumble random variables were employed. The fodnergence
was due to the fundamental nature of the uniforstribution and
the latter was due to numerical difficulties wheralihg either with
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a nonlinear failure surface or with a failure sagfaaway from the
design point.

Classical coupled approaches

As the reliability analysis is an optimization pedeireby itself,
RBDO, in its classical version, is a double-loomat#gy: the inner
loop is the reliability analysis and the outer logpthe structural
optimization. Thus, the two optimization loops aceipled:

fork=1, 2,

a) structural optimization:
J (d(k))

B (d?)+ (08 (d(“)))T (a¥-d"¥) <0
(RIA),

pn, () +(0,p, (ol(k‘l’))T (a®-a") <0
(PMA),
i=1l..n,
d <d¥<d,
where, at each stédp given current desigd?, the reliability
routine is callec
b) reliability analysis:

minimize:

subject to:

RIA PMA

finds Uiy which  finds u*thl;/;l) which
minimizes:  [u[[ =B, g (d(k’l),u)
subjectto: g (d("‘l),u) =0 HUH = ot

At the end of each reliability analysis, a sengiianalysis of
the design variables with respect to the religbitidex is pursued to
obtain 5 (d(k—l)) or 0,p, (d(k—l)). This procedure is repeated until

some convergence criterion is achieved and, ofseput leads to
very high computational costs. A review of techmisaeveloped to
de-couple the RBDO problem, in order to reducectraputational
burden, is presented in the next section.

Decoupling Strategies

De-coupling the two optimization problems means teohave
to call the reliability analysis routine at evetgsk of the structural
optimization. In the sequel, the serial single l@@ unilevel de-
coupling methods are reviewed.

Serial singleloop methods

The basic idea of the serial single loop method® idecouple
the structural optimization (outer loop) and theliatslity
optimization (inner loop). Each method of singlegodecoupling
employs a specific strategy to decouple the loams then solves
them sequentially until some convergence critefi®nachieved.
Among these methods, the following may be citedaditional
Approximation Method (TAM) of Torng and Yang (1993ingle
Loop Single Variable (SLSV) of Chen et al. (199%gquential
Optimization and Reliability Assessment (SORA) af Bnd Chen
(2004) and Safety Factor Approach (SFA) of Wu e{2001).

Yang and Gu (2004) compared these four single-loop
decoupling RBDO methods. Four different examplesewsolved
including a vehicle side impact and a multidisciply optimization
problem. According to their results, SLSV was thestneffective
method, converging nicely and requiring the fewesmber of
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function evaluations. The other methods also showemmising

results when compared to the classical approach.second paper,
the authors (Yang et al., 2005) investigated arinereging problem
with a large number of constraints (144) and withnsn local

minima. In addition to the four single-loop decdogl RBDO

strategies, the Mean Value Method (Gu and Yang3R®@s also
studied. Results showed that the number of funcéwaluations
depends on the RBDO method, optimization algoritlamd

implementation. Furthermore, algorithms with goodtivee-

constraint handling tended to perform better (S@RA/SFA).

Moreover, SORA/SFA and TAM have advantages overdtner

methods, as the target reliability is obtainedhat énd. Regarding
the local minima, different methods and differetarng points

yielded different final results, since only locadtimnizers were used
by the authors.

Unilevel methods

The central idea of unilevel methods is to replgneereliability
analysis by some optimality criteria on the optim{ira. imposing it
as a constraint in the outer loop). Thus, therea igoncurrent
convergence of the design optimization and religb#alculation
or, in other words, they are sought simultaneousind
independently.

Kuschel and Rackwitz (2000) formulated a unilevettmod
based on replacing the inner loop of the classiparoach (FORM
analysis using RIA) by the first order Karush-Kuhaeker (KKT)
optimality conditions of the first-order reliabifitproblem. In other
words, the KKT optimality conditions of the RIA seh are
imposed as constraints in the outer loop of the RBBs already
commented, the RIA may be ill-conditioned when phebability of
failure given by a constraint is zero and it is eotnputationally
efficient when the reliability index is large. Witthis in mind,
Agarwal et al. (2007) proposed a unilevel RBDO rodtiwhich
introduced the first order KKT necessary optimalitynditions of
PMA as constraints in the outer loop, eliminatirge tcostly
reliability analysis (inner loop) of RBDO.

Cheng et al. (2006) proposed a unilevel strategedan the
Sequential Approximate Programming (SAP) concepiclwiwas
successfully applied in structural optimizationttie SAP approach,
the original optimization problem is decomposea iatsequence of
sub-optimization problems. Each sub-optimizatioobem consists
of an approximate objective function subject t@adaf approximate
constraint functions. A SAP strategy for RBDO usthg PMA to
approximate the reliability constraints was alsweedleped (Yi et al.,
2008; Yi and Cheng, 2008).

Studies comparing the different unilevel methodgehaot been
found in the literature. Yi and Cheng (2008) conegiathe SAP

based on RIA and SAP based on PMA with SORA and\SLS

methods. Several examples, including the 144 cainstproblem,
were solved. Based on the results, the authorslwded that SAP
based on PMA achieved better results than the atte¢hods. This
result does not imply that SAP-PMA is the most @ffee method in
all cases; but it is, at least, one of the mosteréwl algorithms in
RBDO. As a general review of de-coupling approachas been
presented, one method of each approach is desdritmttail in the
sequence in order to highlight the differences adheclass of de-
coupling scheme.

Sequential Optimization and Reliability Assessment (SORA)

The SORA (Du and Chen, 2004) method is based on tl
strategy of serial single loops decoupling thecitmal optimization
and the reliability analysis. At each iteration tbe method, the
reliability analysis is only conducted after coryemce of several

J. of the Braz. Soc. of Mech. Sci. & Eng.

loops of the structural optimization. SORA makes afthree main
artifices to increase the algorithm’s performance:

i. reliability is evaluated only at the desired levielmeans that
SORA is based on the PMA having all the advantagssn
compared to RIA-based methods;

ii. Using an efficient and robust MPTP search algori{idu et
al., 2003);

iii. Employing sequential cycles of optimization andataility.

The key concept of the method is to shift the bauied of the
violated equivalent deterministic constraints te feasible direction
based on the reliability information obtained ir threvious cycle,
which makes the reliability constraints improve gnessively and
the cost of the search for the MPP be reduced.

Figure 3 shows an example of the SORA boundantisif
procedure. The equivalent deterministic constrafriterationk and
the probabilistic constraint that has to be fudflllare represented.
Based on the percentile information obtained thihotlg reliability
analysis, the shifting values is found and the equivalent
deterministic constraint is shifted towards the batulistic
constraint (dashed line). The reliability consttamfulfilled whens
is equal to zero, in other words, when the dasimedcoincides with
the probabilistic constraint.

dl’ Xl
Probabilistic Constraint
Deterministic P(G(d, X)<0)
constraint
9(d)=0)
(G
.......... > @ .d,)
.................. Shifted constraint
s S, . d(k) d(k) -0
1 ...\’:"? 9(d, s, d, -s)=
'(k) ~~~~~~
N
7
d, X
2 2

Figure 3. Shifting the boundaries of the violated deterministic constraints
in SORA (Du and Chen, 2004).

Thus, the RBDO-SORA algorithm works in the follogimanner:

fork=1,2, ...
a) deterministic optimization:

minimize: 3 (d(k))

subject to: g (d(k),ui ‘S(k_l)) =0.,i=1l..n

d<d®<d,

where, at the end of each deterministic optimizdtiche PMA
routine is called:
b) PMA: given current optimal desigif*" find Uy, which
minimizes: g (d(")‘,u)

ne
subject to: HUH = oot
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With the information provided by the MPTP, the 8hd vectors
is updated. Notice that the optimization loops rewdonger coupled,
i.e., an entire deterministic optimization is penfied and then, the
reliability analysis routine is called. This prooed is repeated until
some convergence criterion is achieved. Hence, ofitemization
problems are performed sequentially and by thisaedahe name of
this class of de-coupling methodsé&sial single loop methods

Sequential Approximate Programming (SAP)

Cheng et al. (2006) proposed a strategy basedeorettjuential
approximate programming (SAP) concept that was easfally
applied in structural optimization. In the SAP apgrh, the original
optimization problem is decomposed into a sequeotesub-
optimization problems. Each sub-optimization prableonsists of
an approximate objective function subjected toteofapproximate
constraint functions. Thus, the SAP method makes of an
approximation of the reliability constraint, wheaelinear Taylor
approximation of the approximate reliability indiexused instead of
the accurate one, reducing the computational effgreliminating
the need for the reliability analysis. Such appmage reliability
index and its sensitivity are determined from aureence formula
that is derived from the optimality conditions detPMA and end
up being the iterative formula of the Advanced M¥&atue (AMV)
method (Wu et al., 1990). The SAP-PMA algorithntlen:

fork=1.2,...
minimize: (d(k))

subjectto: .

By (d* )+ (0, (¢ ) (9 -d** ) <0

Ji=l.n
d<d®<d<d®<d,

wherek is the sub-optimization problem numbe, (d“¥) is the
approximate performance measure of the optimapdesf? of the

previous sub-optimization probler,” andd,* are the lower and G, (X)=(X, + )(2—5)2 130+( X, = X,- 132 1126 1
upper bounds of™, respectively. Notice that at the end of each

sub-optimization problenk, the reliability analysis routine isot
called. Instead, the approximate performance measurd the

approximate MPTP of th&" constraint are just updated by the

following relations:

o Dug(du")
o o7)=ala" )

It should be noted that, at the end of this practss optimal
solution of the original problem is found and thaere is a
concurrent convergence of the design optimizatind eeliability
calculation; in other words, they are sought siemgbusly and
independently. It is this fact that gives name h tclass of de-
coupling methodsunilevel methods

(6)

Further comments

Some aspects should be stressed based on the péitpdrén
this section:

i. the observation that a given method’s effectiverdeysends
on several factors suggests that different RDB&tegies may
be better for different problems, and this, in tundicates that
more benchmark studies need to be performed inraale
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identify which RBDO strategy is best for each tygbg@roblem
(e.g., type of objective function and constraints);

ii. this dependence also indicates that more robudiaudst(e.qg.
those less sensible to variance of parameters)Idhbe
preferable;

iii. the presence of many local minima, which is norrimal
complex engineering problems, indicates the needisiig
global optimization algorithms in the solution ofBRO
problems (Lopez et al., 2011b; Torii et al., 2012).

Recently, a benchmark study on several RBDO methadsd
on FORM was presented by Aoues and Chateauneuf0)201
comparing the performance and robustness of thesleoats. In the
next section, the classical approaches based onaRtAPMA, as
well as the SORA and the SAP-PMA, are comparetiérRBDO of
two classical examples taken from the literature anstructure
modeled using the finite element method.

Numerical Analysis

Example 1: multiplelimit states

A classical problem in the RBDO literature is azaly in this
section. The problem is comprised of three prolxthilconstraints
and the design variables are the means of thedawdom variables

of the problem § =(ﬂx1v ﬂxz)):

Minimize: J(d) = Hy, + Hy,
subject to: P = P(G(d,X)<0)s prlovable j=1...3
0<d<10
where

G,(X)=X?X,/20-1,

)
G,(X)=80/(X?+8X,+ 5~ 1.

Table 1. Comparison of the computational cost for solutions of Example 1.

SAP-

Bilafget RIA- PMA SORA PMA Reference
2 639 508 345 120 Yiand Cheng
Normal (18C) (172, (265, (108, (2008
3 494 556 372 168 Yang and Gu
(636) (-) (455 (-) (2004)
2 712 472 342 168
(504 (540) (255) (180)
Normal 3 741 500 387 144 é?l:?c:aiﬁiuf
(531) (540) (264) (198) (2010)
4 748 572 444 144
(531) (747 (348 (234
Uniform 2 nc 643 697 144 i anq Cheng
(nc) (604 (645 (132 (2008

Each Py is approximated using the FORM,
results obtained using our implementation of the ®BDO methods
are compared to results of the literature, suchAases and
Chateauneuf (2010), who employed the standard tit@vigs D) of the
random variables of 0.3, Yi and Cheng (2008), armhgrand Gu
(2004), who employed SD equal to 0.6. For this psep the
algorithms are tested for different types of randeaniables and
values of the reliability index. The results arenstarized in Table 1.

ABCM
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The results from the literature are in parenthesid the source is
indicated in thgg®®*'column. Minimize: 3 (d) = u, (4,

In comparison to the standard, most expensive agpr¢RIA), biect to: i —_—
the methods PMA, SORA and SAP-PMA lead to averagaations subject to: P(Gco.umn(d,x) < 0) < g
of 20%, 42% and 77%, respectively, on the comparati cost of 0<u
the solution. The SAP-PMA approach significantlyt-parformed b
the other methods in solution of this particulardB problem. 0.5d, < pp, 1, < 2

The number of limit state function calls in our ilementation
of the algorithms RIA, PMA and SORA, is 1.71, 1.86d 1.24
times higher, on average, than the references &iGmeng (2008)
and Yang and Gu (2004). On the other hand, ouramphtation of 2
SAP-PMA required 0.85 times the number of limittstéunction Gcolumn(d,x) =1- 4M21 - ‘:MZ - F > ®)
calls of the other algorithms. When compared toitiiglementation D,D,’o, DD, (DlDzUy)
of Aoues and Chateauneuf (2010), our implementaifdAMA and
SAP-PMA approaches achieved better results. Regardhe . L . .
uniform distribution, the results obtained wereteguilose to the The coeff|c.|ent.of variation (C.O.V.) of all varigs, in the
ones in Yi and Cheng (2008). This should be norsepms these reference 30'““991 1S 0.05. . .
numbers are largely influenced by the parameterd ather The probabilistic constraint was approximated usF@QRM

; - ; : - (Eq. 4) and the optimization was performed for eféht values of
programming details adopted in each implementation. B9 The RBDO of the column was performed by four afiéit

) methods: classical RBDO based on RIA and on PMARASQ@nd
Example2: short column design SAP-PMA. Each method was run four times, for difar initial
The short column design is also a classical probiem the points, yielding the computational costs shown abl€ 2. The same

literature. It consists in the minimization of th@umn cross sectional problem_ wats SOIVﬁd tﬁy AOUFS .and Chatteéiuneuf (2@H) a
area having as design variables the mean valuetsofandom comparison 1o results therein aiso Is presented.

: S : . In comparison to the standard, most expensive aphr(RIA),
dimensions:g :('“Du '“Dz)' The column is subjected to two randomy . oo PMA, SORA and SAP-PMA lead to averadactions

momentsM; andM2 and to a random forde The constraint of this of 43%, 66% and 86%, respectively, on the compurati cost of
structure is given by the limit of elastic behavigsy), which is also a  the solution.
random variable. Thus, the RBDO problem is given by

where

Table 2. Comparison of the computational cost for solutions of Example 2.

ploet RIA PMA SORA SAP-PMA  Reference

2 975/448/677/477 310/264/288/272 112/178/182/1560/84184/84 This work
975/381/543/491 340/296/304/349 120/201/210/175 70/72/96/108his work

3

Normal 3 (600/525/630/945}450/651/570/684]119/196/252/346)(56/80/nc/nc) Aoues and Chateauneuf (2010)
4 975/300/543/449 289/304/437/365 117/222/264/196/847184/120 This work
2 846/685/959/825 346/288/317/317 136/157/169/275/84184/84 This work

Lognormal 3  726/618/886/818 357/344/389/397 171/194/206/32B/96396/96 This work

4 616/508/758/712 533/480/501/485 236/278/293/450/96796/108 This work
*Nc = no convergence

Table 3. Influence of ¢ on the computational cost of the SAP-PMA approach. The Compu'[ationa.l COS.t of the SORA appr.oach. dgpepdthe
— maximum number of iterations of each determinisptimizationk.

peet=4 Normal L ognormal In the first version of the algorithm, Du and CH&004) employed

g/C.OV. 0.05 0.15 0.05 0.15 the full optimization of the deterministic step. ndethe SORA

approach is also tested having as constraint foln eketerministic

0.04 144 24C 15e  18C optimizationk the maximum number of iterationis,(y). Results are
0.06 108 168 120 132 presented in Table 4.
0.08 96 144 108 120
0.10 84 12C 9€ 10¢ Table 4. Influence of itoy 0N the computational cost of the SORA approach.
From the numerical analysis, it was realized thae t peret=4 CO.V.
computational cost and convergence for SAP-PMAIlfigbpends on itout 0.05 0.15
the size of each sub-problekn d, < d <d < d,® <d,. Hence, a
strategy was adopted where the size of each prolsl@mnsidered a 3 228/235/249 243/302/1085
function of the starting point for each subprobletft? = (1-q) do® 5 165/175/196 190/280/336
andd,® = (1+q) do¥, whereq is a constant. The computational costs
for different values ofj and of the C.0.V. are shown in Table 3. The 20 171/175/193 192/282/909

results in Table 2 were obtained €pr 0.1.
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Example 3: square plate modelled by finite elements

Minimize: Tr?

The case of a 2D square plate with a quarter aleciretired J@ = (lz — )'h
from a corner (Fig. 4), modelled using finite elense is considered.
The plate is made of steel with Young modulus EOS &BPa and subiect to:
yield stressc, = 200 MPa. The plate is clamped at its lower ) ' P =p G(d X):1— Owmax < Q| plowable
boundary and loaded at its left boundary with arithisted load, f ’ o, -
with total magnitude of 800 N. Uncertainties aresidered on the
plate thickness and on the radius, which are mededls random Immsh
variablesH ~r(hs,) and R~ r(r,s, ), respectively (wher¢ and 20mm <r < 60mmn
s are the probability distribution and the standdediation of the . L . .
random variable). These random variables are grupe the _Notlce that deterministic bounds were imposed an dbsign
random vectoX = (H, R). variables.

Two distributions are tested in this example: ndrraad
lognormal. For both cases, the standard deviagoes, = 0.1 mm

i ands = 4.0 mm. The length of the plate’s border isdixel =1 m.
A convergence study leads to a mesh with 1352 elestend 1458
5 nodes. Stresses are evaluated on Gauss integratiohs. The
2 normal stress in the s-direction is used for thauation of the limit
2 state functiorG (Fig. 5).
—
= - s
= =
-
_ 100 150
. L]
thickness b= %
h S 80 100
di 70‘
radius
60 . 150
r s
50 s
/ 40 E 0
border clamped " ’
Figure 4. Square plate with a quarter of circle retired from a corner. ] 50
20 ’
Design variables of the optimization problem are timean 1°| 100
values h and r, which are grouped into the design vector o

0 20 W0 60 80 100 120
d=(t, 1 ). The plate is optimized in order to minimize itdume .
under the constraint of remaining in the elastimeim; hence, the Figure 5. Stress distribution (MPa) in the s-direction.
maximum stress must remain below the yield limit:
The probabilistic constraint was approximated usF@QRM

G (d,x) =0, — O pux (d,X) , 9) (Eg. (4), and the optimization was performed fiffedent values of
g9t Al the final designs are presented in Table HheT
computational cost is evaluated in terms of the Imemof calls to

whereoyax is the maximum stress on the structure. ThusRBBO the finite element code.

problem may be stated as:

Table 5. Comparison of the computational cost (number of calls to the finite element code) of RBDO based methods.

Digribution T B RIA PMA SORA SAP-PMA x*
2 372 197 192 48 (1.00, 39.4)
Normal 3 356 181 216 48 (1.00, 34.6)
4 464 201 244 56 (1.00, 29.1)
2 500 311 196 64 (1.00, 39.5)
L ognor mal 3 624 398 229 72 (1.00, 34.9)
4 816 455 290 96 (1.00, 29.9)
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In comparison to the standard, most expensive appr¢RIA),
the methods PMA, SORA and SAP-PMA lead to averageaations
of 67%, 56% and 88%, respectively, on the computati cost of
the solution. The SAP-PMA approach significantlyt-parformed
the other methods in solution of this particularXB problem.

The reduction in computational cost is very sigmwifit in this
example due to use of finite element modeling fer mechanical
problem. In the case of Lognormal random variakligh p'29¢'= 4,
for example, the RIA method needed 816 finite elenoalls (about
3h20min) to obtain the optimal design, whereas $#P-PMA
method required only 96 finite element calls (al@uiminutes).

Surely, other benchmark comparisons are requiredder to make
more definite conclusions. This will be the subjsfduture work.

Concluding Remarks

The main goal of this paper was to review the niRatiability-
Based Design Optimization (RBDO) methods basedhenRirst-
Order Reliability Method (FORM). A review and a cpamison
between the two main coupled FORM approaches, gi@lility
Index Approach (RIA) and the Performance Measureréach
(PMA) were presented. The coupled approach to sglRBDO
problems was presented in detail and its high cdatjmnal cost
was highlighted. A general review of de-couplinghieiques was
also presented, and two of the main de-couplinghaust were
presented in detail, the Sequential Optimizatior d&eliability
Approach (SORA) and the Sequential Approximate Rnmgning
(SAP-PMA). The review presented herein suggestsSERA and
SAP-PMA should be the methods of better performaacel
robustness, in comparison to the other methodsribescherein.
Finally, this review presented the main technicares references on
the subject, and should serve as a guide to thoserirg this
exciting and challenging subject.
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