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Reliability-Based Design Optimization 
Strategies Based on FORM: A Review 
In deterministic optimization, the uncertainties of the structural system (i.e. dimension, 
model, material, loads, etc) are not explicitly taken into account. Hence, resulting optimal 
solutions may lead to reduced reliability levels. The objective of reliability based design 
optimization (RBDO) is to optimize structures guaranteeing that a minimum level of 
reliability, chosen a priori by the designer, is maintained. Since reliability analysis using 
the First Order Reliability Method (FORM) is an optimization procedure itself, RBDO (in 
its classical version) is a double-loop strategy: the reliability analysis (inner loop) and the 
structural optimization (outer loop). The coupling of these two loops leads to very high 
computational costs. To reduce the computational burden of RBDO based on FORM, 
several authors propose decoupling the structural optimization and the reliability analysis. 
These procedures may be divided in two groups: (i) serial single loop methods and (ii) uni-
level methods. The basic idea of serial single loop methods is to decouple the two loops 
and solve them sequentially, until some convergence criterion is achieved. On the other 
hand, uni-level methods employ different strategies to obtain a single loop of optimization 
to solve the RBDO problem. This paper presents a review of such RBDO strategies. A 
comparison of the performance (computational cost) of the main strategies is presented for 
several variants of two benchmark problems from the literature and for a structure 
modeled using the finite element method. 
Keywords: RBDO, structural reliability, structural optimization 

Introduction1 

In deterministic design optimization, the uncertainties of the 
structural system (i.e. dimensions, models, materials, loads, etc) 
are taken into account in a subjective and indirect way, by means 
of partial safety factors specified in design codes. As a 
consequence, deterministic optimal solutions may lead to reduced 
reliability levels (Beck and Gomes, 2012). Reliability Based 
Design Optimization (RBDO) has emerged as an alternative to 
properly model the safety-under-uncertainty aspect of the 
optimization problem. With RBDO, one can ensure that a 
minimum (and measurable) level of safety, chosen a priori by the 
designer, is maintained by the optimum structure. 

The RBDO problem may be stated as: 
 

Minimize: ( ),J d X   

subject to: ( )( ), 0
i i

allowable
f i fP P G P= < ≤d X   

                                                     i = 1…nc  (1) 
 

where n∈ ℜd  is the design vector (e.g. structural configuration and 
dimensions), m∈ ℜX  contains all the random variables of the 
system under analysis (e.g. random loads, uncertain structural 
parameters), J is the objective function to be minimized (e.g. the 
structural weight, volume or manufacturing cost), Pfi is the 
probability of failure of i th constraint (Gi), and Pfi 

allowable is the 
allowable (maximum) failure probability for the ith constraint. 
Although the objective function is generally a random variable, it is 
usual to consider it as a deterministic value by calculating it using 
only the mean values of the random variables X. Hence, from now 
on, the objective function it written as J(d). The reader is referred to 
Mínguez and Castillo (2009) and references therein for problems 
dealing with probabilistic quantities in the objective function. 

The failure probability Pfi for each constraint may be obtained 
by evaluating the integral in Eq. (2), which is the fundamental 
expression of the structural reliability problem: 

 

( )
( ), 0

i

i

f

G

P f d
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= ∫ X
d X

x x  
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where fx(x) is the joint probability density function (PDF) of random 
vector X. In practice, it is impossible to obtain the joint PDF 
because of scarcity of joint observations for a large number of 
random variables. At best, what is known are the marginal 
probability distributions of each random variable and possibly 
correlations between pairs of random variables. Another difficulty in 
solving Eq. (2) is the fact that the limit state equations, Gi, are 
sometimes given in implicit form, as the response of finite element 
models (Beck and da Rosa, 2006). Such difficulties have motivated 
the development of various approximate reliability methods.  

Intensive research has been carried out to provide methods to 
approximate the integral in Eq. (2). These methods may be divided 
into three major classes: (i) simulation methods; (ii) numerical 
integration and (iii) analytical methods (Lopez et al., 2011a). For a 
detailed review on these methods, the reader is referred to Lee and 
Chen (2008) and Melchers (1999). 

i. Simulations methods using sampling and estimation are well 
known in the literature, the most widely used being the Direct 
Monte Carlo simulation (MCS) method (Rubinstein, 1981). 
The main drawback of MCS is that it requires a huge amount 
of calculations. Several improvements of the MCS have been 
developed to reduce the computational effort, such as the 
quasi-MCS (Niederreiter and Spanier, 2000), directional 
simulation (Nie and Ellingwood, 2000) and importance 
sampling (Engelund and Rackwitz, 1993). In practice, MCS is 
considered the reference response and is used to validate the 
results of other, approximate methods. 

ii. The multi-dimensional integral to determine the probabilistic 
characteristics of random output is evaluated numerically (Seo 
and Kwak, 2002; Lee and Kwak, 2006; Rahman and Xu, 
2004). Numerical integration is limited, in practice, to 
dimension 5 or 6. 

iii.  The main approaches of this class are the First and Second 
Order Reliability Methods (FORM and SORM, respectively). 
FORM and SORM are said to be transformation methods, 
because the integral in Eq. (2) is not solved in the original 
space (X), but is mapped to the Standard Gaussian space (U). 
In this space, the Most Probable Point of failure (MPP) is also 
the point, from all points in the failure domain, closest to the 
origin. The reliability index β (Hasofer and Lind, 1974), which 
is a measure of the reliability, can be evaluated as the distance 
between the MPP point and the origin, in the transformed 
Standard Gaussian space. The main advantage of FORM-based 
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approaches is their computational cost, which is a fraction of 
the cost of crude Monte Carlo simulation, for instance.  

 
Hence, FORM based approaches have been widely employed to 

evaluate Eq. (2) in RBDO problems. As detailed in Section 2, these 
approaches are optimization problems themselves and consequently, 
the RBDO using FORM is a double-loop strategy: 

• the inner loop is the reliability analysis,  
• the outer loop the structural optimization; 

that is, the two optimizations are coupled. Such coupling of 
optimization loops: structural optimization and reliability 
assessment - leads to very high computational costs. To reduce the 
computational burden of RBDO, several authors decoupled the 
structural optimization and the reliability analysis. Techniques for 
de-coupling the optimization loops may be divided in two groups: 
(i) serial single loop methods and, (ii) unilevel methods. 

This paper presents a review of RBDO methods based on 
FORM. First, the two main (coupled) FORM based approaches, 
Reliability Index Approach (RIA) and Performance Measure 
Approach (PMA) are described and compared. Then, a review on 
decoupling methodologies is presented, and two decoupling 
methodologies are described in detail. A comparison of the 
performance (computational cost) of the main strategies is presented 
for several variants of two benchmark problems from the literature 
in the Numerical Analysis Section. The article is finished with some 
concluding remarks. 

It should be noted that the review presented herein does not 
intend to cover all the papers published on the subject, but to present 
the main techniques, in order to serve as a guide to those entering 
this exciting and challenging subject. 

Coupled Form-Based Approaches 

This section briefly details the approximation of Eq. (2) using 
RIA and PMA, then presents a review of the comparison between 
these two approaches. The interested reader is referred to Madsen et 
al. (1986), Melchers (1999) and Haldar and Mahadevan (2000) for 
more details on the RIA, and to Tu et al. (1999) for a full description 
of the PMA. 

The iso-probabilistic transformation 

In order to approximate the integral in Eq. (2), it is usual to 
introduce a vector of normalized and statistically independent 
random variables mℜ∈U  and a transformation T (Fig. 1), so that 
U = T(d,X). The most common transformations are the Rosenblatt 
and the Nataf ones (Lemaire et al., 2005; Melchers, 1999). The 
mapping T transforms every realization x of X in the physical 
space into a realization u in the normalized space. Note that it also 
holds for the constraints: 

 
 ( ) ( )( ) ( )1, , , ,i i iG G T g−= =d X d d U d U , (3) 

 
where gi is the ith constraint in the normalized space.  

The main advantage in the use of this transformation is that the 
probability distribution on the resulting space depends only on its 
norm. This fact is illustrated in Fig. 1 by the circular reliability 
levels of the normalized space. It must be highlighted that this 
transformation is the first approximation proposed to solve Eq. (2): 
it only is exact when X is comprised of independent Gaussian 
random variables. However, even with this simplification, it is still 
not an easy task to evaluate Eq. (2). The FORM approximation is 
used to simplify this evaluation. 
 

 
Figure 1. Transformation T and the First Order Reliability Method (FORM). 

Reliability Index Approach (RIA) and Performance 

Measure Approach (PMA) 

The main idea of the FORM is simple: it consists in replacing 
the limit state function Gi by a tangent hyper-plane at the most 
probable point of failure (MPP). Figures 1 and 2 illustrate the 
approximation made by this hyper-plane. The FORM approximates 
the probability of failure and the allowable failure probability for the 
i th constraint by: 

 

( )
if iP ≈ Φ −β  

and ( )allowable target

if iP ≈ Φ −β , (4) 

 
where Φ is the standard Gaussian cumulative distribution function 
(CDF) and βi

target

 
is the target reliability index for the ith constraint. 

This is the second approximation proposed to solve Eq. (2) and it 
only provides an exact result when the constraint is linear. 
 

 
Figure 2. Illustration of the FORM approximation. 

 
Now, recall that in order to evaluate βi, one first needs to obtain 

the MPP: the point in the failure domain closest to the origin of the 
normalized space. The difference between the RIA and the PMA is 
the manner in which the MPP is calculated. The following 
optimization problems detail this difference: 

 
RIA PMA 

for a given design d  
finds *

iRIAu  which 

minimizes:
iβ=u  

for a given design d 
finds *

iPMAu  which 

minimizes: ( ),ig d u  

subject to:  ( ), 0ig =d u  subject to:   target
i= βu  

 
The optimal solution *

iRIAu  of the RIA yields the reliability index 

*

ii RIAβ = u  of the ith constraint on the current design x. On the other 
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hand, the optimal solution *

iPMAu  of the PMA is the minimum 

performance target point (MPTP) on the target reliability sphere 

(defined by target
i= βu ) and it provides the so-called performance 

measure ( )*,
i im i PMAp g= d u  of the i th constraint on the current 

design d. The performance measure 
imp  is related to the reliability 

index βi by the following relation: 
 

1( ( ))
i im G ip F−= Φ −β  (5) 

 

where 
iGF  is CDF of the ith constraint. It is important to note that 

*

iRIAu  and 
*

iPMAu  will be equal only when the reliability 

constraint is active, e.g., at the final design of a RBDO problem. At 

any other point, 
*

iPMAu  only represents the point of minimal 

performance on the target reliability sphere. 

RIA versus PMA 

RIA corresponds to minimization of a quadratic functional (the 
norm) under non-linear equality constraints, for which efficient 
methods exist. Moreover, the equality constraint could be replaced 
by an inequality constraint, which simplifies the RIA solution. The 
efficiency of such alternatives is yet to be explored.  

In the paper that introduced the PMA, Tu et al. (1999) showed 
that PMA is inherently robust and yields a higher overall RBDO rate 
of convergence when compared to a conventional RIA. Youn et al. 
(2003), although reaching the same conclusions, showed that the 
PMA is far more effective when the probabilistic constraint is either 
very feasible or very infeasible. In a different paper, Youn and Choi 
(2004a) concluded that the PMA is quite attractive when compared 
to other probabilistic approaches in RBDO, such as the RIA and the 
approximate moment approach (Lee et al., 2002). 

The first main difference between the RIA and the PMA is the 
type of optimization problem which is solved in each case. It is 
easier to minimize a complicated function subject to a simple 
constraint (PMA) than to minimize a simple function subject to a 
complicated constraint (RIA). Different from the RIA, in the PMA 
only the direction vector needs to be determined by taking 
advantage of the spherical equality constraint target

i= βu  to find the 

MPP *

iPMAu . 

Still regarding the type of optimization problem, the conceptual 
iteration history during the search facilitates the PMA. Usually, the 
RIA search requires several iterations to reach the failure surface 
given by ( ), 0ig =d u , while the PMA search immediately lies on 

the target
i= βu  sphere; in other words, the number of iterations of 

RIA increases with the reliability index while the PMA search is 
independent of the target performance (Lee et al., 2002). A second 
consequence is that, in the case of non-activated constraints, the 
PMA becomes even more effective. 

Regarding non-linearities in the RBDO problem (i.e. use of non-
normal random variables), Youn and Choi (2004b) showed that 
PMA is more stable, efficient and has a lower dependence on the 
distribution of the random variables, since it introduces small non-
linearities in the space-transformations. PMA can thus handle a 
variety of distributions without significantly increasing the number 
of function evaluations. Furthermore, RIA diverged when uniform 
or Gumble random variables were employed. The former divergence 
was due to the fundamental nature of the uniform distribution and 
the latter was due to numerical difficulties when dealing either with 

a nonlinear failure surface or with a failure surface away from the 
design point. 

Classical coupled approaches 

As the reliability analysis is an optimization procedure by itself, 
RBDO, in its classical version, is a double-loop strategy: the inner 
loop is the reliability analysis and the outer loop is the structural 
optimization. Thus, the two optimization loops are coupled: 
 

for k = 1, 2, 
… 

 

a) structural optimization: 

minimize:   ( )( )kJ d  

subject to: 

( )( ) ( )( )( ) ( ) ( )( )1 1 1 0
T

k k k k
i i

− − −β + ∇ β − ≤dd d d d

(RIA),  
( )( ) ( )( )( ) ( ) ( )( )1 1 1 0

i i

T
k k k k

m mp p− − −+ ∇ − ≤dd d d d

(PMA),  
i = 1…nc, 
dl ≤ d(k)

≤ du 

where, at each step k, given current design ( )1k−d , the reliability  
routine is called: 
b) reliability analysis:  
 RIA PMA 
 finds *( 1)

i

k
RIA

−u  which finds *( 1)

i

k
PMA

−u  which 

minimizes:  
i= βu  ( )( )1 ,k

ig −d u  

subject to: ( )( )1 , 0k
ig − =d u  

target
i= βu  

 
At the end of each reliability analysis, a sensitivity analysis of 

the design variables with respect to the reliability index is pursued to 
obtain ( )( )1k

i
−∇ βd d  or ( )( )1

i

k
mp −∇d d . This procedure is repeated until 

some convergence criterion is achieved and, of course, it leads to 
very high computational costs. A review of techniques developed to 
de-couple the RBDO problem, in order to reduce the computational 
burden, is presented in the next section. 

Decoupling Strategies 

De-coupling the two optimization problems means not to have 
to call the reliability analysis routine at every step k of the structural 
optimization. In the sequel, the serial single loop and unilevel de-
coupling methods are reviewed. 

Serial single loop methods 

The basic idea of the serial single loop methods is to decouple 
the structural optimization (outer loop) and the reliability 
optimization (inner loop). Each method of single-loop decoupling 
employs a specific strategy to decouple the loops and then solves 
them sequentially until some convergence criterion is achieved. 
Among these methods, the following may be cited: Traditional 
Approximation Method (TAM) of Torng and Yang (1993), Single 
Loop Single Variable (SLSV) of Chen et al. (1997), Sequential 
Optimization and Reliability Assessment (SORA) of Du and Chen 
(2004) and Safety Factor Approach (SFA) of Wu et al. (2001).  

Yang and Gu (2004) compared these four single-loop 
decoupling RBDO methods. Four different examples were solved 
including a vehicle side impact and a multidisciplinary optimization 
problem. According to their results, SLSV was the most effective 
method, converging nicely and requiring the fewest number of 
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function evaluations. The other methods also showed promising 
results when compared to the classical approach. In a second paper, 
the authors (Yang et al., 2005) investigated an engineering problem 
with a large number of constraints (144) and with many local 
minima. In addition to the four single-loop decoupling RBDO 
strategies, the Mean Value Method (Gu and Yang, 2003) was also 
studied. Results showed that the number of function evaluations 
depends on the RBDO method, optimization algorithm and 
implementation. Furthermore, algorithms with good active-
constraint handling tended to perform better (e.g. SORA/SFA). 
Moreover, SORA/SFA and TAM have advantages over the other 
methods, as the target reliability is obtained at the end. Regarding 
the local minima, different methods and different starting points 
yielded different final results, since only local optimizers were used 
by the authors. 

Unilevel methods 

The central idea of unilevel methods is to replace the reliability 
analysis by some optimality criteria on the optimum (i.e. imposing it 
as a constraint in the outer loop). Thus, there is a concurrent 
convergence of the design optimization and reliability calculation 
or, in other words, they are sought simultaneously and 
independently.  

Kuschel and Rackwitz (2000) formulated a unilevel method 
based on replacing the inner loop of the classical approach (FORM 
analysis using RIA) by the first order Karush-Kuhn-Tucker (KKT) 
optimality conditions of the first-order reliability problem. In other 
words, the KKT optimality conditions of the RIA search are 
imposed as constraints in the outer loop of the RBDO. As already 
commented, the RIA may be ill-conditioned when the probability of 
failure given by a constraint is zero and it is not computationally 
efficient when the reliability index is large. With this in mind, 
Agarwal et al. (2007) proposed a unilevel RBDO method which 
introduced the first order KKT necessary optimality conditions of 
PMA as constraints in the outer loop, eliminating the costly 
reliability analysis (inner loop) of RBDO. 

Cheng et al. (2006) proposed a unilevel strategy based on the 
Sequential Approximate Programming (SAP) concept which was 
successfully applied in structural optimization. In the SAP approach, 
the original optimization problem is decomposed into a sequence of 
sub-optimization problems. Each sub-optimization problem consists 
of an approximate objective function subject to a set of approximate 
constraint functions. A SAP strategy for RBDO using the PMA to 
approximate the reliability constraints was also developed (Yi et al., 
2008; Yi and Cheng, 2008). 

Studies comparing the different unilevel methods have not been 
found in the literature. Yi and Cheng (2008) compared the SAP 
based on RIA and SAP based on PMA with SORA and SLSV 
methods. Several examples, including the 144 constraint problem, 
were solved. Based on the results, the authors concluded that SAP 
based on PMA achieved better results than the other methods. This 
result does not imply that SAP-PMA is the most effective method in 
all cases; but it is, at least, one of the most powerful algorithms in 
RBDO. As a general review of de-coupling approaches has been 
presented, one method of each approach is described in detail in the 
sequence in order to highlight the differences of each class of de-
coupling scheme. 

Sequential Optimization and Reliability Assessment (SORA) 

The SORA (Du and Chen, 2004) method is based on the 
strategy of serial single loops decoupling the structural optimization 
and the reliability analysis. At each iteration of the method, the 
reliability analysis is only conducted after convergence of several 

loops of the structural optimization. SORA makes use of three main 
artifices to increase the algorithm’s performance: 

i. reliability is evaluated only at the desired level: it means that 
SORA is based on the PMA having all the advantages when 
compared to RIA-based methods; 

ii. Using an efficient and robust MPTP search algorithm (Du et 
al., 2003); 

iii.  Employing sequential cycles of optimization and reliability. 
 

The key concept of the method is to shift the boundaries of the 
violated equivalent deterministic constraints to the feasible direction 
based on the reliability information obtained in the previous cycle, 
which makes the reliability constraints improve progressively and 
the cost of the search for the MPP be reduced. 

Figure 3 shows an example of the SORA boundary shifting 
procedure. The equivalent deterministic constraint at iteration k and 
the probabilistic constraint that has to be fulfilled are represented. 
Based on the percentile information obtained through the reliability 
analysis, the shifting value s is found and the equivalent 
deterministic constraint is shifted towards the probabilistic 
constraint (dashed line). The reliability constraint is fulfilled when s 
is equal to zero, in other words, when the dashed line coincides with 
the probabilistic constraint. 
 

Figure 3. Shifting the boundaries of the violated deterministic constraints 
in SORA (Du and Chen, 2004). 

 
Thus, the RBDO-SORA algorithm works in the following manner:  

  
for k = 1, 2, …  
a) deterministic optimization: 

minimize:   ( )( )kJ d  

subject to: ( ) ( )( )1, 0k k
i i ig −− =d u s , i = 1…nc 

  dl ≤ d(k)
≤ du 

where, at the end of each deterministic optimization k, the PMA 
routine is called: 

b) PMA: given current optimal design ( )*kd  find *( )

i

k
PMAu  which 

minimizes: ( )( )* ,k
ig d u  

subject to: target
i= βu  

 

 
 

 

  
 

s
1
 

s
2
 

u
*(k)

 

(d
1

(k)
, d

2

(k)
) 

Shifted constraint  

g(d
1

(k)
-s

1
, d

2

(k)
-s

2
)=0 

 

Probabilistic Constraint 
P(G(d, X)<0) 

 
Deterministic  
constraint 
g(d)=0) 

 

d
2
, X

2
 

d
1
, X

1
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With the information provided by the MPTP, the shifting vector s 
is updated. Notice that the optimization loops are no longer coupled, 
i.e., an entire deterministic optimization is performed and then, the 
reliability analysis routine is called. This procedure is repeated until 
some convergence criterion is achieved. Hence, the optimization 
problems are performed sequentially and by this reason the name of 
this class of de-coupling methods is serial single loop methods. 

Sequential Approximate Programming (SAP) 

Cheng et al. (2006) proposed a strategy based on the sequential 
approximate programming (SAP) concept that was successfully 
applied in structural optimization. In the SAP approach, the original 
optimization problem is decomposed into a sequence of sub-
optimization problems. Each sub-optimization problem consists of 
an approximate objective function subjected to a set of approximate 
constraint functions. Thus, the SAP method makes use of an 
approximation of the reliability constraint, where a linear Taylor 
approximation of the approximate reliability index is used instead of 
the accurate one, reducing the computational effort by eliminating 
the need for the reliability analysis. Such approximate reliability 
index and its sensitivity are determined from a recurrence formula 
that is derived from the optimality conditions of the PMA and end 
up being the iterative formula of the Advanced Mean Value (AMV) 
method (Wu et al., 1990). The SAP-PMA algorithm is, then: 
 

for k = 1,2,…  
minimize:   ( )( )kJ d  

subject to: ( )( ) ( )( )( ) ( ) ( )( )1 1 1* * *ˆ ˆ 0
i i

T
k k k k

m mp p− − −+ ∇ − ≤dd d d d

, i = 1…nc 
  dl ≤ dl

(k) ≤ d≤ du
(k) ≤ du 

 
where k is the sub-optimization problem number, ( )( )1 *ˆ

i

k
mp −d  is the 

approximate performance measure of the optimal design d (k-1) of the 
previous sub-optimization problem, dl

(k) and du
(k) are the lower and 

upper bounds of d(k), respectively. Notice that at the end of each 
sub-optimization problem k, the reliability analysis routine is not 
called. Instead, the approximate performance measure and the 
approximate MPTP of the i th constraint are just updated by the 
following relations: 
 

( )
( ) ( )( )
( ) ( )( )

1*

1*

,

,

k k
i ik

i k k
i i

g

g

−

−

∇
=

∇

u

u

d u
u

d u
 

( )( ) ( ) ( )( )* *ˆ ,
i

k k k
m i ip g=d d u .

 

(6) 

 
It should be noted that, at the end of this process, the optimal 

solution of the original problem is found and that there is a 
concurrent convergence of the design optimization and reliability 
calculation; in other words, they are sought simultaneously and 
independently. It is this fact that gives name to this class of de-
coupling methods: unilevel methods. 

Further comments 

Some aspects should be stressed based on the papers cited in 
this section:  

i. the observation that a given method’s effectiveness depends 
on several factors suggests that different RDBO strategies may 
be better for different problems, and this, in turn, indicates that 
more benchmark studies need to be performed in order to 

identify which RBDO strategy is best for each type of problem 
(e.g., type of objective function and constraints);  

ii. this dependence also indicates that more robust methods (e.g. 
those less sensible to variance of parameters) should be 
preferable;  

iii.  the presence of many local minima, which is normal in 
complex engineering problems, indicates the need of using 
global optimization algorithms in the solution of RBDO 
problems (Lopez et al., 2011b; Torii et al., 2012). 

 
Recently, a benchmark study on several RBDO methods based 

on FORM was presented by Aoues and Chateauneuf (2010), 
comparing the performance and robustness of these methods. In the 
next section, the classical approaches based on RIA and PMA, as 
well as the SORA and the SAP-PMA, are compared in the RBDO of 
two classical examples taken from the literature and a structure 
modeled using the finite element method. 

Numerical Analysis 

Example 1: multiple limit states 

A classical problem in the RBDO literature is analyzed in this 
section. The problem is comprised of three probabilistic constraints 
and the design variables are the means of the two random variables 
of the problem ( ( )

1 2
,X X=d µ µ ): 

 
Minimize: 

1 2
( ) X XJ = +d µ µ  

subject to: 
 

( )( ), 0
i i

allowable
f i fP P G P= < ≤d X     i = 1…3 

0 10≤ ≤d  
 
where 
 

( )
( ) ( ) ( )
( ) ( )

2
1 1 2

2 2

2 1 2 1 2

2
3 1 2

/ 20 1,

5 / 30 12 /120 1,

80 / 8 5 1.

G X X

G X X X X

G X X

= −

= + − + − − −

= + + −

X

X

X

 
(7) 

 
Table 1. Comparison of the computational cost for solutions of Example 1. 

target
iβ  RIA PMA SORA SAP-

PMA Reference 

Normal 
2 

639 
(180) 

508 
(172) 

345 
(265) 

120  
(108) 

Yi and Cheng 
(2008) 

3 
494 

(636) 
556 
( - ) 

372 
(455) 

168  
( - ) 

Yang and Gu 
(2004) 

 
2 

712 
(504) 

472 
(540) 

342 
(255) 

168 
(180) 

Aoues and 
Chateauneuf 
(2010) 

Normal 3 
741 

(531) 
500  

(540) 
387 

(264) 
144  

(198 ) 

 
4 

748 
(531) 

572 
(747) 

444  
(348) 

144 
(234) 

Uniform 2 
nc 

(nc) 
643 

(604) 
697 

(645) 
144 

(132) 
Yi and Cheng 
(2008) 

 
Each Pfi

 
is approximated using the FORM, using Eq. (4). The 

results obtained using our implementation of the four RBDO methods 
are compared to results of the literature, such as Aoues and 
Chateauneuf (2010), who employed the standard deviation (SD) of the 
random variables of 0.3, Yi and Cheng (2008), and Yang and Gu 
(2004), who employed SD equal to 0.6. For this purpose, the 
algorithms are tested for different types of random variables and 
values of the reliability index. The results are summarized in Table 1. 
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The results from the literature are in parenthesis and the source is 
indicated in the βtarget column. 

In comparison to the standard, most expensive approach (RIA), 
the methods PMA, SORA and SAP-PMA lead to average reductions 
of 20%, 42% and 77%, respectively, on the computational cost of 
the solution. The SAP-PMA approach significantly out-performed 
the other methods in solution of this particular RBDO problem. 

The number of limit state function calls in our implementation 
of the algorithms RIA, PMA and SORA, is 1.71, 1.38 and 1.24 
times higher, on average, than the references Yi and Cheng (2008) 
and Yang and Gu (2004). On the other hand, our implementation of 
SAP-PMA required 0.85 times the number of limit state function 
calls of the other algorithms. When compared to the implementation 
of Aoues and Chateauneuf (2010), our implementation of PMA and 
SAP-PMA approaches achieved better results. Regarding the 
uniform distribution, the results obtained were quite close to the 
ones in Yi and Cheng (2008). This should be no surprise as these 
numbers are largely influenced by the parameters and other 
programming details adopted in each implementation. 

Example 2: short column design 

The short column design is also a classical problem from the 
literature. It consists in the minimization of the column cross sectional 
area having as design variables the mean value of its random 
dimensions: ( )

1 2
,D D=d µ µ . The column is subjected to two random 

moments M1 and M2 and to a random force F. The constraint of this 
structure is given by the limit of elastic behaviour (σy), which is also a 
random variable. Thus, the RBDO problem is given by: 

 
Minimize: ( )

1 2D DJ = ⋅d µ µ   

subject to: 
 

( )( ), 0 allowable
column fP G P< ≤d X   

1

1 22

0

0.5 / 2

D

D Dd

µ
µ µ

≤

≤ ≤
  

 
where 
 

( )
( )

2
1 2

22 2
1 2 1 2 1 2

4 4
, 1 .column

y y y

M M F
G

D D D D D D
= − − −d X

σ σ σ
 (8) 

 
The coefficient of variation (C.O.V.) of all variables, in the 

reference solution, is 0.05. 
The probabilistic constraint was approximated using FORM 

(Eq. 4) and the optimization was performed for different values of 
βtarget. The RBDO of the column was performed by four different 
methods: classical RBDO based on RIA and on PMA, SORA and 
SAP-PMA. Each method was run four times, for different initial 
points, yielding the computational costs shown in Table 2. The same 
problem was solved by Aoues and Chateauneuf (2010) and a 
comparison to results therein also is presented. 

In comparison to the standard, most expensive approach (RIA), 
the methods PMA, SORA and SAP-PMA lead to average reductions 
of 43%, 66% and 86%, respectively, on the computational cost of 
the solution.  

 

Table 2. Comparison of the computational cost for solutions of Example 2. 

targetβ  RIA PMA SORA SAP-PMA Reference 

  2 975/448/677/477 310/264/288/272 112/178/182/156 70/84/84/84 This work 

Normal 
3 975/381/543/491 340/296/304/349 120/201/210/175 70/72/96/108 This work 
3 (600/525/630/945) (450/651/570/684) (119/196/252/346) (56/80/nc/nc) Aoues and Chateauneuf (2010) 

  4 975/390/543/449 289/304/437/365 117/222/264/196 70/84/84/120 This work 

Lognormal 
2 846/685/959/825 346/288/317/317 136/157/169/275 70/84/84/84 This work 
3 726/618/886/818 357/344/389/397 171/194/206/322 60/96/96/96 This work 
4 616/508/758/712 533/480/501/485 236/278/293/450 70/96/96/108 This work 

 *nc = no convergence 
 
 
 
Table 3. Influence of q on the computational cost of the SAP-PMA approach. 

target 4β =  Normal Lognormal 

q/C.O.V. 0.05 0.15 0.05 0.15 

0.04 144 240 156 180 
0.06 108 168 120 132 
0.08 96 144 108 120 
0.10 84 120 96 108 

 
From the numerical analysis, it was realized that the 

computational cost and convergence for SAP-PMA highly depends on 
the size of each sub-problem k:  dl ≤ dl

(k ≤ d ≤ du
(k) ≤ du. Hence, a 

strategy was adopted where the size of each problem is considered a 
function of the starting point for each subproblem: dl

(k) = (1-q) d0
(k) 

and dl
(k) = (1+q) d0

(k), where q is a constant. The computational costs 
for different values of q and of the C.O.V. are shown in Table 3. The 
results in Table 2 were obtained for q = 0.1. 

The computational cost of the SORA approach depends on the 
maximum number of iterations of each deterministic optimization k. 
In the first version of the algorithm, Du and Chen (2004) employed 
the full optimization of the deterministic step. Here, the SORA 
approach is also tested having as constraint for each deterministic 
optimization k the maximum number of iterations (itout). Results are 
presented in Table 4. 

 

Table 4. Influence of itout on the computational cost of the SORA approach. 

target 4β =  C.O.V. 

itout 0.05 0.15 

3 228/235/249 243/302/1085 

5 165/175/196 190/280/336 

20 171/175/193 192/282/909 
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Example 3: square plate modelled by finite elements 

The case of a 2D square plate with a quarter of circle retired 
from a corner (Fig. 4), modelled using finite elements, is considered. 
The plate is made of steel with Young modulus E = 200 GPa and 
yield stress σy = 200 MPa. The plate is clamped at its lower 
boundary and loaded at its left boundary with a distributed load, 
with total magnitude of 800 N. Uncertainties are considered on the 
plate thickness and on the radius, which are modelled as random 
variables: ( )hshH ,~ Γ  and ( )rsrR ,~ Γ , respectively (where Γ  and 

si are the probability distribution and the standard deviation of the 
random variable). These random variables are grouped into the 
random vector X = (H, R).  
 

 
Figure 4. Square plate with a quarter of circle retired from a corner. 

 
Design variables of the optimization problem are the mean 

values h and r, which are grouped into the design vector 
( ),h r=d µ µ . The plate is optimized in order to minimize its volume 

under the constraint of remaining in the elastic domain; hence, the 
maximum stress must remain below the yield limit: 
 

( ) ( ), ,Y MAXG = σ − σd X d X , (9) 

 
where σMAX is the maximum stress on the structure. Thus, the RBDO 
problem may be stated as: 

 
Minimize: ���� 	� ��	 
 �	 ∙ 	 
	4 � ∙ � 

 
subject to: 

( ), 1 0 allowableMAX
f f

Y

P P G P
 σ= = − < ≤ σ 

d X   

mmrmm

hmm

6020

1

≤≤
≤

 

 
Notice that deterministic bounds were imposed on the design 

variables.  
Two distributions are tested in this example: normal and 

lognormal. For both cases, the standard deviations are sh = 0.1 mm 
and sr = 4.0 mm. The length of the plate’s border is fixed to l = 1 m.  
A convergence study leads to a mesh with 1352 elements and 1458 
nodes. Stresses are evaluated on Gauss integration points. The 
normal stress in the s-direction is used for the evaluation of the limit 
state function G (Fig. 5).  
 

 
Figure 5. Stress distribution (MPa) in the s-direction. 

 
The probabilistic constraint was approximated using FORM 

(Eq. (4)), and the optimization was performed for different values of 
βtarget. All the final designs are presented in Table 5. The 
computational cost is evaluated in terms of the number of calls to 
the finite element code.  
 

 

Table 5. Comparison of the computational cost (number of calls to the finite element code) of RBDO based methods. 

Distribution Γ  
targetβ  RIA PMA SORA SAP-PMA x* 

  2 372 197 192 48 (1.00,  39.4) 

Normal 3 356 181 216 48 (1.00,  34.6) 

  4 464 201 244 56 (1.00,  29.1) 

 
2 500 311 196 64 (1.00,  39.5) 

Lognormal 3 624 398 229 72 (1.00,  34.9) 

  4 816 455 290 96 (1.00,  29.9) 
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In comparison to the standard, most expensive approach (RIA), 
the methods PMA, SORA and SAP-PMA lead to average reductions 
of 67%, 56% and 88%, respectively, on the computational cost of 
the solution. The SAP-PMA approach significantly out-performed 
the other methods in solution of this particular RBDO problem. 

The reduction in computational cost is very significant in this 
example due to use of finite element modeling for the mechanical 
problem. In the case of Lognormal random variables with βtarget = 4, 
for example, the RIA method needed 816 finite element calls (about 
3h20min) to obtain the optimal design, whereas the SAP-PMA 
method required only 96 finite element calls (about 27 minutes). 

Surely, other benchmark comparisons are required in order to make 
more definite conclusions. This will be the subject of future work. 

Concluding Remarks 

The main goal of this paper was to review the main Reliability-
Based Design Optimization (RBDO) methods based on the First-
Order Reliability Method (FORM). A review and a comparison 
between the two main coupled FORM approaches, the Reliability 
Index Approach (RIA) and the Performance Measure Approach 
(PMA) were presented. The coupled approach to solving RBDO 
problems was presented in detail and its high computational cost 
was highlighted. A general review of de-coupling techniques was 
also presented, and two of the main de-coupling methods were 
presented in detail, the Sequential Optimization and Reliability 
Approach (SORA) and the Sequential Approximate Programming 
(SAP-PMA). The review presented herein suggests that SORA and 
SAP-PMA should be the methods of better performance and 
robustness, in comparison to the other methods described herein. 
Finally, this review presented the main techniques and references on 
the subject, and should serve as a guide to those entering this 
exciting and challenging subject. 
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