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Modeling Random Corrosion
Processes via Polynomial Chaos
Expansion

Polynomial Chaos Expansion (PCE) is widely recognized as a flexible tool to represent
different types of random variables/processes. However, applications to real, experimental
data are still limited. In thisarticle, PCE is used to represent the random time-evol ution of
metal corrosion growth in marine environments. The PCE coefficients are determined in
order to represent data of 45 corrosion coupons tested by Jeffrey and Melchers (2001) at
Taylors Beach, Australia. Accuracy of the representation and possibilities for model
extrapolation are considered in the study. Results show that reasonably accurate smooth
representations of the corrosion process can be obtained. The representation is not better
because a smooth model is used to represent non-smooth corrosion data.

Random corrosion leads to time-variant reliability problems, due to resistance
degradation over time. Time variant reliability problems are not trivial to solve, especially
under random process loading. Two example problems are solved herein, showing how
the developed PCE representations can be employed in reliability analysis of structures
subject to marine corrosion. Monte Carlo Smulation is used to solve the resulting time-
variant reliability problems. However, an accurate and more computationally efficient
solution is also presented.
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I ntroduction Greek Symbols
Mass loss of mild steel due to marine immersiomosion is a p = reliability index N _ _
random phenomenon whose statistics change over Tiverefore, ¢ = standard normal probability density function
the corrosion mass loss of individual coupons cansken as ® = gtandard normal cumulative probability distribution func.
functions of exposure time (Jeffrey and Melchel®QD) and the ¢ = standard Gaussian random variable
phenomenon itself is considered a stochastic psoces § = vector of standard Gaussian randomvariables
Modeling and simulation of this kind of process dze made ¥ = orthogonal basis of random variables

using Polynomial Chaos Expansion (PCE). PCE isdelyiknown

tool, which can be applied to represent differgmtes of random
variables/processes and which is suitable for resgowith smooth
probability density functions or devoid of signditt nonlinearities
(Acharjee and Zabaras, 2007).

However, PCE applications to real, measured datastill
limited. In this article, PCE is used to represtre random time-
evolution of metal corrosion growth in marine eoviments.

The plan of the paper is as follows. First, thadaments of

Polynomial Chaos Expansion

The Cameron-Martin theorem (Cameron and Martin, 7194
shows that any second order random variabtan be represented
by a series expansion as follows:

@

X@®) =X wYi®

Polynomial Chaos expansion are presented, focusingractical
implementation. The PCE is then used to represeta of 45
corrosion coupons tested by Jeffrey and Melched®1p at Taylors
Beach, Australia. Accuracy of the representatiod possibilities
for model extrapolation are discussed. Two numkggamples are
then presented, illustrating use of the developedhastic model of
corrosion growth in time-variant reliability analysof structures
subject to marine corrosion. The article is finheith some
concluding remarks.

Nomenclature
C(&, t) = corrosion loss as function of time
fx(x) = Probability Density Function (PDF)
Fx(x) = Cumulative probability Distribution Function (CDF)

M = stochastic dimension of chaos polynomial
p = order of chaos polynomial

P; = probability of failure

u = coefficient of PCE for random variable
u(t) = coefficient of PCE for random process

X = randomvariable

X(t) = random process of time
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where u; are coefficients to be determine#;(§) are orthogonal
functions of random variables, forming a complet@ypomial
basis, and vectog represents the stochastic dimension of the
problem. This is the so-called polynomial chaos amsion,
presented by Xiu and Karniadakis (2002) based gereeralization
of ideas presented previously by Wiener (1938), r@g(1972),
Askey and Wilson (1985) and Ghanem and Spanos 1991

For practical purposes, the infinite series in EL). must be
truncated. Adoptin@ pq,s terms in the summation, one has:

X(®) = X5 wi(®) @

Functions?; (§) satisfy the following orthogonality conditions:

v@®=1
E[¥;(®)]=0 fori>1
E[¥;(®¥;®] =0 for i+ 3)
Orthogonal polynomials of an important class aremimers of
the so-called Askey-scheme polynomials (Askey anlddi, 1985).
Each subset of these orthogonal polynomials hésrelift weighting
functions in their orthogonality relationship (Xand Karniadakis,
2002) and some of these weighting functions aratidal to the
probability distribution function of certain randowariables. This
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paper focus on the family of multivariate Hermitelymomials,
which are orthogonal with respect to the Gaussiaasure; hencgé
are independent standard Gaussian random variables.

In classical form, one-dimensional Hermite polynalsiare
given by:

anfet/2)
ag"

ha(©) = (~1)"e /2 @

Multidimensional or multivariate Hermite polynonsalare
obtained as products of one-dimensional polynomiasorder to
generate them, the following integer sequencessetuil:

o= {al,az, ...,ap} with a; > 0
i={iy, iy ... ip} with §; >0 (5)
Multidimensional Hermite polynomials associated hwithe
sequenceséa, i) are then obtained as:
Yia(® = [Tz he, ) (6)
For practical computational purposes, polynomiafsfinite
dimensions have to be used. The polynomial basared using!
Gaussian random variables is denotedl'hyE,,¢&,, ..., &,,) and is
called “homogeneous chaos of dimensiérand ordep”. This base
is generated as follows: for each setointegers Ha,, a,, ..., Ay},
with M varying from O top, the following base vector is obtained:

Yo (®) = [Tk hey (€))- 7

It can be shown that the dimension Bf(E, &, ...,&,,) is
obtained as the binomial factor:

dim|[Tr,] =

(M+p— 1). ®)

p

Chaos polynomials of dimension up M= 4 and order up to
p =4 are presented in Ghanem and Spanos (1991). Asieeur
algorithm to generate multi-dimensional Hermite ypoimials is
presented by Sudret and Der Kiureghian (2000).

Practical | mplementation

The formulation presented above allows the reptasen of
any second-order random variable. The polynomialaosh
expansions (PCE) are obtained by requiring the tative
distribution functions (CDF) of the representat{@h) to match the
empirical CDF of the experimental points at eaddtidite time step.
Hence, for each point of time, the coefficientstbé PCE are
determined by minimizing the following error measur

Fy(x) — ©)

_ ysamp
errory = ¥, °7

nsamp+1

where the cumulative distribution function (CDF) dhe
representation is given by:

Fy(x) = P[X(®) < x] = P[4 w;¥; (%) < ] (10)
In the general case, this probability is not knaamalytically, but it
can be approximated by means of large samplesxdbra vectog.

The extension of the polynomial chaos expansion
approximate stochastic processes (instead of amigiam variables)
can be done in a discrete fashion, by determirtiegcbefficients in
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specific points of the continuous) @nd replacing them by functions
of the continuous. In other words, the values olg@difor a specific
coefficientu; are replaced by a function of #;(t). Thus, the PC
expansion is given by:

Xt = Lih o w (0¥ ®) (11)

Common functions are used to approximate the aeffis
u; overt:

;(t) = pi +pj - t% (12)

The coefficientSp} and the exponentg; are determined by
minimizing the difference between moments of thpragimation
and the experimental data. First and second-ordenents were
used in this paper. Equations (9) and (10) couldehaeen used
instead, but convergence difficulties were encaeteSince both
the coefficients and the exponents are optimizatiariables, the
objective function may have many local minima, sgoad starting
point is required for the optimization process.

Insight about the (corrosion) random process isduse
determine a proper initial value for the exponegtdt is known, for
instance, that mean corrosion growth in time isssdthan-linear
function of time (Jeffrey and Melchers, 2001). Téfere, initial
valuesq; = 0.75 are adopted. Initial values for the coefficiepl}s
are calculated by least squares, considering thetaotu; values
found in the first part of the process (using E§%.and (10)). Given
the initial points, the optimization problem is wedl by using the
fmincon function of MATLAB, with lower and upper bounds e
to [0.25,1.50] for g; and[—108, +10°] for p}.

Application of the PCE to Represent Experimental
Corrosion Data

The developed algorithm was applied to an experaien
corrosion dataset contained in the research regfodeffrey and
Melchers (2001), which corresponds to corrosion smkss of
coupons tested at Taylors Beach, Australia. Theosxe time
varied from 1 to 4.21 years. It is worth notingtttiee Taylors Beach
dataset was chosen for being the largest datasetthef
aforementioned report, but other corrosion dataset be used as
well. Table 1 presents the selected data, incotipgrathe
information of no corrosion in the initial time. &hexperimental
data are also presented as dots in Figs. 1 to 4.

Table 1. Corrosion dataset.

Y ear s exposed Corrosion loss (um)

0.00 0 0 0 0 0 0 0 0 0

1.00 146 14Q 147|133|148|150| 156| 157| 132

1.49 119| 151152|154|151|152|182|191| 154

2.00 189| 186 189|202|180| 185|197 |194| 202

3.03 308| 245 290|258|311|281|277|150| 258

421 349| 308 316|383|351|376|348| 382| 364
Polynomial chaos expansion (PCE) representationse we

obtained for stochastic dimensions 1 and 2 (cal€&1 and PCE2,
respectively), for orders ranging from 1 to 10. Fsipchastic
dimension 1, the best representation was obtained®€E order
tequal to 4 (with 5 PCE coefficients), while fiftmder polynomials
8Nith 21 PCE coefficients) led to the best appration for

stochastic dimension 2.
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Modeling Random Corrosion Processes via Polynomial Chaos Expansion

The continuous representation was first obtainetehying the experimental results. Looking at the fourth coluroh Table 4
data for exposure time 4.21 years out, to servealidation data. (experimental standard deviations), one observasttte standard
Figures 1 and 2 show the PCE1l and PCE2 represergati deviations oscillate with respect to time, what smk difficult to
respectively,versus the experimental and the validation data. Onebtain smooth and accurate representations of theeps. Hence,
observes that, although the extrapolation resydfear reasonable, the errors in standard deviation are bound to tgelfor any smooth
the small amount of experimental data makes exia#ipn representation of the process.
validation almost prohibitive. Validation errors mgeevaluated for

PCE1 and PCE2, in order to verify the extrapolatapabilities of Table 2. Validation errors for exposure time 4.21 years.
the two models. Results are shown in Table 2. it lv@ observed —
that results for PCE1 are good in terms of the mieanbad in terms Validation error (%)
of standard deviation. Nevertheless, it can be roksethat PCE1 Mean | Standard deviation
pres;nts betge; rizﬁult§ ttrrllanf |:|’|CE2. The errorsha'mdatd deviation PCE1 530 66.95
are discussed further in the following paragraph.
9 paragrap PCE2 | 22.96 130.09
500 . . : . : ; . . :
450 # / Table 3. Approximation errors in mean corrosion loss.
o
400+ /s - - Exposure Mean Error (%)
’g _ = ﬁ = 2: time(years) | pCE1 | PCE2 | Experimental | PCE1 | PCE2
350+ i = =4
- & i . 2 %= - 1.00 116.311] 121.440] 145444 | 20.03]116.504
L =z = 4
Q 30 P > g é e 149 156.16¢| 161.84:| 156.22; | 0.03t | 3.59i
g > f/Z £ 2 - 1 2.00 194.391 200.478]  191.556 | 1.480 4.65
@ 200 e 97 éé = - 303 265.17:|271.82:| 264.22; | 0.36( | 2.87¢
-
S 150} ¥/ ?f - & i 421 339.407| 346.435  353.000 3.851] 1.86
O Z "+ _ Average | 5.151| 5.899
100 // + Experimental data
| ¢ Validation Data o . o
50 / — —PCE1 Table 4. Approximation errors in standard deviation.
0 05 1 15 2 25 3 35 4 a5 & Exposure Standard deviation Error (%)
Exposure time (years) time(years) | pCE1 | PCE2 | Experimental | PCE1 | PCE2
Figure 1. PCE1 representation versus experimental and validation data. 1.00 8.527 | 6.886 8.434 1.101 18.360
1.49 11.656| 9.707 19.321 39.672  49.758
500 . - . . . . . . - 2.00 14.616| 12.705 7.259 101.352 75.021
450k ] 3.03 20.042| 18.628|  45.592 56.041] 59.142
wol ] 421 25.707|25.091)  25.451 1.006| 1.418
= ~Z Average | 39.834| 40.740
§ 350 -~
;; * Pt - .
@ 00r )ggﬁi/:; 800 ———
— L Z -~ ~
= 250 P Sl
S LT T . 7001 ]
o 200f L T T X
° A - - - zZ°
o 150} }//é;fjiar#ﬂp ] gsoo- 2224
O Z Z..F: = = /9 Z =
1001 & + Experimental data o 500} ,%’Z é 2 ]
50 / ¢ Validation Data 3 22 -
4 — —PCE2 = 400} éé/ i
0 e, — o A
0 05 1 15 2 25 3 35 4 45 5 73 e
. O 300t g ¥ -
Exposure time (years) g 2
Figure 2. PCE2 representation versus experimental and validation data. O 200t % 1
*
. _ o 100 /? i + Experimental data |
After verifying the extrapolation capabilities, tHfeCE1 and — —PCE1
PCE2 representations were constructed again,ithés donsidering 0 . " L . ; ; ; t
all the experimental data available. Tables 3 arsth@w the errors ¢ 4 2 3 4 5 © 3 ® 3 @
obtained after the interpolation of the PCE codffits in time, Exposure time (years)
considering the mean and the standard deviatiapectively. The Figure 3. Final PCEL representation and extrapolation to 10 years.

errors in mean are less than 5% for all but th& fime point (one

year). The errors are still quite significant imnts of the standard ) ) .
deviations. For the third time point (2 years), #veors are very Figures 3 and 4 show the final PCE1 and PCE2 reptaions
large due to the unusual concentration of the émmertal data OPtained, respectively, as well as the experimeta points. The
points, which leads to very small standard deviatiof the PCE representations are extrapolated for up to ddrsy(period
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assumed in the following reliability analysis), ander to further . t=1year(s)
explore the extrapolation capabilities of the P@presentations. It ool | —— Experimental data
is observed that the predictions (extrapolations) the two | PCE
representations are different. In contrast to #ngd errors observed o /
in Table 4, the visual fitting of the models to txperimental data o
is observed to be good. <
Sx0s /
04 ',"
800 — — — — 03 /
02 y
700 =2 01 yd
227 L
—~ 600l / Z 2 2; 90 100 110 120 . 130 140 150 160
§ A t=1.49
R .49 year(s)
= 22227 .
@ 500 - P é ?22/ - o[ Experimental data
=z o /
= 2277 :
c 4001 /%/ 4
o A Z L 07
K= g7
8 300} %é 1 0
= - £ o
/<] N
O 200} % 1 04
? . 03
100 * + Experimental data | 02
— —PCE2 01
0 1 1 1 1 T T T T o~
70 1 2 3 4 5 6 7 8 9 10 110 120 130 140 150 160 170 180 190 200

Exposure time (years) (=2 ;ea,(s)

Figure 4. Final PCE2 representation and extrapolation to 10 years.

From the results in Tables 3 and 4 one observeghkaPCE1
representation is better than the PCE2 representatnainly for
the standard deviation. In addition, the computetiocost of
PCEL1 is smaller than of PCE2 (with sixteen coedfits less).
Thus, the ¥ order PCE1 representation is described in further
detail. The polynomial basis for this case is (¢dasng Hermite
polynomial chaos):

F 00

Tl(i) — 1‘ \Pz(é) — é‘ \P3(§) — é2 _ 1‘ 160 170 180 190 . 200 210 220 230
t = 3.03 year(s)

3 4 2 —
LIJ4(E>) = é’; - 3&: LIJS(E;) = é’; - 62’; +3. (13) 09 Experimental data
08
Figure 5 shows the coefficients for PCE1 and thespective o7
polynomial adjustments. "
The approximating functions obtained for each PG&ificient are 2 o
as follows: “ e
03
02
Yy ) o p
o 500 ® 50 - ‘ . .
5 OM - 0‘__,_-0-—*—'1—_f—* 140 160 180 200 220 240 260 280 300 320
> s x
-500 -50 t=4.21 year(s
0 1 2 3 4 0o 1 2 3 4 ) youin i
year(s) year(s) psf] T STSIIRS G
u, u, o ]
s g+ = ki
§ op— T . + + + § 0 + ¥ o - 06
5 5 05
0o 1 2 3 4 0o 1 2 3 4 S
year(s) year(s)
u 03
5 5 02
3 k_‘__‘_,__?_——; 01 L~
s 0 N
> 5 260 280 300 20 M0 360 380 400
0 1 2 3 4 x
year(s) Figure 6. Comparison of empirical CDF (solid lines) and CDF obtained

from PCE representation (dotted lines).
Figure 5. PCE coefficients (dots) and approximating polynomials (lines).
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G, (t) =+3.98+ 112.61°™
0,(t) = -1.26+ 10.411°™
0,(t) =+0.53+ 0.361°*
G, (t) =-0.21+ 0.361°%
0 (t) = +0.24+ 0.261"*°

(14)

The interpolation of coefficients using predeteredrfunctions
is very important to improve extrapolation and ipt#ation
capabilities. On one hand, the use of high ordectfons can lead to
over fitting and poor results. On the other hand; brder functions
may not be sufficient to represent the underlyiebavior. Thus, it
is interesting to find a compromise between comptexand
interpolation/extrapolation capabilities. In the epent paper
functions composed of a constant and a non-lineran tvere used
(Eq. (12)). The optimal exponents and parametersndoare
presented in Eq. (14).

Figure 6 compares the empirical CDF of the expenaledata
with the CDF of the PCEL1 representation for théntetpoints for
which data is available. The (mean-square) diffeedvetween these
CDFs is used to guide the solution for the unknasefficients,
following Eqg. (10). The fitting of the two CDFs isuch better
before the time-interpolation of the coefficiemdter interpolation,
the fit is not very good fot = 1 and fort = 2 years, but it is still
reasonable for the other times.

Looking at Figs. 3 and 4, the PCE representationd a
extrapolations obtained herein are considered gampecially
considering the small amount of data (45 pointtotal, 9 for each
time). Also, recall that the smoothing necessany gocontinuous
representation of the data leads to errors thahatahe reduced
without loss of extrapolation capabilities.

Example Problems: Time-Variant Reliability Analysis

Resistance degradation due to corrosion leadsne-variant
reliability problems. These problems are not ttivia solve,
especially when random load processes are involled. examples
are presented herein, in order to illustrate how developed PCE
representations can be employed in life predictidnstructures
subject to marine corrosion.

Solution of time-dependent reliability problems endesistance
degradation and under random loading is not triyBéck and
Melchers, 2004; Beck and Melchers, 2005; Beck, 200Be most
straightforward solution is brute Monte Carlo siatidn. An
alternative formulation is presented herein.

o
[T

3mm

Side view

oS0mMmm

100mm

Corrosion Detail
i |

L C()

L ]
o 2

Figure 6. Plate subject to tensile end loading and to corrosion.

b
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The problem consists in estimating the probabdityailure of a
plate with thicknesa = 3 mm, width b = 50 mm and length equal
to 100 mm, subject to tensile end loadirgand to corrosion loss
C(&Y), according to Fig. 7. For the sake of breviB(¢,t) is often
written only as a function of time, i.€(t).

The plate material has random yield str&ssiith lognormal
distribution and parametei$ LN(uy,0y) = LN(1.25,0.0875) MPa,
which corresponds to a coefficient of variatiorvés.

Two different load cases are studied: with timeatefent and
time-independent loading. For both cases, the riijprobability
over a period of 10 years is calculated. Detailsulthe two load
cases, as well as the methodologies used to ctdctiie failure
probabilities are presented in the following subises. The
equations are developed based on Beck (2008).

All problems were solved by computer codes implet@erin
MATLAB®, running on a computer with an Intel Coreuo —
E7500, 2.93 GHz processor, with 3.21 GB of usab¥dVRusing
parallel processing (2 CPU cores).

Random loading and limit state function

Two cases of random loading are considered. Irfiteecase,
the tensile loading is considered a random varjabléhe second
case, tensile loading is a random process of tBe:(t). In both
cases, the probability distribution function of g#ée loading is that
of a standard normal distribution, her8eN(us0s) = N(0,1). The
limit state equation is written as:

g(Y,S),Cct) =Y b{a-C(t))-St)@b=0 (15)

where, for the random variable load ce&g), = S. Both sides of Eq.
(15) are further divided bya.b. The failure probability to be
evaluated in both cases is:

P (t,)= P[Drglp[g(v,sa),c:(t))] < o} (16)

The generation of stochastic load process samplegplained
later. The random variable load problem is soled.f

Monte Carlo simulation

The most straightforward method to evaluate
probabilities over time (Eq. (16)) is crude Montarl® Simulation
(MCS). In this casensm, random samples of random variab¥ess
and ¢ are generated according to their probability thation
functions. For each sample éfa complete time history dE(t) is
obtained, following Egs. (11), (13) and (14).

A failure indicator functiori() is used, which takes values of 1
for failure or 0 for survival depending on the walof the limit state
function g(), for a given set of value¥( § and¢) and a specific
timet,:

1 ifg(Y.§&t,)<0
0, otherwise.

17

WWSiJJ={

The indicator function is evaluated at each discpstint of time
(t,) starting from an initial timeti; = 0) until the final timet = 10
years), with a time increment df years, for each sample poiv, (S
and¢) of the random space, witlr 1,2,... Ny For the random load
processs = § (t,). The number of discretization points in time is:

tp — Ly +1. (18)
dt

t

Steps

2012 by ABCM Special Issue 2, 2012, Vol. XXXIV / 565
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A vector ind with dimensiontges containing the number of for the current problem, but they could become ifiigant for a
failures over time is computed: more relevant, real engineering problem.

nsamp
i = Jfor p=1,2,.. .- 19 W
ind (tn) - Z,; I (Yw S8 ’tp) p=12, Lsps 19 = Monte Carlo Simulation (30000 samples)

o 1 R Resistance integration (500 samples)
Resistance integration (1000 samples)

Importantly, if failure occurs at a tirrtg, the indicator function will
be equal to one for all later times (first passaigdblem).

The mean value estimate of failure probabilitie®rotime is
then given by:

PT _ ind (20)

nsmp

Resistanceintegration solution for random variable loading

Consider a resistané®per unit area, function of andC(t). For

each sampleY(, &, t,), with | = 1,2,... .Ngpp @andp = 1,2,.. s, ONE % 1 2 ) T 6 7 s s 10
hasr, (a scalar number): t
Figure 7. Failure probability over time for random variable load case.
Y, Qa-C(&.t
r = [@ ( p)) (21)
a Stochastic Process L oading

The limit state equation for eaghis rewritten as a function of In this case, the tensile loading was considerezbratinuous
S and R, (the latter being the random variable resistarmeaf Gaussian stochastic proce$) with zero mean and unit variance.
given time): An exponential (Beck, 2008) autocorrelation functis considered

(leading to a broadband process, witlks 1 and cutoff frequency
g(prs)sz_szo (22) w, =10).

A spectral representation is used to obtain sanmgfleékis load
process (Borgman, 1969; Grigoriu, 2000). In thigresentation, the
power spectrum density functigh(w) of the process is discretized
in a finite numbermg,,. of frequency components:

Recalling thatS=N(0,1), the probability of failure given an
occurrence;, can now be calculated as:

a (i) =elln <g)=a-plfssnl)=o[ B r0() (26 do ~ 506w doy @5)

[ k=1
23 . .
(23) wherew, andw, are the lower and upper (truncation) frequencies,
Wp— Wg - . .
That is, for each occurrencg, it is possible to evaluate analytically 4@k = bspec is the frequency interval and, is thek" frequency

the conditional probability of failure, using theurulative  component. The discretized process representatitien obtained as:
distribution function of the random variab® i.e., ®(). Thus, for

each timef) the failure probability can be calculated by greeing 5 (1) = ¥2_. G(wy) Adwy (Vi cos(wy t) + W sin(wy £) ) (26)
the conditional probability over the resistance: spec

_ wherea,,  (t) is themg,,..-dimensional approximation of process
P, (t )=IP (t |r‘)|:r (r')dRp (24) spec pe : :
/7 1T e/ TR a(t), andV, and W, are independent Gaussian random variables
’ with zero means and unit variances.
Adopting sample period equal to the total periodcsiofiulation
(to = 10 years), the number of discretization pointshaf power
spectral densityrigp,) is:

Equation (24) is solved by Monte Carlo Simulatidt using a
much smaller number of samples than required fertithe-variant
Monte Carlo simulation.

Mpec = 22 = 272 = 15.91 (27)

21

Resultsfor Random Variable L oading

The problem is first solved for the random varialdading, The numbemng,.. = 16 is adopted, which corresponds to a period
using Monte Carlo simulation and a samplengf, = 30000. This is t,= 10.05 years, slightly larger than required. Tinenber of points
large enough to calculate a failure probabilitytaf order 16-10%.  of discretization in time was set &g, = 200, for which a smooth

For the resistance integration solution, two detisolutions representation of the load process is achieved.r€alization of the
were computed: witmgm, = 500 and withngy,, = 1000. These stochastic procesgt) is shown in Figure 9.
values were defined comparing the obtained resuitts the Monte The moments of order 0, 2 and 4 of the power sakedensity
Carlo solution, trying to use the smaller possisimple size. function of the process are as follows:

Results fordt = 0.25 are shown in Fig. 8.

The MC solution required about 99 seconds to rumijeathe A =1
resistance integration solutions took about 10 s#soand 12 A =5.7975 (28)
seconds to run, respectively. These differencesnatesignificant AZ =220.786

, .
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2 w T T " " ' ' ‘ ' I‘n v (r,t)dt = dt EEZWW] (33)

2

At time ti,; = 0, the initial failure probability is calculated:

P, (")=1-P[{s (t)=r (t)}]= 1-@(%) = 1-o(r (1))
(34)

The probability of failure at the timtg, given the occurrence of
ri(t,), is equal to the initial failure probability:

B P (t10)=P, (1) (35)

Thus, the conditional failure probability at eache is:

- . P, (tp |r,) =P, (n)+(1— P, (r,))EQl— exr(— int, € )) . (36)
From these moments, the regularity factois evaluated as

a=A, /A, 00.39 i-€., the regularity factor is much smaller than Finally, the failure probability can be calculatey integrating
1, as expected for broadband processes. The averagelar the conditional probability over the resistance:

frequency is equal tey =4, /4, 02.4078 which leads to a mean

crossing rate; =/ 2/7010.383: P (t,) = [P (1, 15) O (5 )R, S

Ro

Figure 8. One realization of the stochastic process S(t), with tseps = 200.

Solution by Linear Approximation of the Barrier in Each This integral is solved by Monte Carlo Simulatidmjt the

Timelnterval sample sizenm,,) required in this case is much smaller than that

As the load is a stationary Gaussian stochasticase the up- required for the time-variant Monte Carlo solution.

crossing rate for a barrier level that varies Iihewith time can be _ )
obtained analytically. For a stationary Gaussiaocgss and a Resultsfor Stochastic Process Loading
barrierr(t) = a+b,.t, the up-crossing rate is given by (Cramer and

Leadbetter, 1967): The problem was solved by Monte Carlo method wimgle

sizengmp = 30000 which is large enough to accurately cateutlae
required probability of failure.

o' (1) = @p[m}[w{i} (29) The solution by linear approximation of the barriems

Os W05 computed fomgny = 500 and fomgy, = 1000. Results fotges =

200 @t = 0.05) are shown in Fig. 10. As expected, one relesea

whereup[x] = g x] - x®[-x] - significant increase in failure probabilities whdoading is a

Consider again a resistanBeper unit area, function of and Stochastic process instead of a single randomhiaria

C(t). For each sampleri( &), withi = 1,2,...nsnyp, @ function of time
ri(t) is obtained:

0.06 - : | r | | :

----- Monte Carlo Simulation (30000 samples)
()= Y, [fa-C(&.t)) ) (B0) gl Linear approx. of the barrier (500 samples) P
i - a 0.05 Linear approx. of the barrier (1000 samples) 7

This function is evaluated at tlg, time discretization points.
For each instart, with p = 2,...14es the coefficients of the linear
approximation of the resistance are:

o = lt) = (ta) 31)

The integral over time of the rate shown in Eq) (2Zero fomp =
1. Forp = 2,...t4eps the integral is calculated in an incremental fashi

int, (1) =int, () +jt"i v (1, t)dt. (32)

Figure 9. Failure probability over time, stochastic load process.

In addition, the integral of the linear approxinagtican be
easily calculated:
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The time-variant Monte Carlo solution took abouf I&&conds
to run, while the resistance integration solutidgosk about 15
seconds and 16 seconds, respectively. Hence, thistarece
integration solution is computationally much moffce&nt than the
crude time-variant Monte Carlo simulation.

Concluding Remarks

This article addressed modeling of stochastic cdwroprocess
in marine environments by Polynomial Chaos Exparsi®CE). It
was shown that PCE is a flexible tool to represkffierent kinds of
random experimental data.

One and two-dimensional PCE representations wetairzl
herein for the results of 45 corrosion couponsetbéty Jeffrey and
Melchers (2001) at Taylors Beach, Australia. Thpegimental data
was observed to be non-smooth with respect to tahedard
deviation of corrosion loss for different years.isThimited the
accuracy that could be achieved by the continuadssanooth PCE
representations. Hence, errors of the PCE repiasamt were
significant with respect to standard deviation. téwer, the visual
fitting of the PCE representations to the experitaledata was
shown to be good.

Moreover, it was shown that the PCE representatieveloped
herein can be used to extrapolate the data foreloogrrosion times.
This is important in order to allow the lifetimefey management
of structures subject to marine environments. Is whown that a
compromise has to be found between the accuracgxnapolation
capacities of the model. Use of higher-order PCQifaegentations
could be used to increase accuracy, but this wdinmit the
extrapolation capacity of the model. Moreover, asashown that
the extrapolation capacity of the model dependsctly on insight
about the corrosion process. In this article, gewttapolation was
obtained by using smaller-than-one powers of time.

Two examples were presented showing applicatiothefPCE
representations to reliability problems with remigte degradation
due to corrosion. Solution of such time-dependesglialility
problems under random loading is not trivial, areherally only
Monte Carlos simulation can be employed. An altivea
formulation was presented herein, where conditimnassing rates
are evaluated by linearizing the resistance vanabetween two
time points. Conditional failure probabilities aewaluated from
conditional crossing rates, and Monte Carlo sinmiteits performed
only over the resistance random variables. Thisermitive
formulation was shown to be very efficient, requirimany times
less samples than the complete time-variant MoatéboGimulation.
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