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Modeling Random Corrosion 
Processes via Polynomial Chaos 
Expansion 
Polynomial Chaos Expansion (PCE) is widely recognized as a flexible tool to represent 
different types of random variables/processes. However, applications to real, experimental 
data are still limited. In this article, PCE is used to represent the random time-evolution of 
metal corrosion growth in marine environments. The PCE coefficients are determined in 
order to represent data of 45 corrosion coupons tested by Jeffrey and Melchers (2001) at 
Taylors Beach, Australia. Accuracy of the representation and possibilities for model 
extrapolation are considered in the study. Results show that reasonably accurate smooth 
representations of the corrosion process can be obtained. The representation is not better 
because a smooth model is used to represent non-smooth corrosion data.  
Random corrosion leads to time-variant reliability problems, due to resistance 
degradation over time. Time variant reliability problems are not trivial to solve, especially 
under random process loading. Two example problems are solved herein, showing how 
the developed PCE representations can be employed in reliability analysis of structures 
subject to marine corrosion. Monte Carlo Simulation is used to solve the resulting time-
variant reliability problems. However, an accurate and more computationally efficient 
solution is also presented.  
Keywords: metal corrosion, polynomial chaos, marine corrosion, structural reliability 

 
 

 

Introduction1 

 Mass loss of mild steel due to marine immersion corrosion is a 
random phenomenon whose statistics change over time. Therefore, 
the corrosion mass loss of individual coupons can be seen as 
functions of exposure time (Jeffrey and Melchers, 2001) and the 
phenomenon itself is considered a stochastic process.  
 Modeling and simulation of this kind of process can be made 
using Polynomial Chaos Expansion (PCE). PCE is a widely known 
tool, which can be applied to represent different types of random 
variables/processes and which is suitable for responses with smooth 
probability density functions or devoid of significant nonlinearities 
(Acharjee and Zabaras, 2007). 
 However, PCE applications to real, measured data are still 
limited. In this article, PCE is used to represent the random time-
evolution of metal corrosion growth in marine environments. 
 The plan of the paper is as follows. First, the fundaments of 
Polynomial Chaos expansion are presented, focusing on practical 
implementation. The PCE is then used to represent data of 45 
corrosion coupons tested by Jeffrey and Melchers (2001) at Taylors 
Beach, Australia. Accuracy of the representation and possibilities 
for model extrapolation are discussed. Two numerical examples are 
then presented, illustrating use of the developed stochastic model of 
corrosion growth in time-variant reliability analysis of structures 
subject to marine corrosion. The article is finished with some 
concluding remarks. 

Nomenclature 

C(ξ, t)  = corrosion loss as function of time
 

��(�)  = Probability Density Function (PDF) 
��(�)  = Cumulative probability Distribution Function (CDF) 
�  = stochastic dimension of chaos polynomial 
�  = order of chaos polynomial 
Pf = probability of failure 
	  = coefficient of PCE for random variable 
	(
)  = coefficient of PCE for random process 
�  = random variable 
�(
)  = random process of time 
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Greek Symbols 

β  = reliability index 
 ϕ = standard normal probability density function 
      Φ = standard normal cumulative probability distribution func. 
 ξ = standard Gaussian random variable 
 � = vector of standard Gaussian random variables 
 Ψ = orthogonal basis of random variables 

Polynomial Chaos Expansion 

The Cameron-Martin theorem (Cameron and Martin, 1947) 
shows that any second order random variable X can be represented 
by a series expansion as follows: 
 
 �(�) = ∑ 	�Ψ�(�)∞���                (1) 
 
where 	� are coefficients to be determined, Ψ�(�) are orthogonal 
functions of random variables, forming a complete polynomial 
basis, and vector � represents the stochastic dimension of the 
problem. This is the so-called polynomial chaos expansion, 
presented by Xiu and Karniadakis (2002) based on a generalization 
of ideas presented previously by Wiener (1938), Ogura (1972), 
Askey and Wilson (1985) and Ghanem and Spanos (1991). 

For practical purposes, the infinite series in Eq. (1) must be 
truncated. Adopting ������ terms in the summation, one has: 

 
 �(�) = ∑ 	�Ψ�(�)���������                             (2) 
 
 Functions Ψ�(�) satisfy the following orthogonality conditions: 
 
 Ψ�(�) ≡ 1 
  !Ψ�(�)" = 0				for		% > 1 
  'Ψ�(�)Ψ((�)) = 0				for		% ≠ +              (3) 
 
Orthogonal polynomials of an important class are members of 

the so-called Askey-scheme polynomials (Askey and Wilson, 1985). 
Each subset of these orthogonal polynomials has different weighting 
functions in their orthogonality relationship (Xiu and Karniadakis, 
2002) and some of these weighting functions are identical to the 
probability distribution function of certain random variables. This 
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paper focus on the family of multivariate Hermite polynomials, 
which are orthogonal with respect to the Gaussian measure; hence � 
are independent standard Gaussian random variables.  

In classical form, one-dimensional Hermite polynomials are 
given by: 

  

 ℎ�(ξ) = (−1)�.ξ//1 23!45ξ
///"

2ξ3                (4) 

 
Multidimensional or multivariate Hermite polynomials are 

obtained as products of one-dimensional polynomials. In order to 
generate them, the following integer sequences are useful: 

 
 6 = 78�, 81, … , 8;<						with		8( > 0 
 = = 7%�, %1, … , %;<												with		%( > 0					                (5) 
 
Multidimensional Hermite polynomials associated with the 

sequences (6, =) are then obtained as: 
 
 Ψ=,6(�) = ∏ ℎCD(ξ�D)

;
E��                (6) 

 
For practical computational purposes, polynomials of finite 

dimensions have to be used. The polynomial basis obtained using � 
Gaussian random variables is denoted by Γ;(ξ�, ξ1, … , ξF	) and is 
called “homogeneous chaos of dimension � and order �”. This base 
is generated as follows: for each set of � integers = G8�, 81, … , 8FH, 
with � varying from 0 to �, the following base vector is obtained: 

 
 Ψ6(�) = ∏ ℎCD(ξE)FE�� .              (7) 
 
It can be shown that the dimension of Γ;(ξ�,ξ1	,… , ξF	) is 

obtained as the binomial factor: 
 

dim!Γ;" = K� + � − 1
� M.               (8) 

 
Chaos polynomials of dimension up to � = 4 and order up to 

� = 4 are presented in Ghanem and Spanos (1991). A recursive 
algorithm to generate multi-dimensional Hermite polynomials is 
presented by Sudret and Der Kiureghian (2000). 

Practical Implementation 

The formulation presented above allows the representation of 
any second-order random variable. The polynomial chaos 
expansions (PCE) are obtained by requiring the cumulative 
distribution functions (CDF) of the representation (��) to match the 
empirical CDF of the experimental points at each discrete time step. 
Hence, for each point of time, the coefficients of the PCE are 
determined by minimizing the following error measure: 

 

.OOPO( = ∑ Q��(��) − �
���RST�Q

���RS
���                   (9) 

 
where the cumulative distribution function (CDF) of the 
representation is given by: 
 

��(�) = U!�(�) ≤ �" = U'∑ 	�Ψ�(�) ≤ ���������� )             (10) 
 

In the general case, this probability is not known analytically, but it 
can be approximated by means of large samples of random vector �. 

The extension of the polynomial chaos expansion to 
approximate stochastic processes (instead of only random variables) 
can be done in a discrete fashion, by determining the coefficients in 

specific points of the continuous (
) and replacing them by functions 
of the continuous. In other words, the values obtained for a specific 
coefficient 	� are replaced by a function of 
, 	W�(
). Thus, the PC 
expansion is given by: 

 
�(
, �) = ∑ 	W�(
)Ψ�(�)���������                     (11) 
 
Common functions are used to approximate the coefficients 

	� 	over 
: 
 
	W�(
) = ��� + �1� ∙ 
YZ                 (12) 
 
The coefficients �(� and the exponents [� are determined by 

minimizing the difference between moments of the approximation 
and the experimental data. First and second-order moments were 
used in this paper. Equations (9) and (10) could have been used 
instead, but convergence difficulties were encountered. Since both 
the coefficients and the exponents are optimization variables, the 
objective function may have many local minima, so a good starting 
point is required for the optimization process. 

Insight about the (corrosion) random process is used to 
determine a proper initial value for the exponents	[�. It is known, for 
instance, that mean corrosion growth in time is a less-than-linear 
function of time (Jeffrey and Melchers, 2001). Therefore, initial 
values [� = 0.75 are adopted. Initial values for the coefficients �(� 
are calculated by least squares, considering the constant 	� values 
found in the first part of the process (using Eqs. (9) and (10)). Given 
the initial points, the optimization problem is solved by using the 
fmincon function of MATLAB, with lower and upper bounds equal 
to !0.25,1.50" for [� and !−10`, +10`" for �(� . 

Application of the PCE to Represent Experimental 
Corrosion Data 

The developed algorithm was applied to an experimental 
corrosion dataset contained in the research report of Jeffrey and 
Melchers (2001), which corresponds to corrosion mass loss of 
coupons tested at Taylors Beach, Australia. The exposure time 
varied from 1 to 4.21 years. It is worth noting that the Taylors Beach 
dataset was chosen for being the largest dataset of the 
aforementioned report, but other corrosion dataset can be used as 
well. Table 1 presents the selected data, incorporating the 
information of no corrosion in the initial time. The experimental 
data are also presented as dots in Figs. 1 to 4. 
 

Table 1. Corrosion dataset.  

Years exposed Corrosion loss (ab) 

0.00 0 0 0 0 0 0 0 0 0 

1.00 146 140 147 133 148 150 156 157 132 

1.49 119 151 152 154 151 152 182 191 154 

2.00 189 186 189 202 180 185 197 194 202 

3.03 308 245 290 258 311 281 277 150 258 

4.21 349 308 316 383 351 376 348 382 364 

 
Polynomial chaos expansion (PCE) representations were 

obtained for stochastic dimensions 1 and 2 (called PCE1 and PCE2, 
respectively), for orders ranging from 1 to 10. For stochastic 
dimension 1, the best representation was obtained for PCE order 
equal to 4 (with 5 PCE coefficients), while fifth order polynomials 
(with 21 PCE coefficients) led to the best approximation for 
stochastic dimension 2.  
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The continuous representation was first obtained by leaving the 
data for exposure time 4.21 years out, to serve as validation data. 
Figures 1 and 2 show the PCE1 and PCE2 representations, 
respectively, versus the experimental and the validation data. One 
observes that, although the extrapolation results appear reasonable, 
the small amount of experimental data makes extrapolation 
validation almost prohibitive. Validation errors were evaluated for 
PCE1 and PCE2, in order to verify the extrapolation capabilities of 
the two models. Results are shown in Table 2. It can be observed 
that results for PCE1 are good in terms of the mean, but bad in terms 
of standard deviation. Nevertheless, it can be observed that PCE1 
presents better results than PCE2. The errors in standard deviation 
are discussed further in the following paragraph. 

 

 
Figure 1. PCE1 representation versus experimental and validation data. 

 

 
Figure 2. PCE2 representation versus experimental and validation data. 

 
After verifying the extrapolation capabilities, the PCE1 and 

PCE2 representations were constructed again, this time considering 
all the experimental data available. Tables 3 and 4 show the errors 
obtained after the interpolation of the PCE coefficients in time, 
considering the mean and the standard deviation, respectively. The 
errors in mean are less than 5% for all but the first time point (one 
year). The errors are still quite significant in terms of the standard 
deviations. For the third time point (2 years), the errors are very 
large due to the unusual concentration of the experimental data 
points, which leads to very small standard deviation of the 

experimental results. Looking at the fourth column of Table 4 
(experimental standard deviations), one observes that the standard 
deviations oscillate with respect to time, what makes it difficult to 
obtain smooth and accurate representations of the process. Hence, 
the errors in standard deviation are bound to be large for any smooth 
representation of the process. 

 
Table 2. Validation errors for exposure time 4.21 years.  

 
Validation error (%) 

Mean Standard deviation 

PCE1 5.30 66.95 

PCE2 22.96 130.09 
 

Table 3. Approximation errors in mean corrosion loss. 

Exposure 
time (years) 

Mean Error (%) 

PCE1 PCE2 Experimental PCE1 PCE2 

1.00 116.311 121.440 145.444 20.031 16.504 

1.49 156.168 161.841 156.222 0.035 3.597 

2.00 194.391 200.478 191.556 1.480 4.658 

3.03 265.173 271.822 264.222 0.360 2.876 

4.21 339.407 346.435 353.000 3.851 1.860 

   Average 5.151 5.899 

 
Table 4. Approximation errors in standard deviation. 

Exposure 
time (years) 

Standard deviation Error (%) 

PCE1 PCE2 Experimental PCE1 PCE2 

1.00 8.527 6.886 8.434 1.101 18.360 

1.49 11.656 9.707 19.321 39.672 49.758 

2.00 14.616 12.705 7.259 101.352 75.021 

3.03 20.042 18.628 45.592 56.041 59.142 

4.21 25.707 25.091 25.451 1.006 1.418 

   Average 39.834 40.740 

 
 

 
Figure 3. Final PCE1 representation and extrapolation to 10 years. 

 
Figures 3 and 4 show the final PCE1 and PCE2 representations 

obtained, respectively, as well as the experimental data points. The 
PCE representations are extrapolated for up to 10 years (period 
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assumed in the following reliability analysis), in order to further 
explore the extrapolation capabilities of the PCE representations. It 
is observed that the predictions (extrapolations) by the two 
representations are different. In contrast to the large errors observed 
in Table 4, the visual fitting of the models to the experimental data 
is observed to be good. 
 
 

 
Figure 4. Final PCE2 representation and extrapolation to 10 years. 

 
From the results in Tables 3 and 4 one observes that the PCE1 

representation is better than the PCE2 representation, mainly for 
the standard deviation. In addition, the computational cost of 
PCE1 is smaller than of PCE2 (with sixteen coefficients less). 
Thus, the 4th order PCE1 representation is described in further 
detail. The polynomial basis for this case is (considering Hermite 
polynomial chaos): 
 
 Ψ�(ξ) = 1;	 	Ψ1(ξ) = ξ; 	 	Ψd(ξ) = ξ1 − 1;		 
 
 Ψe(ξ) = ξd − 3ξ; 		Ψg(ξ) = ξe − 6ξ1 + 3.                        (13) 
 

Figure 5 shows the coefficients for PCE1 and their respective 
polynomial adjustments. 

The approximating functions obtained for each PCE coefficient are 
as follows: 
 
 

 
Figure 5. PCE coefficients (dots) and approximating polynomials (lines). 

 
Figure 6. Comparison of empirical CDF (solid lines) and CDF obtained 
from PCE representation (dotted lines). 
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The interpolation of coefficients using predetermined functions 

is very important to improve extrapolation and interpolation 
capabilities. On one hand, the use of high order functions can lead to 
over fitting and poor results. On the other hand, low order functions 
may not be sufficient to represent the underlying behavior. Thus, it 
is interesting to find a compromise between complexity and 
interpolation/extrapolation capabilities. In the present paper 
functions composed of a constant and a non-linear term were used 
(Eq. (12)). The optimal exponents and parameters found are 
presented in Eq. (14). 

Figure 6 compares the empirical CDF of the experimental data 
with the CDF of the PCE1 representation for the 5 time points for 
which data is available. The (mean-square) difference between these 
CDFs is used to guide the solution for the unknown coefficients, 
following Eq. (10). The fitting of the two CDFs is much better 
before the time-interpolation of the coefficients. After interpolation, 
the fit is not very good for 
 = 1 and for 
 = 2 years, but it is still 
reasonable for the other times. 

Looking at Figs. 3 and 4, the PCE representations and 
extrapolations obtained herein are considered good, especially 
considering the small amount of data (45 points in total, 9 for each 
time). Also, recall that the smoothing necessary for a continuous 
representation of the data leads to errors that cannot be reduced 
without loss of extrapolation capabilities. 

Example Problems: Time-Variant Reliability Analysis 

Resistance degradation due to corrosion leads to time-variant 
reliability problems. These problems are not trivial to solve, 
especially when random load processes are involved. Two examples 
are presented herein, in order to illustrate how the developed PCE 
representations can be employed in life prediction of structures 
subject to marine corrosion. 

Solution of time-dependent reliability problems under resistance 
degradation and under random loading is not trivial (Beck and 
Melchers, 2004; Beck and Melchers, 2005; Beck, 2008). The most 
straightforward solution is brute Monte Carlo simulation. An 
alternative formulation is presented herein. 

 

 
Figure 6. Plate subject to tensile end loading and to corrosion. 

The problem consists in estimating the probability of failure of a 
plate with thickness i = 3	bb, width j = 50	bb and length equal 
to 100	bb, subject to tensile end loading σ and to corrosion loss 
C(ξ,t), according to Fig. 7. For the sake of brevity, C(ξ,t) is often 
written only as a function of time, i.e. C(t). 

The plate material has random yield stress Y with lognormal 
distribution and parameters Y≈ LN(µY,σY) = LN(1.25,0.0875) MPa, 
which corresponds to a coefficient of variation of 7%. 

Two different load cases are studied: with time-dependent and 
time-independent loading. For both cases, the failure probability 
over a period of 10 years is calculated. Details about the two load 
cases, as well as the methodologies used to calculate the failure 
probabilities are presented in the following subsections. The 
equations are developed based on Beck (2008). 

All problems were solved by computer codes implemented in 
MATLAB®, running on a computer with an Intel Core 2 Duo – 
E7500, 2.93 GHz processor, with 3.21 GB of usable RAM, using 
parallel processing (2 CPU cores). 

Random loading and limit state function 

Two cases of random loading are considered. In the first case, 
the tensile loading is considered a random variable; in the second 
case, tensile loading is a random process of time: S = S(t). In both 
cases, the probability distribution function of tensile loading is that 
of a standard normal distribution, hence S~N(µS,σS) = N(0,1). The 
limit state equation is written as: 
 
 ( ) ( ), ( ), ( ) ( ) ( ) 0g Y S t C t Y b a C t S t a b= ⋅ ⋅ − − ⋅ ⋅ =         (15) 

 
where, for the random variable load case, S(t) = S. Both sides of Eq. 
(15) are further divided by a.b. The failure probability to be 
evaluated in both cases is: 
 

 ( )
0

( ) min , ( ), ( ) 0
D

f D
t t

P t P g Y S t C t
≤ ≤

 = <    
            (16) 

 
The generation of stochastic load process samples is explained 

later. The random variable load problem is solved first.
 

Monte Carlo simulation 

The most straightforward method to evaluate failure 
probabilities over time (Eq. (16)) is crude Monte Carlo Simulation 
(MCS). In this case, nsamp random samples of random variables Y, S 
and ξ are generated according to their probability distribution 
functions. For each sample of ξ

 
a complete time history of C(t) is 

obtained, following Eqs. (11), (13) and (14). 
A failure indicator function I() is used, which takes values of 1 

for failure or 0 for survival depending on the value of the limit state 
function g(), for a given set of values (Yi, Si and ξi) and a specific 
time tp: 

 

 
( ) ( )1,   if  g , , , 0

, , ,
0,                      otherwise.

i i i p
i i i p

Y S t
I Y S t

 ξ <ξ = 


         (17) 

 
The indicator function is evaluated at each discrete point of time 

(tp) starting from an initial time (tini = 0) until the final time (tD = 10 
years), with a time increment of dt years, for each sample point (Yi, Si 
and ξi) of the random space, with i = 1,2,..., nsamp. For the random load 
process, Si = Si (tp). The number of discretization points in time is: 

1D ini
steps

t t
t

dt

−
= + .              (18) 
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A vector ind with dimension tsteps, containing the number of 
failures over time is computed: 
 

 
( ) ( )

1

, , ,
nsamp

p i i i p
i

ind t I Y S t
=

= ξ∑ , for 1,2, , stepsp t= K
.        (19) 

 
Importantly, if failure occurs at a time tp, the indicator function will 
be equal to one for all later times (first passage problem). 

The mean value estimate of failure probabilities over time is 
then given by: 

 
 

f
samp

ind
P

n
=                (20) 

Resistance integration solution for random variable loading 

Consider a resistance R per unit area, function of Y and C(t). For 
each sample (Yi, ξi, tp), with I = 1,2,..., nsamp and p = 1,2,...,tsteps, one 
has rip

 (a scalar number): 
 

( )( ),i i p

ip

Y a C t
r

a

⋅ −
=

ξ               (21) 

 
The limit state equation for each tp is rewritten as a function of 

S and Rp (the latter being the random variable resistance for a 
given time): 

 

( ), 0p pg R S R S= − =               (22) 

 
Recalling that S≈N(0,1), the probability of failure given an 

occurrence rip can now be calculated as: 
 

( ) { } { } ( )| 1 1 1ip S
f p ip ip ip ip

S

r
P t r P r S P S r r

− 
   = < = − ≤ = − Φ = − Φ    

 

µ
σ

 

                   (23) 
 
That is, for each occurrence rip, it is possible to evaluate analytically 
the conditional probability of failure, using the cumulative 
distribution function of the random variable S, i.e., Φ(). Thus, for 
each time (tp) the failure probability can be calculated by integrating 
the conditional probability over the resistance: 
 

( ) ( ) ( )|
p

i i
f p f p p R p p

R

P t P t r f r dR= ⋅∫
   

        (24) 

 
Equation (24) is solved by Monte Carlo Simulation, but using a 
much smaller number of samples than required for the time-variant 
Monte Carlo simulation. 

Results for Random Variable Loading 

The problem is first solved for the random variable loading, 
using Monte Carlo simulation and a sample of nsamp = 30000. This is 
large enough to calculate a failure probability of the order 10-3-10-4. 

For the resistance integration solution, two distinct solutions 
were computed: with nsamp = 500 and with nsamp = 1000. These 
values were defined comparing the obtained results with the Monte 
Carlo solution, trying to use the smaller possible sample size. 
Results for dt = 0.25 are shown in Fig. 8. 

The MC solution required about 99 seconds to run, while the 
resistance integration solutions took about 10 seconds and 12 
seconds to run, respectively. These differences are not significant 

for the current problem, but they could become significant for a 
more relevant, real engineering problem. 

 
Figure 7. Failure probability over time for random variable load case. 

Stochastic Process Loading 

In this case, the tensile loading was considered a continuous 
Gaussian stochastic process S(t) with zero mean and unit variance. 
An exponential (Beck, 2008) autocorrelation function is considered 
(leading to a broadband process, with λ = 1 and cutoff frequency 
kl = 10 ). 

A spectral representation is used to obtain samples of this load 
process (Borgman, 1969; Grigoriu, 2000). In this representation, the 
power spectrum density function m(k) of the process is discretized 
in a finite number	b�;4� of frequency components: 

 

n m(k)	ok	 p ∑ m(kE)	qkE
r�Ss�
E�	�

tu
t�

             (25) 

 
where k� and kl are the lower and upper (truncation) frequencies, 
qkE =	tuv	t�

r�Ss�
	is the frequency interval and kE is the wx� frequency 

component. The discretized process representation is then obtained as: 
 
yr�Ss�(
) = ∑ m(kE)	qkE 	(	zE cos(kE 	
) + ~E sin(kE 	
)�E�� 	) (26) 

 
where yr�Ss�(
) is the b�;4�-dimensional approximation of process 

y(
), and zE and ~E are independent Gaussian random variables 
with zero means and unit variances. 

Adopting sample period equal to the total period of simulation 
(tD = 10 years), the number of discretization points of the power 
spectral density (b�;4�) is: 

 

b�;4� = tux�
1� = ��∙��

1� ≅ 15.91              (27) 

 
The number b�;4� = 16 is adopted, which corresponds to a period 
tD = 10.05 years, slightly larger than required.  The number of points 
of discretization in time was set as tsteps = 200, for which a smooth 
representation of the load process is achieved. One realization of the 
stochastic process σ(t)

 
is shown in Figure 8 9.  

The moments of order 0, 2 and 4 of the power spectral density 
function of the process are as follows: 

 

0

2

4

1           

5.7975  

220.786

λ
λ
λ

=
=
=       

            (28) 
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Figure 8. One realization of the stochastic process S(t), with tsteps = 200. 

 
From these moments, the regularity factor α is evaluated as

2 0 4/ 0.39α = λ λ λ ≅ , i.e., the regularity factor is much smaller than 

1, as expected for broadband processes. The average angular 
frequency is equal to 2 0/ 2.4078oω λ λ= ≅ , which leads to a mean 

crossing rate 
0 0 / 2 0.3832υ ω π+ = ≅ . 

Solution by Linear Approximation of the Barrier in Each 
Time Interval 

As the load is a stationary Gaussian stochastic process, the up-
crossing rate for a barrier level that varies linearly with time can be 
obtained analytically. For a stationary Gaussian process and a 
barrier r(t) = ar+br.t, the up-crossing rate is given by (Cramer and 
Leadbetter, 1967): 
 

 
( ) 0

0

,i r r S r

S S

a b t b
r t+    − − µ

υ = ω ⋅ φ ⋅ Ψ   σ ω σ   
  

          (29) 

 
where [ ] [ ] [ ]x x x xΨ = φ − Φ − . 

Consider again a resistance R per unit area, function of Y and 
C(t). For each sample (Yi, ξi), with i = 1,2,...,nsamp, a function of time 
ri(t) is obtained: 
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This function is evaluated at the tsteps time discretization points. 

For each instant tp, with p = 2,...,tsteps, the coefficients of the linear 
approximation of the resistance are: 
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The integral over time of the rate shown in Eq. (29) is zero for p = 

1. For p = 2,...,tsteps the integral is calculated in an incremental fashion: 
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In addition, the integral of the linear approximation can be 

easily calculated: 
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At time tini = 0, the initial failure probability is calculated as: 
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                      (34) 
 
The probability of failure at the time t1, given the occurrence of 

ri(tp), is equal to the initial failure probability: 
 

( ) ( )
01 |f i f iP t r P r= .               (35) 

 
Thus, the conditional failure probability at each time is: 
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Finally, the failure probability can be calculated by integrating 

the conditional probability over the resistance: 
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This integral is solved by Monte Carlo Simulation, but the 

sample size (nsamp) required in this case is much smaller than that 
required for the time-variant Monte Carlo solution. 

Results for Stochastic Process Loading 

The problem was solved by Monte Carlo method with sample 
size nsamp = 30000 which is large enough to accurately calculate the 
required probability of failure. 

The solution by linear approximation of the barrier was 
computed for nsamp = 500 and for nsamp = 1000. Results for tsteps = 
200 (dt = 0.05) are shown in Fig. 10. As expected, one observed a 
significant increase in failure probabilities when loading is a 
stochastic process instead of a single random variable. 
 
 

 
Figure 9. Failure probability over time, stochastic load process. 
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The time-variant Monte Carlo solution took about 162 seconds 
to run, while the resistance integration solutions took about 15 
seconds and 16 seconds, respectively. Hence, the resistance 
integration solution is computationally much more efficient than the 
crude time-variant Monte Carlo simulation.  

Concluding Remarks 

This article addressed modeling of stochastic corrosion process 
in marine environments by Polynomial Chaos Expansions (PCE). It 
was shown that PCE is a flexible tool to represent different kinds of 
random experimental data.  

One and two-dimensional PCE representations were obtained 
herein for the results of 45 corrosion coupons tested by Jeffrey and 
Melchers (2001) at Taylors Beach, Australia. The experimental data 
was observed to be non-smooth with respect to the standard 
deviation of corrosion loss for different years. This limited the 
accuracy that could be achieved by the continuous and smooth PCE 
representations. Hence, errors of the PCE representation were 
significant with respect to standard deviation. However, the visual 
fitting of the PCE representations to the experimental data was 
shown to be good.  

Moreover, it was shown that the PCE representations developed 
herein can be used to extrapolate the data for longer corrosion times. 
This is important in order to allow the lifetime safety management 
of structures subject to marine environments. It was shown that a 
compromise has to be found between the accuracy and extrapolation 
capacities of the model. Use of higher-order PCE representations 
could be used to increase accuracy, but this would limit the 
extrapolation capacity of the model. Moreover, it was shown that 
the extrapolation capacity of the model depends directly on insight 
about the corrosion process. In this article, good extrapolation was 
obtained by using smaller-than-one powers of time. 

Two examples were presented showing application of the PCE 
representations to reliability problems with resistance degradation 
due to corrosion. Solution of such time-dependent reliability 
problems under random loading is not trivial, and generally only 
Monte Carlos simulation can be employed. An alternative 
formulation was presented herein, where conditional crossing rates 
are evaluated by linearizing the resistance variation between two 
time points. Conditional failure probabilities are evaluated from 
conditional crossing rates, and Monte Carlo simulation is performed 
only over the resistance random variables. This alternative 
formulation was shown to be very efficient, requiring many times 
less samples than the complete time-variant Monte Carlo simulation.  
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