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On-line SLAM Using Clustered 
Landmarks with Omnidirectional 
Vision 
The problem of SLAM (simultaneous localization and mapping) is a fundamental problem 
in autonomous robotics. It arises when a robot must create a map of the regions it has 
navigated while localizing itself on it, using results from one step to increase precision in 
another by eliminating errors inherent to the sensors. One common solution consists of 
establishing landmarks in the environment which are used as reference points for absolute 
localization estimates and form a sparse map that is iteratively refined as more 
information is obtained. This paper introduces a method of landmark selection and 
clustering in omnidirectional images for on-line SLAM, using the SIFT algorithm for 
initial feature extraction and assuming no prior knowledge of the environment. Visual 
sensors are an attractive way of collecting information from the environment, but tend to 
create an excessive amount of landmarks that are individually prone to false matches due 
to image noise and object similarities. By clustering several features in single objects, our 
approach eliminates landmarks that do not consistently represent the environment, 
decreasing computational cost and increasing the reliability of information incorporated. 
Tests conducted in real navigational situations show a significant improvement in 
performance without loss of quality. 
Keywords: SLAM, SIFT, omnidirectional vision, mobile robot control 
 

Introduction  

A solution to the problem of SLAM (Simultaneous Localization 
And Mapping) would be of inestimable value in robotics as it would 
lead to truly autonomous robots, capable of navigating safely at 
unknown locations in unknown environments using nothing but 
embedded equipment. Information from sensors cannot be used 
directly because they are inherently inaccurate, due to phenomena 
that cannot be modeled, as they are too complex or unpredictable. 
Probabilistic approaches (Thrun et al., 2005) have successfully dealt 
with both problems individually, such as mapping given the robot's 
exact position at each instant (Thrun, 2002) or localization given a 
precise map of the environment (Dellaert et al., 1999). However, in 
situations where neither one is known in advance the robot must 
estimate both simultaneously, a problem that is largely discussed in 
the autonomous robotic literature (Csorba, 1997; Bailey, 2002; 
Montemerlo, 2003; Fitzgibbons, 2004), but still lacks a closed, 
efficient and truly generic solution. Figure 1 illustrates these 
situations: Fig. 1(a) shows the robot trajectory and the map built 
with no error in the robot localization; Fig. 1(b) shows the robot 
localization error in a known map and Fig. 1(c) shows the map 
generated using only odometry estimates for the robot localization. 

The classic approach to the problem of SLAM, first described 
by Smith et al. (1990) and implemented by Moutarlier and Chatila 
(1989), is based on detection and recognition of landmarks in the 
environment which can be used as reference points to eliminate 
odometry errors accumulated over time. A feature map of such 
landmarks is iteratively built by comparing new landmarks with the 
ones already stored in search for matches. If a match is found, this 
information is used to increase precision in both localization and 
mapping estimates; otherwise, it is added to the map for future 
correspondence. A substantial amount of research has been 
conducted to overcome some of the limitations in this approach, 
such as computational complexity and scalability (Leonard and 
Feder, 1999; Montemerlo, 2003) and data association problems 
(Thrun et al., 1998; Leonard et al., 2002). 

A robot's ability to detect and recognize landmarks is limited by 
its sensors and how they interact with structures in the environment. 
Although a number of approaches have been proposed to address 
the problem of SLAM using range sensors (Press and Austin, 2004), 
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vision sensors are well suited devices for an autonomous mobile 
robot, because they are information-rich and rarely have restrictions 
in range and applications. Recent increases in computational power 
and algorithm efficiency have led to numerous implementations of 
visual systems in many fields of robotics (Fitzgibbons, 2004; 
Andreasson and Duckett, 2004). Among visual sensors, the 
omnidirectional vision (Zhu, 2001) introduces several properties 
that are very desirable in most navigational tasks (Gaspar, 2003), 
including in the SLAM problem discussed above (Se et al., 2001). A 
larger field of view means ability to detect a higher number of 
landmarks, increasing characterization of environment as a whole by 
avoiding blind spots and poor angles for triangulation. Each 
landmark will also remain visible for a larger period of time, 
increasing number of matches and providing more information for 
improving localization and mapping estimates. 

However, the high characterization of environments provided by 
visual sensors can also be a drawback due to the large amount of 
information obtained from a single image. This leads to a high 
computational cost necessary to process, maintain and access all this 
data, and also causes data association problems due to redundancy 
and image noise, generating estimates that do not correspond to 
reality and increase uncertainty of results. We describe in this paper 
a method for selective perform landmarks extraction that is based on 
clustering features directly from omnidirectional images, without 
any prior knowledge of the environment and therefore can be 
applied to any situation where visual sensors are capable of 
providing useful information (i.e. feature-rich scenarios). We start 
by briefly describing the problem of SLAM and the use of 
landmarks to ensure localization precision. After that the proposed 
method of landmarks selection is described, along with 
modifications in the matching step and landmarks management. 
Finally, we show results obtained in a real SLAM situation that 
indicate a significant gain in quality and efficiency over a common 
approach of landmark selection.  

Nomenclature 

a = hyperbole parameter  
b = hyperbole parameter 
C = camera lens focal distance 
D = Difference of Gaussian (DoG) function 
d = distance between hyperbolical mirror focus and 

camera focus 
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f = distance from the image plane to the camera focus 
fm = SIFT feature 
G = Gaussin function  
I = image 
it = incidente light ray 
K = total number of landmarks 
L = image 
m = SIFT vector magnitude 
nftr = landmark feature counter  
nobj = object counter 
nt = correspondence value between landmark and observation 
p = probability distribution 
rt = reflected light ray 
st = robot position in the x-y plane 
t = time 
T = absolute temperature, K 
ut = control vector 
x = coordinate of robot position in plane, image coordinate 
xc = center coordinate of the omnidirectional image 
y = coordinate of robot position in plane, image coordinate 
yc = center coordinate of the omnidirectional image 
zt = observation vector 
Greek Symbols 
α = reflected light ray in the hyperbolical mirror 
β = SIFT vector orientation 
η = Gaussian distribution 
μ = mean 
ρ = set of all landmarks 
ρk = location of landmark, k 
σ = variance 
θ = robot orientation in plane 
ϕ = incident light ray angle in mirror from a point in space 
Subscripts 
c relative to center 
ftr relative to a feature 
k relative to a landmark 
t relative to a moment in time 
obj relative to an object 
 

The problem of SLAM 

The problem of localization and mapping in robotics can be 
described as a probabilistic Markov Chain, where the hidden 
variables are both the robot's localization and the map components. 
At a given time t we will denote the robot's position (assuming one-
plane navigation) as st = (x, y, θ), composed of its coordinates in the 
x – y plane and its orientation θ relatively to the x axis. This position 
evolves in time according to a probability distribution known as the 
motion model: 

p(st | ut ,st −1) (1) 

where ut is the control vector used for navigation. The robot's 
environment is composed of a set of K static landmarks with 
locations denoted as ρk. With its sensors the robot is capable of 
detecting these landmarks and measuring their positions relatively to 
itself (i.e. through range and bearing information). Each 
measurement is given by the observation vector zt (we assume 
without loss of generality that the robot observes only one landmark 
at each instant) governed by a probability distribution known as the 
measurement model: 

p(zt | st ,ρ,nt )  (2) 

where ρ = (ρ1, … , ρN) is the entire set of landmarks and nt is the 
correspondence value that indicates which landmark ρn is observed 
by zt. Most theoretical work on SLAM assumes that all 
correspondences n = (n1, … , nt) are known, and thus the problem of 
SLAM becomes the one of determining the location of all 
landmarks ρ  and robot poses st from measurements zt = (z1, … , zt) 
and controls ut = (u1, … , ut). So, we can write: 

p(st, ρ | z, u, n) (3) 

 

In practical applications this is, however, not the case, as 
landmarks will never be truly unique in the environment, due to 
imprecision in the measurement or natural ambiguities. In this case, 

 
(a) Exact map 

 
(b) Localization estimates with odometry 

 
(c) Mapping using odometric estimates 

Figure 1. Influence of sensor errors in localization and mapping 
estimates (Guizilini et al., 2007). 
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we have to consider another probability distribution, Eq. (4), which 
indicates the probability of each measurement corresponding to each 
landmark. Most approaches use maximum likelihood algorithms, 
with thresholds that determine whether a measurement should be 
matched with a landmark already stored or considered as a new 
landmark. 

p(nt | z, u) (4) 

Feature extraction 

A feature represents a piece of relevant information that can be 
obtained from the data collected. In computer vision, an image can 
provide both global features, where information contained in all 
image is used for feature extraction, and local features, where only a 
region of the image is used. Due to the necessity of detecting and 
recognizing particular objects in the image, local features are more 
commonly used in autonomous robotics to represent the 
environment. An extensive survey on local features is conducted by 
Tuytelaars and Mikolajczyk (2006), and methods for a better 
landmark selection in specific environments are shown by Shi and 
Tomasi (1994) and Olson (2002).  

Although the method proposed in this paper can be used as a 
complement for any feature extraction method, we propose here the 
use of the SIFT algorithm as described by Lowe (Lowe, 2004) to 
obtain the initial feature set. The SIFT algorithm has become very 
popular in several robotics applications, as it can be seen in Se et al. 
(2001), Se et al. (2005), Ledwich and Williams (2004), and 
introduces several properties of invariance that are specially useful 
when extracting features directly from omnidirectional images, as it 
is the case in this work. Rotational invariance is important because 
detected objects can appear in any orientation depending on the 
angle between them and the robot, and so is scale invariance since 
resolution rapidly decreases in the outer ring of the image, changing 
the apparent size of observed objects. The high dimensionality of 
the SIFT descriptor provides some robustness regarding the 
deformation caused by the omnidirectional geometry, partially 
eliminating the need for rectification (Grassi and Okamoto, 2006).  

The SIFT algorithm 

The first stage of SIFT is composed of a search for local 
extrema over different scale spaces (ensuring scale invariance), 
constructed using a Difference of Gaussian (DoG) function 
D (x, y, σ). This function (5) is computed from the difference of two 
nearby scaled images L (x, y, σ), obtained by the convolution of the 
original image I (x, y) with Gaussian kernels G (x, y, σ) defined by 
their mean μ = (x, y) and variance σ, separated by a multiplicative 
factor k: 

D(x, y,σ) =
= ((G(x,y,kσ ) − G(x,y,σ))∗ I(x,y))
= (L(x,y,kσ) − L(x,y,σ ))

 (5) 

Pixels in any scale are reconsidered extrema if they represent a 
local maximum or minimum considering its neighbors in the same 
scale and in the ones directly above or below. These extrema are 
filtered according to two other criteria (contrast and ratio of main 
curvatures) for more stable matches and localized to sub-scale and 
sub pixel precision, as shown in Brown and Lowe (2002). A main 
orientation β (7) and magnitude m (6) are assigned to each 
remaining feature candidate using an orientation histogram obtained 
from pixel differences in the closest smoothed image L (x, y, σ). 

m(x, y) = Δx 2 + Δy 2  (6) 

β(x, y) = tan−1 Δy
Δx

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  (7) 

where Δx = L (x + 1, y) – L (x – 1, y) and Δy = L (x, y + 1) – L (x, y –
 1). This orientation histogram has usually 36 bins, covering 360° in 
intervals of 10°. Each point is added to the histogram weighted by 
its magnitude and by a circular Gaussian with \sigma variance that is 
1.5 times the scale of the smoothed image used, to decrease the 
influence of distant portions of the image (Fig. 2). Additional 
feature candidates are generated where there are multiple dominant 
peaks, and dominant peaks are interpolated with their neighbors for 
a more accurate orientation assignment. 

The gradient information used in the histogram is also used to 
create the feature descriptor. First, the gradient information is rotated 
and aligned with the feature's main orientation, creating relative 
measurements that ensure rotational invariance in further 
correspondences. This relative data is again weighted by a Gaussian as 
to decrease influence of distant portions of the image and is separated 
in sub-windows. Each sub-window has its own orientation histogram, 
composed of usually 8 bins, and each component of each sub window 
is added to the final descriptor. In the example of Fig. 2, the final 
descriptor would have 32 different values. To obtain a partial 
invariance to luminosity this descriptor is normalized, so global 
changes in intensity will not affect the result.  

Omnidirectional vision 

Omnidirectional vision sensors represent a family of visual 
sensors that are capable of obtaining simultaneously information 
regarding the entire environment around the camera (Zhu, 2001). 
Besides truly omnidirectional cameras (Nalwa, 1996), there are 
several other ways of obtaining this omnidirectional property, such 
as multiple cameras (Peleg and Ben-Erza, 1999) and special mirrors 
(Baker and Nayar, 1997). 

Omnidirectional systems composed of special mirrors are 
usually more compact and without moving parts, thus being more 
suitable for applications in autonomous navigation. There are a 
number of possible mirror geometries, such as spherical, conical, 
parabolic or hyperbolic, each one with its own set of properties. 
Between these possible geometries the hyperbole has the property of 
single focus projection that allows the use of regular cameras in the 
omnidirectional vision system Svoboda and Pajdla (2002). Figure 
3(a) presents a scheme of a hyperbolic mirror omnidirectional vision 
system, and Fig. 3(b) shows an example of omnidirectional image 
obtained using this configuration. 

The camera is placed vertically and points to the mirror fixed 
above it, in a distance that ensures coincidence between the 
inferior hyperbole focus F2 and the camera focus C. Light from 
the environment is reflected by the mirror and sent to the camera, 
converging to its focus and creating the omnidirectional image. 
The radial distance of the pixel p to the center of the image defines 
the angle α between the reflected light ray and the vertical axis. 

Figure 2. Example of SIFT descriptor with a total of 32 bins (Lowe 2004). 
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The angle α also defines the angle ϕ between the incident light ray 
and the horizontal axis (Eq. (8), where a and b are the hyperbole 
parameters). As α increases, so does ϕ, and when ϕ = 0 that pixel 
will be observing the infinite. 

ϕ = tan−1
d + f −

ab
a2 − b2 tan2 θ

tanα
ab

a2 − b2 tan2 θ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

 (8)  

The value of ϕ as a function of α is shown in Fig. 4. When 
α = 0 we have ϕ = – π/2, as expected, and when α increases so does 
ϕ, in a ratio that is proportional to the mirror curvature. This ratio 
defines radial resolution of pixels at each portion of image, which is 
high in the inner portions (small curvature) and low in the outer 
portions (high curvature). As a result, in these external areas even a 
small error in pixel coordinate estimation may result in a large error 
in feature position.  

Another characteristic of omnidirectional systems is the 
deformation of objects, due to the projection of the mirror surface in 
the bi-dimensional surface of the image (Zhu, 2001). Most 
computational vision algorithms perform well in conventional 
geometries, so it is common that omnidirectional images are first 
rectified (Torii and Imiya, 2004) before utilized. However, the 
rectification process does not add information to the omnidirectional 

image, only rearranges it, and in the process incurs extra 
computational cost.   

Therefore, we aim here for the direct extraction of information 
from omnidirectional images. In the next sections we describe the 
methods used for feature extraction and landmark selection, along 
with the matching and triangulation steps necessary to the use of this 
information in the SLAM algorithm previously presented. 

Selecting landmarks in omnidirectional images 

The main drawback of SIFT features compared to other image 
descriptor is their high computational cost. A way of reducing 
computational cost in SIFT by removing its rotational invariance is 
presented by Ledwich and Williams (2004), but it assumes a 
conventional camera mounted parallel with the ground in a flat 
environment in order to create a stable point of view, which is not 
viable in omnidirectional images. The scale and translation 
invariances are removed for topological localization with 
omnidirectional images in Andreasson and Duckett (2004), because 
features should only be observed in the vicinity of the region where 
the image was obtained, but this compromises the robot's ability to 
recognize landmarks in different points of view. Lower descriptor 
dimensionality (Se et al., 2005) compromises object recognition in 
different distances from the robot due to image deformation. In 
resume, SIFT's invariance properties are important for generic 
feature extraction and landmark selection in different environments, 
especially in omnidirectional images, and therefore should not be 
eliminated.  

Another limitation in SIFT features that increases 
computational cost is the volume of information generated, most 
of it redundant and non-representative of the environment, 
characterizing background structures and noise which are not 
matched between images that share a common view. Additionally, 
the local aspect of individual SIFT features generates data 
association problems in situations where there is object similarity. 
One possible solution to this problem is the use of feature database 
representing the objects that should be used as landmarks (Press 
and Austin, 2004), taking advantage of natural organization in 
certain kinds of environments. But this approach both limits the 
applicability of the solution in different environments, as it can 
only be used where these predetermined structures exist, and 
discards potentially useful information from other objects and 
structures not considered in the database.  

 
(a) Scheme 

 
(b) Image example 

Figure 3. Scheme of a single-lobed hyperbolic mirror omnidirectional 
vision system. 

 
Figure 4. Decrease in resolution (Eq. (8)) in the radial axis of an 
omnidirectional image. 
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We propose here the grouping of features from a single 
omnidirectional image into clusters based solely on image 
properties, and therefore can be determined equally in any kind of 
environment. Clusters without a minimum number of features are 
discarded and their features are not used, while others have their 
features promoted to landmarks and used by the robot to increase its 
knowledge of the environment. Position estimates of each landmark 
are still updated individually according to the SLAM algorithm 
used, but now they share the same unique cluster index, which is 
used in the correspondence step for more reliable matches, since the 
probability of one false match is higher than the probability of 
several false matches. This cluster index is also used to eliminate 
features that are consistently not matched in the environment, 
liberating space for new features. The result is fewer landmarks per 
image (lower computational costs), but these landmarks will be 
more representative of the environment and will be better 
distinguished (less data association problems). 

Feature clustering 

The two image properties constraints used in this paper were 
distance and intensity difference between pixels. We assume that 
features from the same object in the environment will have similar 
contrast in the image and be at a reasonable distance between each 
other. Each constraint has its own independent standard deviation σd 
and σc, and the probability of two features fm and fn be part of the 
same object is given by p (fm,  fn) = pd (fm,  fn) . pc (fm,  fn), where 

pd ( f m, f n ) = η ( fx
m − f x

n )2 + ( fy
m − fy

n )2 ,σ d( ) (9) 

pc ( f m, f n ) = η( fc
m − fc

n ,σ c )   (10) 

and η (μ, σ) is a Gaussian distribution function. Each constraint is 
treated independently to decrease computational costs by applying 
each one separately. First, every two features of the image are 
compared according to pixel distance, and the ones with low 
probability are readily discarded. The ones within reasonable 
probability move to the second constraint, and if the final 
probability is high enough they are clustered as part of the same 
object. After all features in the image are compared, the ones that 
don't have a minimum of peers are discarded, while the other ones 
are promoted to landmarks and used by the robot as representative 

of the environment. Each landmark is treated independently, but 
shares the same cluster index that is used in the matching stage and 
also allows landmark elimination. 

In omnidirectional images it is not correct to assume that the 
standard deviation σd  is constant throughout the image as resolution 
varies in the radial axis (we assume here an omnidirectional vision 
system composed of an hyperbolic mirror and a conventional 
camera as shown in Grassi and Okamoto (2006)). This change of 
resolution affects the space represented by each pixel (Fig. 6), and in 
a different way for radial and angular distances, dividing σd into two 
distinct standard deviations, σr and σθ. The probability pd (fm, fn) of 
features fm and fn sharing the same object becomes: 

pd ( f m, f n ) = pr( f m, f n )⋅ pθ ( f m, f n ) (11) 

pr( f m, f n ) = η ( f x
m − xc )2 + ( fy

m − yc )2 −(
( fx

m − xc )2 + ( fy
n − yc )2 .σ r)

  (12) 

pθ ( f m , f n ) = η tan−1 f y
m − yc

fx
m − xc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

⎛ 

⎝ 
⎜ ⎜ 

tan−1 fy
n − yc

fx
n − xc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,σθ

⎞ 

⎠ 
⎟ ⎟ 

  (13) 

where xc and yc are the center coordinates of the omnidirectional 
image. Furthermore, the values of σr and σθ change differently 
according to the radial distance of the feature to the center of the 
image (see Fig. 6), as shown below: 

   • Inner Ring: σr increases and σθ decreases 
   • Outer Ring: σr decreases and σθ increases    
In the inner ring of the image there are lesser pixels to represent 

angular intervals, so each pixel covers a larger angular distance 
(decreasing σθ). At the same time, since the mirror curvature is still 
small, radial intervals are represented by a higher number of pixels, 
increasing σr. In the outer ring of the image there are more pixels to 
represent each angular interval, which increases σθ, and each pixel 
has to cover a larger radial portion of the environment because of 
the higher mirror curvature, decreasing σr.   

   
(a) (b) (c) 

Figure 5. Landmark selection in sequential frames (5 seconds apart) using the proposed method. Black dots indicate SIFT features and circled black 
dots indicate landmarks that were clustered into single clusters (rectangles). Darker circles are landmarks that were matched from precious frames 
and lighter circles are landmarks just added to the map. 
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So, σr and σθ become functions gr (r) and gθ (r) of the distance r 
between the features and the center of the omnidirectional image, 
determined by the system's parameters and geometry. Since two 
features will most likely have different distances, one 
straightforward way of determining an effective r is to find the 
arithmetic mean between each individual r. So 

σr = gr(r) , σθ = gθ (r) (14) 

r = ( fx
m − xc )2 + ( fy

n − yc )2 +(
( fx

n − xc )2 + ( fy
n − yc )2) 2

 (15) 

Matching and Triangulation  

The likelihood of matching between two features fm and fn is 
given by the Euclidean distance between its descriptors (Eq. (16)). 
The closer they are in the K-dimensional space, the higher is the 
matching probability. The matching set from one image is obtained 

minimizing the distance between their landmark set and a given 
particle's map (each map may have a different matching set). 

 

d( f m , f n ) = (vi
m − vi

n )2

i=0

K

∑  (16) 

 
The high dimensionality of SIFT descriptors makes exhaustive 

search computationally intractable, so traditional approaches to this 
problem use probabilistic algorithms such as the Best Bin Fit (Beis 
and Lowe, 1997), which is capable of finding the optimal match 
within 95% of certainty, with a computational gain in two orders of 
magnitude. 

During the matching step, each landmark stored on the robot's 
map is first compared directly to the features obtained from the 
omnidirectional image (without previous object clustering) using 
regular matching process, such as Best Bin Fit for SIFT. After this 
process, the number of successful matches in each cluster is 
calculated, using the index number of each landmark. If a 
minimum percentage of landmarks in each cluster are not matched 
all its matches are discarded, otherwise, they are assumed correct 
and their information is used to refine the robot's localization and 
mapping estimates.   

Every landmark has a counter nftr that indicates the amount of 
times it has been matched, and likewise every cluster has a counter 
nobj to indicate the amount of time it has been successfully matched. 
If the ratio nobj/nftr becomes too large it indicates that the cluster is 
being consistently matched without the need for that specific 
feature. This landmark can then be eliminated from the robot's map, 
decreasing the number of features representing that cluster. If this 
number is below a certain threshold new features can be 
incorporated as landmarks to the object using the same process 
presented earlier, and if no new features are available the whole 
cluster can be eliminated.   

The position of each matched landmark in the environment is 
obtained through triangulation, using (Fig. 8) the position (x, y)1 of 
the robot when the landmark was last observed and the position 
(x, y)2 where the current omnidirectional image was obtained. The 
coordinates in each omnidirectional image of the feature that 
originated the landmark (p1 and p2) provide bearing information for 
the triangulation, and the mirror geometry allows the transformation 
from the reflected rays rt to incident rays it. The position (x, y, z)n of 
the landmark in the environment is the point where i1 and i2 
intersect. Since these measurements will be inevitably noisy, in real 
applications it is possible (and most likely) that i1 and i2 do not 
intersect, thus rendering the triangulation impossible. One simple 
solution, and the one used in this work, is to calculate the 
triangulation using solely the projection of both rays in the x – y 

 
(a) Pixel grid 

 
(b) Segment of pixel grid 

Figure 6. Representation of radial resolution change throughout an 
omnidirectional image. 

 
Figure 7. Matching in omnidirectinal images. Groups of features 
were selected in the left image and the line indicates matchings in 
the right image. 
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plane in the triangulation. The z coordinate is then calculated as the 
average position of both rays at the point where they intersect in the 
projection. 

Experimental Results  

The landmark selection algorithm presented in this paper was 
tested in a real SLAM situation, using a Pioneer 3AT (Fig. 9(a)) 
equipped with an odometry system for incremental localization 
estimates, a laser scanner used solely to build a metric map of the 
environment, and an omnidirectional vision system composed of a 
hyperbolic mirror and a vertically placed camera (Fig. 9(b)) 
positioned on the rotation axis of the robot. The omnidirectional 
images collected were 640 x 480 gray scale and processed using a 
Pentium Core 2 Duo 2.0 GHz. 

The SLAM algorithm used to incorporate the information 
obtained from the omnidirectional vision system was FastSLAM 
(Montemerlo, 2003), chosen due to its efficiency in dealing with 
large amounts of landmarks and data association problems. A 
particle filter (Rekleitis, 2003) is used to model the robot's 
localization uncertainty, and each particle also keeps an independent 
mapping hypothesis, which is updated using an Extended Kalman 
Filter (Welch and Bishop, 1995). Each landmark is updated 
individually according to the independency notion stated in Murphy 
(1999) and held true if the robot's position is assumed known, which 
is possible within each particle's hypothesis. Landmark position 
estimates were obtained through triangulation using matching 
information from two different instants.   

We aim for an on-line solution to the problem of SLAM (with 
an update rate of 10 Hz), and the SIFT algorithm has a processing 
time far greater than this. So, we parallelized FastSLAM and SIFT, 
allowing the robot to navigate blindly while processing a collected 
omnidirectional image. During this stage its localization uncertainty 
increases, and when the processing is done the landmark 
information is incorporated to the estimate and the uncertainty 
decreases. Even though this update is based on past information, due 
to the parallelization, all particle position estimates can be tracked 
back and forwards over time (a characteristic of FastSLAM as a 
solution to the Full SLAM problem), and so the update can be easily 
propagated to the current instant of navigation. 

An environment of corridors and obstacles (the robot could see 
above the walls, detecting landmarks outside its limits) was 
constructed (Fig. 10(a)) and the robot navigated through it in 
trajectories of roughly 70 m, with a maximum speed of 0.2 m/s. 
Initially the robot navigated without error correction, directly using 
odometry measurements to localize itself while building the metric 
mapping. Figure 10(b) shows the results of localization and metric 
mapping in this situation, where the errors accumulated during 
navigation can be clearly perceived through repetition and 
misalignment of structures and the inability of the robot to close the 
final loop and return to its starting position. The same path was 
then repeated using FastSLAM, and we tested the landmark 
selection method proposed by comparing it to the directly approach 
of using all features detected as landmarks. Figures 10(c) and 10(d) 
show the results of localization and metric mapping along with 
landmarks detected during navigation (gray circles plotted in the 
plane of navigation) using the direct and the proposed method, 
respectively. The structures in the environment were in no way 
modified prior to the navigation, and although there was no change 
in the environment during navigation, people could walk freely 
outside the established corridors. This behavior creates spurious 
landmarks that will not be matched in posterior images, providing a 
way of testing our method's landmark elimination process.   

It is possible to see a substantially larger amount of landmarks 
in the direct approach compared to the landmark selection method 
proposed. These landmarks were also much more spread throughout 
the environment, while in the proposed method landmarks have a 
tendency of clustering in regions of high characterization according 
to SIFT. It is also possible to notice that in the direct approach there 
are a higher number of landmarks positioned over the robot's 
trajectory, indicating poor estimates.   

Also, the visual results of metric mapping show a better 
alignment and definition of corridors in the case where the proposed 
method was used, while some residual errors were maintained while 
using the direct approach. We attribute these residual errors to 
spurious landmarks and false matches caused by the large amount of 
data incorporated at each iteration. A larger amount of data also 
implies in a larger computational cost, which is reflected in the 
amount of time between image acquisition and information 
incorporation, when the robot navigates blindly in the environment 
and accumulates localization errors. Table 1 compares values 
regarding the use of each approach for landmark selection. 

 
Figure 8. Ideal triangulation with a single omnidirectional vision 
system camera. The robot navigated between points (x, y)1 and (x, y)2 
and observed the same landmark in the coordinates p1 and p2 of the 
images obtained at each instant. 

  
(a) Pioneer 3AT (b) Omnidirectional vision 

system 

Figure 9. Equipment used in the experimental procedure. 
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In fact, we see that the proposed method can process an 
omnidirectional image, obtaining the final landmark set in 
approximately 40% of the time necessary when using the features 
directly as landmarks. During navigation the proposed method was 
capable of analyzing 251 images, while the direct approach could 
process only 104, indicating a much higher period of blind 
navigation and a longer distance of navigation between matches, 

compromising landmark recognition and increasing error 
accumulation between each update stage of FastSLAM.   

Each image provided a smaller number of landmarks in the 
proposed method, due to the features discarded as not part of any 
object. Logically, the amount of matches was also smaller, but 
proportionally it was able to match a higher amount of landmarks 
(53.56% against 19.46% on the direct approach). This indicates a 
higher percentage of information used over information obtained, 
characterizing higher efficiency in landmark selection. There are no 

statistics for number of landmarks correctly matched, since the 
features were obtained automatically, but the metric mapping results 
shown earlier indicate a better matching in the proposed method due 
to elimination of residual errors. Again, no quantitative statistics are 
provided for the localization estimates in different situations, 
because there is no ground-truth data for comparison (the navigation 
took place indoors, where there was no GPS signal).  

Conclusion 

We presented here a method of landmark selection and 
clustering for on-line SLAM in omnidirectional images that does not 
require any prior knowledge of the environment, and thus can be in 
theory used equally in any situation. We use image properties such 
as pixel distance and contrast to create constraints that cluster 
features that are used by the SLAM algorithm as landmarks. This 
approach decreases computational cost by eliminating non-relevant 
landmarks and increases reliability of matches by corresponding 
groups of landmarks instead of individually. Results show 
improvement both in landmark selection efficiency and in quality of 
localization and mapping estimates when compared to a common 
approach of using all features and landmarks. The restraints used to 
cluster features, along with the threshold for landmark promotion, 
may be changed as to increase performance in different 
environments and with different camera geometries. Future work 
will include larger loop-closures, which should not pose as a big 
challenge since landmarks are uniquely identified by its features, 
without any spatial constraint. Also, other sensors will be included, 
such as laser and IMU, as a way to improve results in situations 
where visual information is not enough to solve the SLAM problem. 
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