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Surface quality of the machined parts is one of mhest important product quality

indicators and one of the most frequent customeuirements. The average surface
roughness (Ra) represents a measure of the sudfaakty, and it is mostly influenced by
the following cutting parameters: the cutting spetite feed rate, and the depth of cut.
Quantifying the relationship between surface rowggmand cutting parameters is a very
important task. In this study regression analysiswsed for modelling and optimization
of the surface roughness in dry single-point tugniof the alloyed steel, using coated
tungsten carbide inserts. The experiment has besigued and carried out on the basis of
a three-level full factorial design. The linearetlyuadratic and the power (non-linear)

mathematical models were selected for the analy®istained results are in good

accordance with the experimentally obtained datanficming the effectiveness of
regression analysis in modelling and optimizatidnsarface roughness in the turning
process. The general conclusion is that the surfaoghness has a clear downward trend

with the cutting speed increase and decrease ifetb@ rate and the depth of cut.
Keywords: turning, surface roughness, regression analygsinuzation

Introduction

The key demands in the case of cutting technologyude:
reducing component size and weights, enhancincacairfjuality,
tolerances and manufacturing accuracies, reduciogtsc and
reducing batch sizes (Byrne, Dornfeld and Denk2683).

The surface roughness of the machined parts iobtlee most
significant product quality characteristic. It is key factor in
evaluating the quality of a product and has thatgimportance on
the functional behaviour of the machined parts xpl@tation as
well as manufacturing costs.

The lack of good surface quality fails to satisfiecf the most
important technical requirements for mechanicaldpots, while
extremely high level of surface quality causes &ighroduction
costs and lower overall productivity of cutting ogt#@ns.

The desired surface quality is a critical constramselecting
the optimal cutting parameters in the productioncpss (Jacobs,
Jacob and Kochan, 1972; Silva, Saramago and MacHz@hg;
Pasam et al., 2010). Hence, it is of great impeeaao quantify the
relationship between surface roughness and cutbngitions. Tool
wear phenomenon, studied by a large number of tistigndirectly
influences the quality of the machined surface éResal., 2010).
The surface roughness also influences the tribcébgi
characteristics, the fatigue strength, the corrosesistance and the
aesthetic appearance of the machined parts.

On the other side, the surface finish in the tugngmocess is
influenced by a number of factors, such as: cutsipged, feed rate,
depth of cut, material characteristics, tool geayestability and
stiffness of the machine tool — cutting tool — waidce system,
built-up edge, cutting fluid, etc. Therefore, tldeal surface quality
could not be achieved even in the ideal cutting emdronmental
conditions.

The surface roughness always refers to deviatiam fthe
nominal surface. The actual surface profile is shperposition of
the errors of the form, waviness and roughness.

There are various parameters used to evaluate uHface
roughness. In the present research the averagaceurbughness
(Ry), also known as the Centerline Average (CLA), welected for
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the characterization of the surface finish in tb#iog process. It is
the most widely used surface finish parameter dlugtry.

The turning process is one of the most fundameatabng
various cutting processes, and it is also the napglied metal
removal operation in the real manufacturing envinent.

In order to achieve the best possible surface noeggh many
machine tool operators rely on their own experieacé/or the
guidelines given in the machine tool manuals anthaoks. It has
also been observed that experienced machine toslatmps use
trial-and-error approach, i.e. they estimate sarfajality by
visually comparing the actual surfaces on the nrethipart with
those on the measuring calibrator.

Benardos and Vosniakos (2003) give a general revigw
predicting the surface roughness in machining. Adscomprehensive
overview of the optimization techniques in the rhetdting processes
is presented by Mukherjee and Ray (2006). The mhatation of
(near) optimal cutting conditions, using convergiorand non-
conventional optimization techniques, as well apriocess parameter
relationship modelling, are described in detail.

Thangavel and Selladurai (2008) developed a mattiesha
model to study the effect of cutting parameters tba surface
roughness using the response surface methodold&@M)RAfter the
regression analysis and the variance analysisadt found that the
model is adequate and that all the main cuttingupaters have a
significant impact on the surface roughness.

Choudhury and El-Baradie (1997) utilized the
methodology in order to develop the surface rougbmeodel in dry
turning of high-strength steel. Also, Sahin and &ot (2005)
employed RSM for predicting the surface roughnestuining of
mild steel with the coated carbide tools.

Arbizu and Perez (2003) employed a classic expeatahe
technique design to determine surface roughnesthenturning
process. The second-order mathematical model wasted! It was
observed that the feed rate and the depth of cué megative
influences on the average surface roughnBgs While there is an
optimum cutting speed, which provides a minimunttaf average
surface roughness value.

Cakir et al. (2009) investigated the influencestid cutting
parameters (the feed rate, the cutting speed andepth of cut) and
the two-coated carbide inserts on the surface noesgh in the
turning process. The various mathematical modele weveloped,
using a large experimental data set. It was poioigdthat lower
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values of the surface roughness are achieved whesloging a
PVD coated (TiAIN) insert
(TICN+AI,O5+TiN) insert.
Davim (2001) and Davim et al. (2009) investigated tutting
parameter effects on the surface finish in steslitg using the
design of the experiment and the artificial neuratwork. For the
purpose of experimentation, the authors selectesl standard
L27(33) orthogonal array, based on the Taguchi mexpmatal
design. The multiple linear regression and the etager back-
propagation neural network models were developedtuady the

effects of the cutting conditions on the surfaaggfmess parameters

Dejan Taniki¢ and Velibor Marinkovi¢

average surface roughned’,)(was chosen for a target function

instead of a CVD coated(response, output). Since it is obvious that tHeces of the factors

are non-linear, an experiment with factors at thesels was set up
(Table 1).

Table 1. Cutting factors and their levels.

Factor levels

Cutting factor Symbol Unit Level 1 Level 2 Level 3

(Low) (Middle) (High)

Cutting speed V (X1) (m/min) 80 110 140
Feed rate f (X2 (mm/rev) 0.071 0.196 0.321

, Depth of cut a (Xs) (mm) 0.5 1.125 2.0

(R, andR). The good agreement exists between the experahert

and predicted results obtained from these models.
In addition to the abovementioned, other methodekgre
being employed for predicting the surface roughnessh as

Taguchi method (Kopa Bahor and Soko¥j 2002; Hascalic and
Caydas, 2008), artificial neural networks (Katagé09; Ozel and

Karpat, 2005; Lu, 2008; Marinka¥iand Taniké, 2011), neuro-
fuzzy systems (Jiao et al., 2004; Kirby and Ch&Q72 Tanike et
al., 2010), genetic algorithms (Chen and Chen, 2003 and Balic,
2003), and artificial intelligence or soft compugtirtechniques
(Samanta, Erevelles and Omurtag, 2009).

Research in this paper refers to dry turning precksgeneral,
machining without the use of any cutting fluid (tod and
lubricant) is nowadays popular due to the concemeaming the
safety of the environment and the health protec(®reejith and

Ngoi, 2001), (Klocke and Eisenblaetter, 1997). Besieverything

else, the implementation of dry machining includesn-pollution

of the atmosphere and no residue on the chip, wtacises reduced

disposal and cleaning costs. It is harmless to akid it is allergy
free. Moreover, it offers cost reduction in machii

Nomenclature

a = depth of cut, mm
b = (kx 1) vector of the first-order regression ffagents
B = (k x k) symmetric matrix, whose main diagonehetnts

are the pure quadratic coefficients, while off-diagl
elements are one-half mixed quadratic coefficients

o = free term (parameter) of the mathematical model

= linear terms

= quadratic terms

= interaction terms

= feed rate, mm/rev

= correlation coefficient

= average surface roughnegsn

= predicted average surface roughnegs

= cutting speed, m/min

w;} = canonical independent variables (factors)

= (k x 1) vector of the independent variables

= coded variables (factors)

= natural variables

= estimated response

= estimated natural response

Ye = measured response

Greek Symbols

| §1 = absolute percentage error, %
£ = experimental error
{A} = eigenvalues (canonical coefficients)
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Experimental Work

The factor ranges were chosen with different detéor each
factor, aiming at the widest possible range of @ajuin order to
have a better utilization of the proposed modelsth& same time,
the characteristics of the mechanical system andufaeturer's
recommendations are taken into account.

Table 2. Machining system, workpiece and measuring equipment.

Machine tool  Production lathe PA-C-30 (Potisje-Ada), Three-phasekW
induction electric motor, Speed range-2000 rpm, Longitudinal feed
rate range 0.049.16 mm/rev, Max. workpiece diameter 600 mm,
Distance from chuck to the tail stock 1500 mm
Cutting tool CNMG 12 04 08 coated tungsten carbide inserts (8knd
Coromant), PCLNR 32 25 P12 tool holder (Sandvikdbuoant)
Workpiece  (.4732 (AISI designation 4140) cold rolled steelg@tical
composition: 0.40% C, 1.00% Cr, 0.20% Mo, 0.90% M@5@6 Si,
0.03% P, 0.10% S; Ultimate tensile strength 1050 Ninktardness
205 BHN; Workpiece diameter 45 mm, Workpiece ler@fib mm
Cutting fluid Dry turning
Measuring Surftest SJ-301 (Mitutoyo) surface profilometer t-©ff length
equipment 0.8 mm; MBS-9 optical microscope

Production conditions used in the experiment arewshin
Table 2. All of the trials have been conducted tom game machine
tool, with the same cutting tool type and the saotieer cutting
conditions. Measuring equipment and surface rougghmeport are
shown in Fig. 1.

£55
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<
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Figure 1. Measuring equipment (a) and surface roughness report (b).

Profile of the machined surface for different auitiregimes is
presented in Fig. 2. Part of the experimental tesulhich refers to

The parameters (factors) considered in the preseper are: the the surface finish in the single-point turning mss, is analysed in

cutting speed\(), the feed ratef( and the depth of cu). The
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Figure 2. Profile of the machined surface for cutting regimes:
a)V =110 m/min,a=1.25 mmf = 0.321 mm/rev
b) V=110 m/min,a= 1.25 mm,f = 0.196 mm/rev
¢)V =110 m/min,a= 1.25 mmf = 0.071 mm/rev

A design matrix was constructed on the basis ofsthected
factors and factor levels (Table 3). The methodaafing the cutting
factors is explained in the following chapter.

Table 3. Experimental design and results.

— Natural factor Coded factor  Response
[
2 A\ f a X1 X2 Xa Ra (um)
1 80 0.071 0.50 1 1 1 3.60
2 80 0.071 125 1 1 2 3.61
3 80 0.071 2.00 1 1 3 3.96
4 80 0.196 0.50 1 2 1 4.30
5 80 0.196 1.25 1 2 2 4.955
6 80 0.196 2.00 1 2 3 5.92
7 80 0.321 0.50 1 3 1 5.13
8 80 0321 1.25 1 3 2 5.28
9 80 0.321 2.00 1 3 3 5.98
10 110 0.071 0.50 2 1 1 2.32
11 110 0.071 1.25 2 1 2 2.745
12 110 0.071 2.00 2 1 3 3.44
13 110 0.196 0.50 2 2 1 2.55
14 110 0.196 1.25 2 2 2 3.405
15 110 0.196 2.00 2 2 3 3.33
16 110 0.321 0.50 2 3 1 3.73
17 110 0321 1.25 2 3 2 4.005
18 110 0.321 2.00 2 3 3 4.23
19 140 0.071 0.50 3 1 1 1.13
20 140 0.071 1.25 3 1 2 2.79
21 140 0.071 2.00 3 1 3 3.08
22 140 0.196 0.50 3 2 1 1.85
23 140 0.196 1.25 3 2 2 2.835
24 140 0.196 2.00 3 2 3 3.27
25 140 0.321 0.50 3 3 1 3.52
26 140 0.321 125 3 3 2 3.605
27 140 0.321 2.00 3 3 3 3.66

The selected design matrix was a full factorialiglesonsisting
of 27 rows of coded/natural factors, correspondm@ number of
trials. This design provides a uniform distributioh experimental
points within the selected experimental hyper-spacel the
experiment with high resolution. The experiment veamducted
using a new set of coated tungsten carbide insereventing

cutting process and neglects the effects of maoggss factors, as
well as environment factors (noise).

Hence, various theoretical models that have beepgsed are
not accurate enough and can be applied only teiteli range of
processes and cutting conditions. For these reasonsst
researchers mainly use the empirical research.

The regression analysis technique, based on theriexgntal
data, is a powerful tool for modelling and analgsieal processes,
whose nature and behaviour cannot be explained) astheoretical
approach. Many researchers use this method sualtgsefvarious
fields.

Therefore, with the efficient regression analysésearchers
cannot only rely on their perspicacity and intuitidbut must have a
relevant knowledge of the researched phenomenon taed
experimental techniques.

Many experiments involve studying the effects ofrenfactors.
In these cases, generally, the design of experifioi) is the most
efficient type of experiment, especially in relatito the traditional
one-factor-at-a-time experiment. The selection of paoper
experimental design is essential for reducing tkgeemental cost
and time.

The success of a regression analysis depends ylaogelthe
choice of appropriate mathematical models. Manydistl have
shown that the choice of mathematical models in fren of
polynomials provides the most appropriate and &ffec
approximation of the experimental data. These heefollowing
mathematical models:

a) linear mathematical model

k
Y=Yeme=tp+ Y X (1a)
i=1
b) quasi-linear mathematical model
k k-1 k
Y=YemETbp+ Y B+ Y D xx (1b)
i=1 i=1j=i+l
¢) non-linear (quadratic) mathematical model
k k k-l k
Y=Ye=e=t+ Y B+ Y B F+ Y D xx (10)
i=1 i=1 i=1j=i+1

wherey is the estimated responsg,is the measured respongds

possible mistakes caused by using a worn tool.aMeeage surface the independent random variable (experimental Ermeormally
roughness valuesRf), shown in Table 3, are the average values Qfjstriputed with a mean of zero and a constaniavag ofd?, by is

three measurements.
Regression Analysis

Brief overview

The cutting processes based on the formation antvieg
chips from the workpiece surface are very complex astill
incompletely explored phenomenon.

The extraordinary complexity of the mechanicalbdtogical,
and thermodynamical phenomena in the cutting zoes dot allow
to determine a reliable and comprehensive thealetimdel, which
could explain the essence and the mechanism offohipation and
the shaping of surface roughness.

The theoretical approach is always based on siicgtibns and
idealizations. It does not take into account angerfections of the

J. of the Braz. Soc. of Mech. Sci. & Eng.
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the free term (parameter) of the mathematical modebre the
linear termsfy; are the quadratic termis; are the interaction terms,
and k is the number of the independent variables (fagtofhe
parameters of the mathematical model can only bés8tally
estimated on the bases of the experimental results.

The relationship between dependent variable (resgoland
independent variables (factors) can also be expdessthe form of
the multiple power function:

k
Y =co X2 XDz X =¢y I‘J XD (2a)
1=

whereY is the estimated natural respongeandb; are constants to
be estimated.
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Applying the logarithmic transformation, the nondar
equation (2a) can be converted into the followingdr equation:

k
INY =Incy +byIn Xy +...+b In X =Inco+Zq In X;
i=1

(2b)

When the variables in logarithmic scale in Eq. (28 replaced
with the new variableg; = InY, x = InX; (b = Incy), then it can be
rewritten in a linear form, defined by Eq. (1a)tHe multiple power
function includes first-order factor interactionthen Eq. (2b)
represents the quasi-linear mathematical modehettby Eq. (1b).
But, in this particular case, it is not necessavarinkovi¢ and
Lazarevg, 2010).

In general, the mathematical models may also ircligher-
order factor interactions. Since the impact of kigbrder factor
interactions is usually negligible, these termsthae# mathematical
model may be omitted. On the other hand, in masggaadding the
high-order polynomial terms does not really imprabe fit, but
increases the complexity of the mathematical modbus, it is
useful to try fitting using a lowest-order polyn@hthat adequately
describes the system/process.

The statistical method often used to estimate thknown
parameters in a mathematical model is the methéebst squares.

The number of factor levels within the selected geans
theoretically arbitrary, whereas practice confitimat it is sufficient
to choose: two levels for (quasi) linear mathenahtimodel, and
three levels for non-linear (quadratic) mathematicadel.

Since input factors may be various physical va(tesperature,
pressure, volume, velocity, etc.) it is useful tsfprm their coding.
There are two ways of coding the independent visaffactors) on
three levels. It is accomplished by means of ttengiorming
equations:

a) forlevels (-1, 0, +1):

Xi = Xi min

X =2 -1; (i=21k) (3a)
! Xi max = Ximin
b) for levels (1, 2, 3):
% ZZMH; (i=1k) (3b)
Ximax = Ximin

wherex; are coded variables (factor®),are natural variables, from

Ximax t0 Ximin,» in the design factor space of interest to th
experimenterXnax andXyi, are the highest and the lowest values OFn

the natural variableX; respectively, an#l is the number of the input
factors.

The most useful application for DoE is to optimize
process/system. The process optimization is asswredinimizing
or maximizing an objective function regarding theeg (in)equality
constraints. The second-order mathematical modglbwawritten in
matrix notation as following (Montgomery, 2001):

J=by +x'b+x'Bx

wherex is a (k x 1) vector of the independent variabkegs a (k x
1) vector of the first — order regression coeffitgeandB is a (k x k)
symmetric matrix whose main diagonal elements &e pure
quadratic coefficients, while off-diagonal elemergse one-half
mixed quadratic coefficients.
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The stationary (optimal) point is obtained from tledowing
relation:

1_-
x0=—551b (5)
Thereby it implies that the optimum conditions dfjextive

function are met.
Furthermore, by substituting Eq. (5) into Eq. (W& tpredicted
response at the optimal point can be found as:

9o:bo+%><'ob (6)

For the characterization of the surface responsé(o) it is
necessary to translate the selected mathematicalelmoto a
canonical form. Canonical transformation transtlesorigin in the
stationary point and rotates the coordinate axisn&ich with the
main axes of the fitted surface response.

Canonical form of quadratic mathematical model dam
expressed as follows:

k
9-J0= Y AW (7)
£

where {m} are the canonical independent variables (factars)l
{ A} are their eigenvalues (canonical coefficients).

Canonical coefficients are the roots of the charéstic
equation:

[B-A1|=0 (8)

Checking the correctness of calculation is doneltcg to:

k k

Z/‘i :Zhi ©)

Canonical equations contain no linear effects deractions,
which makes them more suitable for the analysighef surface
response. The geometric form of the response sgfiacdetermined
by the stationary point, algebraic signs, and ntagess of their own
values (Novik and Arsov, 1980).

If the eigenvalues are all negative, the responstase has a
aximum; if they are all positive, the responsefeste has a
minimum; if they have mixed signs, the responsdaser has a
saddle point.

At least one eigenvalue equal to zero (or closzeto) indicates
the presence of a "ridge" in the response surface.

It should be noted that optimization of the reateyn/process
makes sense in a limited space of independentblesigfactors).
The constraints, in terms of the coded variables,maost common
specified in the form of (in)equations as:

Ximin €% < Ximax; (i =1k) (10)
where Xmin and Xmax are the lowest and the highest values of the
independent variableg, respectively.

The benefits of using optimization methodologies erov
handbook recommendations were evaluated by mapgamdsers.

ABCM
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Figure 3. Relationship between the average surface roughness and the

Ra= f5(V), for a[0.5, 2.Q andfl[0.071, 0.32]L

cutting parameters for different regression equations.
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Application of the regression analysis

The linear, the quadratic and the non-linear matimal
models were selected for the analysis in this papee parameters
of Eqg. (1a), Eq. (1c), and Eqg. (2b) have been eggthby means of
the least-square method, using Matlab software ggekIn this
way, the following multiple regression equationgevebtained:

= 31704~ 09442x, + 06925x, + 04856%, (11a)
= 38443 28106 + 10362, +102x5 + 04982¢ + 00542 — (L1b)
- 00811 — (11964 X, + (D565 X — OL61%; X5

= 62950~ 09835x + 02647x, + 02393, (11c)

The coding of the process factors was carried oooraing to
the Eq. (3b). The fitted multiple regression equradiin terms of the
natural levels of the cutting speed, the feed atd, the depth of cut
may be obtained by substituting the transforming @4) into the
Eqg. (11). These equations are not presented ip#psr.

The graphs from Fig. 3 clearly show that the quicira
mathematical model most accurately approximateexperimental
results.

The preliminary information of the quantitative aqdalitative
impact on the objective function (response) of aadividual factor
in the regression equations can be obtained frempatameters sign
and magnitude. The negative sign for the paramtéhe cutting
speed shows that the surface roughness improvasthétincrease
in the cutting speed. The positive sign for theapaaters of the feed
rate and the depth of cut indicates that the sarfemughness
deteriorates with the increase in these two facteusthermore, the
given regression equation and Pareto chart (Figudpest that the
dominant process factor is the cutting speed, wthiéeeffects of the
feed rate and the depth of cut are considerablylema@he factor
interactions have the least influence on the camsll problem. In
order to take into account the contribution frome tffiactor
interactions, these terms were not neglected.

-
= B

|

Figure 4. Pareto chart.

The criterion used to estimate the efficiency abditg of the
mathematical model to predict average surface noesgh could be
the absolute percentage errord!, which is defined by equation:

January-March 2012, Vol. XXXIV, No. 1/ 45
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R. — Ry The accuracy of any empirical model can also bedynmeans

|5||= —aL__2al1100(%) (12) of statistical parameters, for example, correlatimefficient. The
Rai correlation coefficientR) is a statistical measure of the strength of

correlation between the predicted and measuredesalkor the

where éai and R,; represent the predicted and measured averaﬁg”em problem, the following result is obtain&d 0.956 (Fig. 5).

surface roughness for i-th trial, respectively.
The average surface roughness calculated accotdirthe

Eq. (11b), and errors calculated according to tlge @2) are a=0.5 [mm]
given in Table 4. 60 e
Table 4. Experimental and predicted results and absolute percentage error.
= Coded factor Response Error =
S L |8 el 2
1 1 1 1 3.60 3.3369 7.3083 4
2 1 1 2 3.61 4.0086 11.0416
3 1 1 3 3.96 4.5181 14.0934
4 1 2 1 4.30 4.2558 1.0279 031
5 1 2 2 4.955 4.7658 3.8184 ) g
6 1 2 3 592 51136 13.6216 140
7 1 3 1 5.13 5.2841 3.0039 . i 10
8 1 3 2 5.28 5.6324 6.6742 95
9 1 3 3 5.98 5.8185 2.7007 0.071 ;
10 2 1 1 2.32 1.9577 15.6164 f[mmrev] 80 v [m/mm]
11 2 1 2 2.745 2.6861 2.1457
12 2 1 3 3.44 3.2523 5.4564 .
13 2 2 1 2.55 2.7570 8.1176 e o : ’
14 2 2 2 3405  3.3237 2.3877 JIRR a=1.25 [mm]
15 2 2 3 3.33 3.7282 11.9580 G : L A
16 2 3 1 3.73 3.6657 1.7239
17 2 3 2 4.005 4.0707 1.6404
18 2 3 3 4.23 4.7986 13.4421
19 3 1 1 1.13 1.5747 39.3540
20 3 1 2 2.79 2.3598 15.4194
21 3 1 3 3.08 2.9827 3.1591
22 3 2 1 1.85 2.2544 21.8595
23 3 2 2 2.835 2.8778 1.5097
24 3 2 3 3.27 3.3390 2.1101
25 3 3 1 3.52 3.0435 13.5369
26 3 3 2 3.605 3.5052 2.7684
27 3 3 3 3.66 3.8047 3.9536

The mean absolute percentage er{drE 850[%] e

110

0.133 a5
f [mm/rev] 0.071 g0 V [m/min]
Best Linear Fit: A= ({0931 T + [0.271)
a=2.C[mm] ’
E
=
5 4
=
g 3
o
e
o 2 =k
o T P .- S A A 0.321 ;
o 140
"""""""""""""""""""""""" 110
o Data Points 0.133 _
) SR e e Best Linear Fit F---- _ f [mm/rev] 0071 g0 V [m/min]
15Le JI """" J “A=T : Figure 6. Effects of the cutting parameters on the surface roughness.
1 : 5 i i 5 Similar results were obtained by other researcfiérangavel and
1 2 3 4 3 6 Selladurai, 2008), for similar cutting conditiofi&ie surface quality in
Ra measuredim] turning is very sensitive to any change in cuttranditions. For
Figure 5. Performance of the quadratic mathematical model. example, changing of the cutting tool produces feeréint surface

roughness even when all the other cutting conditremain the same
(Cakir, Ensarioglu and Demirayak, 2009).
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The optimization problem for the given turning pges can be
mathematically stated as follows: find the vectdr a@utting

Cakir, M.C., Ensarioglu, C., and Demirayak, |., 200Mathematical
Modeling of Surface Roughness for Evaluating théed&$ of Cutting
Parameters and Coating MaterialJournal of Materials Processing

factorsxy = (xq, X X3) [ R®, which minimizes the objective function technologyVol. 209, No. 1, pp. 102-109.

y= f(x,%,%s) (EQ. (11b)) subjected th< x < 3.

The surface roughness may continuously improve wfité
increase in the cutting speed, up to certain l&eyond this critical
level, further increase in the cutting speed widtatiorate the
surface roughness (Sundaram and Lambert, 1981Yyefbine, in
many cases there is an optimal value of the cutipged, which
provides a minimum value of the surface roughnkss.confirmed
by the results of research of many authors (Arlaizd Perez, 2003;
Karayel, 2009).

In this particular case, Eq. (5) and Eqg. (6) give:

Xo = (37086,16918,55489 , Y= 3744.

Obviously, the optimal point
experimental space. From Fig. 3 and Fig. 6, itlmaroncluded that
the surface roughness has a clear downward tretidthe cutting
speed increase and decrease in the feed rate amtgpth of cut. It
can be shown that there is no global optimum ig taise, i.e. this is
the so called ridge system.

When it comes to optimization problem with consttsj the
conditional optimum is located at one of the cquoesling
boundary of ranges of cutting factors.

According to the above described procedure, tréinglahe
coded in the natural factors givesXy= (@364,007105),

Yo = Ry = 1568.
By using Eq. (8), the following eigenvalues are aiiéd:

Chen, M.-C., and Chen, K.-Y., 2003, "Optimizatiof Multipass
Turning Operations with Genetic Algorithms: a Notelternational Journal
of Production Resear¢ivol. 41, No. 14, pp. 3385-3388.

Choudhury, ILA. and El-Baradie M.A., 1997, "Surfaéoughness
Prediction in the Turning of High-strength Steel Bgctorial Design of
Experiment" Journal of Materials Processing Technolodfol. 67, Iss. 1-3,
pp. 55-61

Cus, F., and Balic, J., 2003, "Optimization of GhgtProcess by GA
Approach”, Robotics and Computer Integrated Manufacturingpl. 19,
Iss. 1-2, pp. 113-121.

Davim, J.P., 2001, "A Note on the DeterminationQytimal Cutting
Conditions for Surface Finish Obtained in Turningsing Design of
Experiments"Journal of Materials Processing Technoloyol. 116, Iss. 2-
3, pp. 305-308.

Davim, J.P., Gaitonde, V.N., and Karnik, S.R., 2008vestigations
Into the Effect of Cutting Conditions on SurfaceuBbness in Turning of

is outside of the give Free Machining Steel by ANN ModelsJpurnal of Materials Processing

TechnologyVol. 205, Iss. 1-3, pp. 16-23.

Hascalic, A., and Caydas, U., 2008, "Optimizatiofi Burning
Parameters for Surface Roughness and Tool Life Basethe Taguchi
Method", International Journal of Advanced Manufacturing fieology
Vol. 38, No. 9-10, pp. 896-903

Jacobs, H.J., Jacob, E., and Kochan, D., 1972 ni8ms-optimierung"
(in German), VEB Verlag Technik, Berlin, Germang, [&

Jiao, Y., Shuting L., Pei Z.J., and Lee E.S., 20044zzy Adaptive
Networks in Machining Process Modeling: Surface gtmess Prediction
for Turning Operations"”, International Journal of Manufacturing
ResearchVol. 44, Iss. 15, pp. 1643-1651.

Karayel, D., 2009, "Prediction and Control of SagaRoughness in
CNC Lathe Using Artificial Neural Network"Journal of Materials
Processing Technologyol. 209, Iss. 7, pp. 3125-3137.

Kirby, E.D., and Chen, J.C., 2007, "Developmentaofruzzy-Nets-

4 = « 012,051,008). These eigenvalues satisfy Eq. (9). Alsogased Surface Roughness Prediction System in Tyr@perations”,

A3 =0 indicates that the considered system is reallggersystem.

Conclusion

The aim of this work was to investigate the effedtthe cutting
parameters (the cutting speed, the feed rate andehth of cut) on
the average surface roughness, during the dryngraf the alloy
steel, using coated tungsten carbide inserts. Theudning is safe
for the environment (atmosphere, water) and healthwell as
cheaper. Therefore, it is useful to analyse theceffof cutting
conditions on the surface quality in dry turning.

In the first phase of this work, surface roughngas measured
using the surface profilometer, which gives a re#dy good
indication of the measured roughness. The relatipgsamong the
inputs and corresponding outputs are establisteed the measured
data, as well as the trends of surface roughneasgatg with
cutting regimes changes.

The modelling and the optimization of the experitatin
obtained data were performed using the regressialysis. In
general, the results of the modelling are in gogt@ment with the
experimentally obtained data.
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