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Modelling and Optimization of the 
Surface Roughness in the Dry 
Turning of the Cold Rolled Alloyed 
Steel Using Regression Analysis 
Surface quality of the machined parts is one of the most important product quality 
indicators and one of the most frequent customer requirements. The average surface 
roughness (Ra) represents a measure of the surface quality, and it is mostly influenced by 
the following cutting parameters: the cutting speed, the feed rate, and the depth of cut. 
Quantifying the relationship between surface roughness and cutting parameters is a very 
important task. In this study regression analysis was used for modelling and optimization 
of the surface roughness in dry single-point turning of the alloyed steel, using coated 
tungsten carbide inserts. The experiment has been designed and carried out on the basis of 
a three-level full factorial design. The linear, the quadratic and the power (non-linear) 
mathematical models were selected for the analysis. Obtained results are in good 
accordance with the experimentally obtained data, confirming the effectiveness of 
regression analysis in modelling and optimization of surface roughness in the turning 
process. The general conclusion is that the surface roughness has a clear downward trend 
with the cutting speed increase and decrease in the feed rate and the depth of cut. 
Keywords: turning, surface roughness, regression analysis, optimization 
 

Introduction 1 

The key demands in the case of cutting technology include: 
reducing component size and weights, enhancing surface quality, 
tolerances and manufacturing accuracies, reducing costs and 
reducing batch sizes (Byrne, Dornfeld and Denkena, 2003). 

The surface roughness of the machined parts is one of the most 
significant product quality characteristic. It is a key factor in 
evaluating the quality of a product and has the great importance on 
the functional behaviour of the machined parts in exploitation as 
well as manufacturing costs. 

The lack of good surface quality fails to satisfy one of the most 
important technical requirements for mechanical products, while 
extremely high level of surface quality causes higher production 
costs and lower overall productivity of cutting operations. 

The desired surface quality is a critical constraint in selecting 
the optimal cutting parameters in the production process (Jacobs, 
Jacob and Kochan, 1972; Silva, Saramago and Machado, 2009; 
Pasam et al., 2010). Hence, it is of great importance to quantify the 
relationship between surface roughness and cutting conditions. Tool 
wear phenomenon, studied by a large number of scientists, directly 
influences the quality of the machined surface (Rosa et al., 2010). 
The surface roughness also influences the tribological 
characteristics, the fatigue strength, the corrosion resistance and the 
aesthetic appearance of the machined parts. 

On the other side, the surface finish in the turning process is 
influenced by a number of factors, such as: cutting speed, feed rate, 
depth of cut, material characteristics, tool geometry, stability and 
stiffness of the machine tool – cutting tool – workpiece system, 
built-up edge, cutting fluid, etc. Therefore, the ideal surface quality 
could not be achieved even in the ideal cutting and environmental 
conditions.   

The surface roughness always refers to deviation from the 
nominal surface. The actual surface profile is the superposition of 
the errors of the form, waviness and roughness. 

There are various parameters used to evaluate the surface 
roughness. In the present research the average surface roughness 
(Ra), also known as the Centerline Average (CLA), was selected for 
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the characterization of the surface finish in the cutting process. It is 
the most widely used surface finish parameter in industry. 

The turning process is one of the most fundamental among 
various cutting processes, and it is also the most applied metal 
removal operation in the real manufacturing environment. 

In order to achieve the best possible surface roughness many 
machine tool operators rely on their own experience and/or the 
guidelines given in the machine tool manuals and handbooks. It has 
also been observed that experienced machine tool operators use 
trial-and-error approach, i.e. they estimate surface quality by 
visually comparing the actual surfaces on the machined part with 
those on the measuring calibrator. 

Benardos and Vosniakos (2003) give a general review of 
predicting the surface roughness in machining. Also, a comprehensive 
overview of the optimization techniques in the metal cutting processes 
is presented by Mukherjee and Ray (2006). The determination of 
(near) optimal cutting conditions, using conventional and non-
conventional optimization techniques, as well as in-process parameter 
relationship modelling, are described in detail. 

Thangavel and Selladurai (2008) developed a mathematical 
model to study the effect of cutting parameters on the surface 
roughness using the response surface methodology (RSM). After the 
regression analysis and the variance analysis, it was found that the 
model is adequate and that all the main cutting parameters have a 
significant impact on the surface roughness. 

Choudhury and El-Baradie (1997) utilized the same 
methodology in order to develop the surface roughness model in dry 
turning of high-strength steel. Also, Sahin and Motorcu (2005) 
employed RSM for predicting the surface roughness in turning of 
mild steel with the coated carbide tools. 

Arbizu and Perez (2003) employed a classic experimental 
technique design to determine surface roughness in the turning 
process. The second-order mathematical model was adopted. It was 
observed that the feed rate and the depth of cut have negative 
influences on the average surface roughness (Ra), while there is an 
optimum cutting speed, which provides a minimum of the average 
surface roughness value.  

Cakir et al. (2009) investigated the influences of the cutting 
parameters (the feed rate, the cutting speed and the depth of cut) and 
the two-coated carbide inserts on the surface roughness in the 
turning process. The various mathematical models were developed, 
using a large experimental data set. It was pointed out that lower 
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values of the surface roughness are achieved when employing a 
PVD coated (TiAlN) insert instead of a CVD coated 
(TiCN+Al2O3+TiN) insert. 

Davim (2001) and Davim et al. (2009) investigated the cutting 
parameter effects on the surface finish in steel turning using the 
design of the experiment and the artificial neural network. For the 
purpose of experimentation, the authors selected the standard 
L27(33) orthogonal array, based on the Taguchi experimental 
design. The multiple linear regression and the three-layer back-
propagation neural network models were developed to study the 
effects of the cutting conditions on the surface roughness parameters 
(Ra and Rt). The good agreement exists between the experimental 
and predicted results obtained from these models.  

In addition to the abovementioned, other methodologies are 
being employed for predicting the surface roughness, such as 
Taguchi method (Kopač, Bahor and Soković, 2002; Hascalic and 
Caydas, 2008), artificial  neural  networks (Karayel, 2009; Özel and 
Karpat, 2005; Lu, 2008; Marinković and Tanikić, 2011),  neuro-
fuzzy systems (Jiao et al., 2004; Kirby and Chen, 2007; Tanikić et 
al., 2010), genetic algorithms (Chen and Chen, 2003; Cus and Balic, 
2003), and artificial intelligence or soft computing techniques 
(Samanta, Erevelles and Omurtag, 2009).  

Research in this paper refers to dry turning process. In general, 
machining without the use of any cutting fluid (coolant and 
lubricant) is nowadays popular due to the concern regarding the 
safety of the environment and the health protection (Sreejith and 
Ngoi, 2001), (Klocke and Eisenblaetter, 1997). Besides everything 
else, the implementation of dry machining includes: non-pollution 
of the atmosphere and no residue on the chip, which causes reduced 
disposal and cleaning costs. It is harmless to skin and it is allergy 
free. Moreover, it offers cost reduction in machining. 

Nomenclature 

a = depth of cut, mm 
b = (k x 1) vector of the first-order regression coefficients 
B = (k x k) symmetric matrix, whose main diagonal elements 

are the pure quadratic coefficients, while off-diagonal 
elements are one-half mixed quadratic coefficients 

b0 = free term (parameter) of the mathematical model 
bi = linear terms 
bii = quadratic terms 
bij = interaction terms 
f = feed rate, mm/rev 
R = correlation coefficient 
Ra = average surface roughness, µm 

aiR̂   = predicted average surface roughness, µm 

V = cutting speed, m/min 
{wi} = canonical independent variables (factors) 
x = (k x 1) vector of the independent variables 
xi = coded variables (factors) 
Xi = natural variables 
y = estimated response 
Y = estimated natural response 
ye = measured response 

Greek Symbols 

δi  = absolute percentage error, % 
ε  = experimental error 
{λi} = eigenvalues (canonical coefficients) 

Experimental Work 

The parameters (factors) considered in the present paper are: the 
cutting speed (V), the feed rate (f) and the depth of cut (a). The 

average surface roughness (Ra) was chosen for a target function 
(response, output). Since it is obvious that the effects of the factors 
are non-linear, an experiment with factors at three levels was set up 
(Table 1). 

 

Table 1. Cutting factors and their levels. 

 
Cutting factor 

 
Symbol 

 
Unit 

Factor levels 
Level 1 
(Low) 

Level 2 
(Middle) 

Level 3 
(High) 

Cutting speed V (X1) (m/min) 80 110 140 
Feed rate f  (X2) (mm/rev) 0.071 0.196 0.321 

Depth of cut a (X3) (mm) 0.5 1.125 2.0 

 
The factor ranges were chosen with different criteria for each 

factor, aiming at the widest possible range of values, in order to 
have a better utilization of the proposed models. At the same time, 
the characteristics of the mechanical system and manufacturer's 
recommendations are taken into account. 
 

Table 2. Machining system, workpiece and measuring equipment. 

 
Production conditions used in the experiment are shown in 

Table 2. All of the trials have been conducted on the same machine 
tool, with the same cutting tool type and the same other cutting 
conditions. Measuring equipment and surface roughness report are 
shown in Fig. 1. 

 

 
Figure 1. Measuring equipment (a) and surface roughness report (b). 

 
Profile of the machined surface for different cutting regimes is 

presented in Fig. 2. Part of the experimental results, which refers to 
the surface finish in the single-point turning process, is analysed in 
this study. 

Machine tool Production lathe PA-C-30 (Potisje-Ada), Three-phase 7.5 kW 
induction electric motor, Speed range 20÷2000 rpm, Longitudinal feed 
rate range 0.04÷9.16 mm/rev, Max. workpiece diameter 600 mm, 
Distance from chuck to the tail stock 1500 mm  

Cutting tool CNMG 12 04 08 coated tungsten carbide inserts (Sandvik 
Coromant), PCLNR 32 25 P12 tool holder (Sandvik Coromant)  

Workpiece Č.4732 (AISI designation 4140) cold rolled steel; Chemical 
composition: 0.40% C, 1.00% Cr, 0.20% Mo, 0.90% Mn, 0.25% Si, 
0.03% P, 0.10% S; Ultimate tensile strength 1050 N/mm2, Hardness 
205 BHN; Workpiece diameter 45 mm, Workpiece length 250 mm 

Cutting fluid Dry turning 
Measuring 
equipment 

Surftest SJ-301 (Mitutoyo) surface profilometer, Cut-off length 
0.8 mm; MBS-9 optical microscope  
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Figure 2. Profile of the machined surface for cutting regimes: 

a) V = 110 m/min, a = 1.25 mm, f = 0.321 mm/rev 
b) V = 110 m/min, a = 1.25 mm, f = 0.196 mm/rev 
c) V = 110 m/min, a = 1.25 mm, f = 0.071 mm/rev 

 
A design matrix was constructed on the basis of the selected 

factors and factor levels (Table 3). The method of coding the cutting 
factors is explained in the following chapter. 
 

Table 3. Experimental design and results. 

T
ria

l Natural factor  Coded factor Response 
Ra (µµµµm) V f a  x1 x2 x3 

1 80 0.071 0.50  1 1 1 3.60 
2 80 0.071 1.25  1 1 2 3.61 
3 80 0.071 2.00  1 1 3 3.96 
4 80 0.196 0.50  1 2 1 4.30 
5 80 0.196 1.25  1 2 2 4.955 
6 80 0.196 2.00  1 2 3 5.92 
7 80 0.321 0.50  1 3 1 5.13 
8 80 0.321 1.25  1 3 2 5.28 
9 80 0.321 2.00  1 3 3 5.98 
10 110 0.071 0.50  2 1 1 2.32 
11 110 0.071 1.25  2 1 2 2.745 
12 110 0.071 2.00  2 1 3 3.44 
13 110 0.196 0.50  2 2 1 2.55 
14 110 0.196 1.25  2 2 2 3.405 
15 110 0.196 2.00  2 2 3 3.33 
16 110 0.321 0.50  2 3 1 3.73 
17 110 0.321 1.25  2 3 2 4.005 
18 110 0.321 2.00  2 3 3 4.23 
19 140 0.071 0.50  3 1 1 1.13 
20 140 0.071 1.25  3 1 2 2.79 
21 140 0.071 2.00  3 1 3 3.08 
22 140 0.196 0.50  3 2 1 1.85 
23 140 0.196 1.25  3 2 2 2.835 
24 140 0.196 2.00  3 2 3 3.27 
25 140 0.321 0.50  3 3 1 3.52 
26 140 0.321 1.25  3 3 2 3.605 
27 140 0.321 2.00  3 3 3 3.66 

 
The selected design matrix was a full factorial design consisting 

of 27 rows of coded/natural factors, corresponding to a number of 
trials. This design provides a uniform distribution of experimental 
points within the selected experimental hyper-space and the 
experiment with high resolution. The experiment was conducted 
using a new set of coated tungsten carbide inserts, preventing 
possible mistakes caused by using a worn tool. The average surface 
roughness values (Ra), shown in Table 3, are the average values of 
three measurements. 

Regression Analysis 

Brief overview 

The cutting processes based on the formation and removing 
chips from the workpiece surface are very complex and still 
incompletely explored phenomenon. 

The extraordinary complexity of the mechanical, tribological, 
and thermodynamical phenomena in the cutting zone does not allow 
to determine a reliable and comprehensive theoretical model, which 
could explain the essence and the mechanism of chip formation and 
the shaping of surface roughness.  

The theoretical approach is always based on simplifications and 
idealizations. It does not take into account any imperfections of the 

cutting process and neglects the effects of many process factors, as 
well as environment factors (noise). 

Hence, various theoretical models that have been proposed are 
not accurate enough and can be applied only to a limited range of 
processes and cutting conditions. For these reasons, most 
researchers mainly use the empirical research. 

The regression analysis technique, based on the experimental 
data, is a powerful tool for modelling and analysing real processes, 
whose nature and behaviour cannot be explained using a theoretical 
approach. Many researchers use this method successfully in various 
fields. 

Therefore, with the efficient regression analysis researchers 
cannot only rely on their perspicacity and intuition, but must have a 
relevant knowledge of the researched phenomenon and the 
experimental techniques. 

Many experiments involve studying the effects of more factors. 
In these cases, generally, the design of experiment (DoE) is the most 
efficient type of experiment, especially in relation to the traditional 
one-factor-at-a-time experiment. The selection of a proper 
experimental design is essential for reducing the experimental cost 
and time. 

The success of a regression analysis depends largely on the 
choice of appropriate mathematical models. Many studies have 
shown that the choice of mathematical models in the form of 
polynomials provides the most appropriate and effective 
approximation of the experimental data. These are the following 
mathematical models: 

a) linear mathematical model 
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b) quasi-linear mathematical model 
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c) non-linear (quadratic) mathematical model 
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where y is the estimated response, ye is the measured response, ε is 
the independent random variable (experimental error), normally 
distributed with a mean of zero and a constant variance of σ2, b0 is 
the free term (parameter) of the mathematical model, bi are the 
linear terms, bii are the quadratic terms, bij are the interaction terms, 
and k is the number of the independent variables (factors). The 
parameters of the mathematical model can only be statistically 
estimated on the bases of the experimental results. 

The relationship between dependent variable (response) and 
independent variables (factors) can also be expressed in the form of 
the multiple power function: 
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where Y is the estimated natural response, c0 and bi are constants to 
be estimated. 
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Applying the logarithmic transformation, the non-linear 
equation (2a) can be converted into the following linear equation: 
 

∑
=

+=+++=
k

i

iikk XbcXbXbcY
1

0110 lnlnln...lnlnln       (2b) 

 
When the variables in logarithmic scale in Eq. (2b) are replaced 

with the new variables, y = lnY, xi = lnXi (b0 = lnc0), then it can be 
rewritten in a linear form, defined by Eq. (1a). If the multiple power 
function includes first-order factor interactions, then Eq. (2b) 
represents the quasi-linear mathematical model, defined by Eq. (1b). 
But, in this particular case, it is not necessary (Marinković and 
Lazarević, 2010). 

In general, the mathematical models may also include higher-
order factor interactions. Since the impact of higher-order factor 
interactions is usually negligible, these terms of the mathematical 
model may be omitted. On the other hand, in many cases, adding the 
high-order polynomial terms does not really improve the fit, but 
increases the complexity of the mathematical model. Thus, it is 
useful to try fitting using a lowest-order polynomial that adequately 
describes the system/process. 

The statistical method often used to estimate the unknown 
parameters in a mathematical model is the method of least squares. 

The number of factor levels within the selected range is 
theoretically arbitrary, whereas practice confirms that it is sufficient 
to choose: two levels for (quasi) linear mathematical model, and 
three levels for non-linear (quadratic) mathematical model. 

Since input factors may be various physical values (temperature, 
pressure, volume, velocity, etc.) it is useful to perform their coding. 
There are two ways of coding the independent variables (factors) on 
three levels. It is accomplished by means of the transforming 
equations: 

a)  for levels (–1 , 0, +1): 
 

),1(;12
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min ki
XX

XX
x

ii

ii
i =−

−
−

=                           (3a) 

 
b) for levels (1, 2, 3): 
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where xi are coded variables (factors), Xi are natural variables, from 
Ximax to Ximin, in the design factor space of interest to the 
experimenter, Ximax and Ximin are the highest and the lowest values of 
the natural variables Xi respectively, and k is the number of the input 
factors. 

The most useful application for DoE is to optimize a 
process/system. The process optimization is assured by minimizing 
or maximizing an objective function regarding the given (in)equality 
constraints. The second-order mathematical model may be written in 
matrix notation as following (Montgomery, 2001): 
 

Bxx'bx' ++= 0
ˆˆ by                                             (4) 

 
where x is a (k x 1) vector of the independent variables, b is a (k x 
1) vector of the first – order regression coefficients and B is a (k x k) 
symmetric matrix whose main diagonal elements are the pure 
quadratic coefficients, while off-diagonal elements are one-half 
mixed quadratic coefficients. 
 

The stationary (optimal) point is obtained from the following 
relation: 
 

bBx 1
0 2

1 -−=                                              (5) 

 
Thereby it implies that the optimum conditions of objective 

function are met.  
Furthermore, by substituting Eq. (5) into Eq. (4) the predicted 

response at the optimal point can be found as: 
 

bx'000 2

1ˆˆ += by                               (6) 

 
For the characterization of the surface response (output) it is 

necessary to translate the selected mathematical model into a 
canonical form. Canonical transformation transfers the origin in the 
stationary point and rotates the coordinate axis to match with the 
main axes of the fitted surface response. 

Canonical form of quadratic mathematical model can be 
expressed as follows: 
 

∑
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where {wi} are the canonical independent variables (factors) and   
{ λi} are their eigenvalues (canonical coefficients). 

Canonical coefficients are the roots of the characteristic 
equation: 
 

0=− IB λ                                              (8) 

 
Checking the correctness of calculation is done according to: 
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Canonical equations contain no linear effects or interactions, 

which makes them more suitable for the analysis of the surface 
response. The geometric form of the response surfaces is determined 
by the stationary point, algebraic signs, and magnitudes of their own 
values (Novik and Arsov, 1980).  

If the eigenvalues are all negative, the response surface has a 
maximum; if they are all positive, the response surface has a 
minimum; if they have mixed signs, the response surface has a 
saddle point.  

At least one eigenvalue equal to zero (or close to zero) indicates 
the presence of a "ridge" in the response surface. 

It should be noted that optimization of the real system/process 
makes sense in a limited space of independent variables (factors). 
The constraints, in terms of the coded variables, are most common 
specified in the form of (in)equations as: 
 

),1(;maxmin kixxx iii =≤≤                            (10) 

 
where ximin and ximax are the lowest and the highest values of the 
independent variables xi, respectively. 

The benefits of using optimization methodologies over 
handbook recommendations were evaluated by many researchers. 
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Figure 3. Relationship between the average surface roughness and the 
cutting parameters for different regression equations. 

 

Application of the regression analysis 

The linear, the quadratic and the non-linear mathematical 
models were selected for the analysis in this paper. The parameters 
of Eq. (1a), Eq. (1c), and Eq. (2b) have been estimated by means of 
the least-square method, using Matlab software package. In this 
way, the following multiple regression equations were obtained: 
 

321 4856.06925.09442.01704.3ˆ xxxy ++−=                      (11a) 
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2
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2
2

2
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1617.00567.01196.00811.0
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xxxxxxx

xxxxxy
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 (11b) 

 

321 2393.02647.09835.02950.6ˆ xxxy ++−=         (11c) 

 
The coding of the process factors was carried out according to 

the Eq. (3b). The fitted multiple regression equations in terms of the 
natural levels of the cutting speed, the feed rate, and the depth of cut 
may be obtained by substituting the transforming Eq. (3b) into the 
Eq. (11). These equations are not presented in this paper. 

The graphs from Fig. 3 clearly show that the quadratic 
mathematical model most accurately approximates the experimental 
results. 

The preliminary information of the quantitative and qualitative 
impact on the objective function (response) of each individual factor 
in the regression equations can be obtained from its parameters sign 
and magnitude. The negative sign for the parameter of the cutting 
speed shows that the surface roughness improves with the increase 
in the cutting speed. The positive sign for the parameters of the feed 
rate and the depth of cut indicates that the surface roughness 
deteriorates with the increase in these two factors. Furthermore, the 
given regression equation and Pareto chart (Fig. 4) suggest that the 
dominant process factor is the cutting speed, while the effects of the 
feed rate and the depth of cut are considerably smaller. The factor 
interactions have the least influence on the considered problem. In 
order to take into account the contribution from the factor 
interactions, these terms were not neglected. 
 

 
Figure 4. Pareto chart. 

 
The criterion used to estimate the efficiency and ability of the 

mathematical model to predict average surface roughness could be 
the absolute percentage error – δi, which is defined by equation: 

 

           Ra= f3(V), for a∈[0.5, 2.0] and f∈[0.071, 0.321] 

R
a 
[µ

m
] 
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R
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            Ra= f2(f), for a∈[0.5, 2.0] and V∈[80, 140]  
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(%)100
ˆ

ai

aiai
i R
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where aiR̂  and aiR  represent the predicted and measured average 

surface roughness for i-th trial, respectively.  
The average surface roughness calculated according to the 

Eq. (11b), and errors calculated according to the Eq. (12) are 
given in Table 4. 

 

Table 4. Experimental and predicted results and absolute percentage error. 

T
ria

l Coded factor Response Error 

iδ [%] x1 x2 x3 aR  
aR̂  

1 1 1 1 3.60 3.3369 7.3083 
2 1 1 2 3.61 4.0086 11.0416 
3 1 1 3 3.96 4.5181 14.0934 
4 1 2 1 4.30 4.2558 1.0279 
5 1 2 2 4.955 4.7658 3.8184 
6 1 2 3 5.92 5.1136 13.6216 
7 1 3 1 5.13 5.2841 3.0039 
8 1 3 2 5.28 5.6324 6.6742 
9 1 3 3 5.98 5.8185 2.7007 
10 2 1 1 2.32 1.9577 15.6164 
11 2 1 2 2.745 2.6861 2.1457 
12 2 1 3 3.44 3.2523 5.4564 
13 2 2 1 2.55 2.7570 8.1176 
14 2 2 2 3.405 3.3237 2.3877 
15 2 2 3 3.33 3.7282 11.9580 
16 2 3 1 3.73 3.6657 1.7239 
17 2 3 2 4.005 4.0707 1.6404 
18 2 3 3 4.23 4.7986 13.4421 
19 3 1 1 1.13 1.5747 39.3540 
20 3 1 2 2.79 2.3598 15.4194 
21 3 1 3 3.08 2.9827 3.1591 
22 3 2 1 1.85 2.2544 21.8595 
23 3 2 2 2.835 2.8778 1.5097 
24 3 2 3 3.27 3.3390 2.1101 
25 3 3 1 3.52 3.0435 13.5369 
26 3 3 2 3.605 3.5052 2.7684 
27 3 3 3 3.66 3.8047 3.9536 

The mean absolute percentage error [ ]%50.8|| =δ  

 
 

 
Figure 5. Performance of the quadratic mathematical model. 

 

The accuracy of any empirical model can also be done by means 
of statistical parameters, for example, correlation coefficient. The 
correlation coefficient (R) is a statistical measure of the strength of 
correlation between the predicted and measured values. For the 
current problem, the following result is obtained: R = 0.956 (Fig. 5). 
 

 

 

 
Figure 6. Effects of the cutting parameters on the surface roughness. 

 
Similar results were obtained by other researchers (Thangavel and 
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(Cakir, Ensarioglu and Demirayak, 2009). 
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The optimization problem for the given turning process can be 
mathematically stated as follows: find the vector of cutting 

factors 3
3,210 ),( Rxxxx ∈=′ , which minimizes the objective function 

),,(ˆ 321 xxxfy = (Eq. (11b)) subjected to 31 ≤≤ ix . 

The surface roughness may continuously improve with the 
increase in the cutting speed, up to certain level. Beyond this critical 
level, further increase in the cutting speed will deteriorate the 
surface roughness (Sundaram and Lambert, 1981). Therefore, in 
many cases there is an optimal value of the cutting speed, which 
provides a minimum value of the surface roughness. It is confirmed 
by the results of research of many authors (Arbizu and Perez, 2003; 
Karayel, 2009). 

In this particular case, Eq. (5) and Eq. (6) give: 
 

)5488.5,6918.1,7086.3(0 =′x , 744.3ˆ0 =y . 

 
Obviously, the optimal point is outside of the given 

experimental space. From Fig. 3 and Fig. 6, it can be concluded that 
the surface roughness has a clear downward trend with the cutting 
speed increase and decrease in the feed rate and the depth of cut. It 
can be shown that there is no global optimum in this case, i.e. this is 
the so called ridge system. 

When it comes to optimization problem with constraints, the 
conditional optimum is located at one of the corresponding 
boundary of ranges of cutting factors. 

According to the above described procedure, translating the 
coded in the natural factors gives: )5.0,071.0,4.136(0 =′X , 

568.1ˆˆ
00 =≡ aRY . 

By using Eq. (8), the following eigenvalues are obtained: 
)08.0,51.0,12.0(−=iλ . These eigenvalues satisfy Eq. (9). Also, 

03 ≈λ  indicates that the considered system is really a ridge system. 

Conclusion 

The aim of this work was to investigate the effects of the cutting 
parameters (the cutting speed, the feed rate and the depth of cut) on 
the average surface roughness, during the dry turning of the alloy 
steel, using coated tungsten carbide inserts. The dry turning is safe 
for the environment (atmosphere, water) and health as well as 
cheaper. Therefore, it is useful to analyse the effect of cutting 
conditions on the surface quality in dry turning. 

In the first phase of this work, surface roughness was measured 
using the surface profilometer, which gives a relatively good 
indication of the measured roughness. The relationships among the 
inputs and corresponding outputs are established from the measured 
data, as well as the trends of surface roughness changing with 
cutting regimes changes. 

The modelling and the optimization of the experimentally 
obtained data were performed using the regression analysis. In 
general, the results of the modelling are in good agreement with the 
experimentally obtained data. 
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