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Unsteady Aerodynamic Forces for 
Aeroelastic Analysis of Two-
Dimensional Lifting Surfaces 
The present work is part of an effort for developing a methodology for the aeroelastic 
analysis of two-dimensional lifting surfaces using an unsteady, Euler-based, CFD tool for 
the calculation of the aerodynamic operator. The CFD tool solves the flow problem with 
the finite-volume method applied to an unstructured grid context. The proposed 
methodology is based on the determination of the aerodynamic operator with the transfer 
function technique, which is given, in the frequency domain, by the analysis of the system 
response to an exponentially-shaped pulse in the time domain. The response in the 
frequency domain is achieved with the Fast Fourier Transform (FFT) technique available 
in any mathematical manipulation tool, such as Matlab©. Some numerical experiments are 
performed involving unsteady subsonic and transonic flows around a flat plate and a 
NACA 0012 airfoil, and the results are presented as curves of generalized aerodynamic 
forces. The unsteady simulations start from a converged steady state solution obtained by 
the same CFD tool. Some unsteady validation results are compared with available data in 
the literature and the initial steps of the methodology are tested. The frequency domain 
results obtained agree very well with other numerical solutions given in the literature, 
which validates the present approach for the evaluation of the generalized aerodynamic 
forces for use in efficient, frequency domain, aeroelastic analyses. 
Keywords: Aeroelasticity, CFD, finite-volume discretization, unsteady aerodynamics, 
unstructured meshes 
 
 
 

Introduction 

Aeroelasticity can be defined as the science which studies the 
mutual interaction between aerodynamic and structural dynamic 
forces. The analysis of dynamic characteristics of either complex or 
simple structures are quite developed nowadays as far as numerical 
and experimental methods are concerned. Hence, it is correct to state 
that reliability in aeroelastic calculations, for the problems of 
interest to the present authors, is strongly dependent on the correct 
evaluation of the aerodynamic operator.1 

Traditionally, the methods developed for determining the 
aerodynamic operator for subsonic and supersonic regimes are 
based on linearized formulations which do not present the same 
satisfactory results in the transonic range. According to Tijdeman 
(1977), this occurs due to the nonlinearity of transonic flows 
characterizing a significant alteration of the flow behavior, even 
when a profile is submitted to small perturbations. Ashley (1980) 
reported the use of semi-empirical corrections to the linearized 
theory results as a mean of improving flutter predictions. 
Nevertheless, Ashley (1980) himself believed that really satisfactory 
aeroelastic quantitative predictions of the transonic regime should 
be possible only when accurate, three-dimensional, unsteady CFD 
codes were developed. Hence, the methodology here presented, 
which is based on the ideas of Rausch, Batina and Yang (1990) and 
Oliveira (1993), intends to obtain the aerodynamic operator for two-
dimensional lifting surfaces employing modern CFD techniques. 

Computational Fluid Dynamics (CFD) is a subject that has 
played an extremely important role in recent studies of 
aerodynamics. The possibility of treating numerically a broad range 
of phenomena which occur in flows over bodies of practically any 
geometry has innumerous advantages over experimental 
determinations, such as greater flexibility together with time and 
financial resource savings. 
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However, obtaining more reliable numerical results for a 
growing number of situations has been one of the major recent 
challenges in many science fields. Fletcher (1988a) and Hirsch 
(1988) show that particulary in aerodynamics, the general 
phenomena are governed by the Navier-Stokes equations, which 
constitute a system of coupled nonlinear partial differential 
equations that has no general analytical solution and that is of 
difficult algebraic manipulation. Hirsch (1988) comments, among 
other issues concerning CFD techniques, on how to simplify the 
mathematical models conveniently in order to ease the numerical 
treatment of each case. A survey on this subject is also presented by 
Azevedo (1990). Space and time discretization schemes, as well as 
convergence acceleration techniques, boundary condition 
establishment and other numerical integration tools are available 
and largely used in order to solve such problems. 

After selection of the theoretical model, it is indispensable to 
define the physical domain where the flow takes place, determining 
the boundary conditions. This solution approach demands the 
discrete representation of the physical domain to make the problem 
numerically coherent by defining a computational mesh of points or 
regions where the calculations are performed. The mesh generation, 
as it is vastly documented in the literature, e.g. Fletcher (1988b), and 
verified by the CTA/IAE work group own experience (Bigarella and 
Azevedo, 2005), is extremely important and decisive in determining 
the accuracy and convergence of the solution. The mesh type is also 
an essential factor on the CFD tool behavior. Structured meshes 
have the advantage of being well-behaved, the existence of an 
intrinsic correspondence between adjacent nodes and a very good 
control over grid refinement through stretching functions. However, 
this sort of mesh do not adapt readily to complicated geometries, 
requiring the adoption of sophisticated multiblock mesh techniques. 
On the other hand, unstructured meshes are extremely flexible when 
it comes to geometric forms and they allow the use of interesting 
techniques such as adaptative refinement. 

As stated by Marques (2004), together with the evolution of the 
work and projects performed by CTA/IAE, the demand for 
aerodynamic parameters has increased considerably. In particular, 
the research group has been charged with the calculation of diverse 
aerodynamic information concerning the various sounding rockets, 
satellite launchers and other vehicles developed at CTA/IAE. 
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Nevertheless, the application of CFD tools in these parametric 
analyses has always been limited by the need of adequate code 
development and the lack of computational resources compatible 
with the work to be performed. Therefore, a progressive approach 
has been adopted in the development of CFD tools in CTA/IAE and 
in ITA, as presented by Azevedo (1990), Azevedo, Fico and Ortega 
(1995), Fico and Azevedo (1994), Azevedo, Strauss and Ferrari 
(1997), Bigarelli, Mello and Azevedo (1999), Bigarelli and Azevedo 
(2002), Oliveira (1993), Simões and Azevedo (1999). 

The present work is based on the finite-volume formulation, 
where a CFD tool is applied with unstructured two-dimensional 
meshes around lifting surfaces to acquire unsteady responses to 
harmonic and pulse motions. These time-domain responses supply 
the generalized aerodynamic forces necessary as input to the 
aeroelastic model. The methodology here presented intends to 
obtain frequency-domain responses from the solutions to a pulse 
motion. That information can be used in the future in order to 
determine the aeroelastic stability margin with a single expensive 
CFD run per structural mode. 

Aerodynamic Theoretical Formulation 

The CFD formulation used in this work is based on the two-
dimensional Euler equations. Due to the use of unstructured meshes 
and a finite volume discretization, these equations are used in the 
Cartesian form. Besides, as usual in CFD applications, flux vectors 
are employed and the equations are nondimensionalized. Hence, 
they can be written as 

 

( ) 0.
∂ + + =∫∫ ∫∂ V S

dxdy dy dx
t

Q E F  (1) 

 
In Eq. (1), V represents the volume of the control volume or, 

more precisely, its area in the two-dimensional case. S is its surface, 
or its side edges in 2-D. Q is the vector of conserved properties, 
given by 

 

{ } .= T
u v eρ ρ ρQ  (2) 

 
E and F are the flux vectors in the x and y directions, 

respectively, defined as 
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The nomenclature adopted here is the usual in CFD: ρ  is the 

density, u and v are the Cartesian velocity components and e is the 
total energy per unity of volume. The pressure p is given by the 
perfect gas equation, written as 

 

( ) ( )2 21
1

2
 = − − + 
 

p e u vγ ρ  (5) 

 

Once again, as usual, γ  represents the ratio of specific heats. The 
contravariant velocity components (U and V) are determined by 

 
= − tU u x  and ,= − tV v y  (6) 

 
where xt and yt are the Cartesian components of the mesh velocity in 
the unsteady case. For further details on the theoretical formulation, 
such as boundary and initial conditions, the reader should refer to 
Marques (2004).  

Numerical Formulation 

The algorithm here presented is based on a cell-centered finite-
volume scheme, in which the stored information is actually the 
variable average value throughout the entire control volume. These 
mean values are defined as 

 

1
.= ∫∫i

Vi i

dxdy
V

Q Q  (7) 

 
Equation (1) can, then, be rewritten for the i-th cell as 
 

( ) ( ) 0.
∂ + − =∫∫ ∫∂ i i

V Si i

V dxdy dy dx
t

Q E F  (8) 

 
The remaining  integration in Eq. (8) represents the flux of the 

vector quantities E and F through each control volume's boundary. 
This code was developed to be used with unstructured meshes 
composed of triangles. The flux, therefore, can be evaluated as the 
sum of the flux contributions of each edge, which is obtained 
approximately from the average with the neighbors' conserved 
quantities, as proposed by Jameson and Mavriplis (1986). Hence, a 
convective operator is defined and it is given by 

 

( ) ( )

( )( ) ( )( )3

2 1 2 1
1

,
=

− ≈ =∫

 − − −∑   

i
Si

ik k k ik k k
k

dy dx C

y y x x

E F Q

E Q F Q
 (9) 

 
Where 
 

( )1
,

2
= +ik i kQ Q Q  (10) 

 
and the (xk1, yk1) and (xk2, yk2) coordinates are relative to the vertices 
which define the interface between the cells. 

The Euler equations are a set of nondissipative hyperbolic 
conservation laws. Hence, as given by Pulliam (1986), their 
numerical treatment requires an inherently dissipative discretization 
scheme or the introduction of artificial dissipation terms in order to 
avoid oscillations near shock waves and to damp high frequency 
uncoupled error modes. Oliveira (1993) states that the flux 
evaluation method adopted in the present CFD tool is analogous to a 
centered difference scheme in finite difference formulation. In this 
case, Pulliam (1986) shows that there is the necessity of adding 
artificial dissipation terms. Details on the adopted artificial 
dissipation scheme are given in Marques (2004). 

The numerical solution is advanced in time using a second-order 
accurate, 5-stage, explicit, hybrid scheme which evolved from the 
consideration of Runge-Kutta time stepping schemes (Jameson, Schmidt 
and Turkel, 1981, and Mavriplis, 1990). This scheme, already including 
the necessary terms to account for changes in cell area due to mesh 
motion or deformation (Batina, 1989), can be written as 
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where the superscripts n and n+1 indicate that these are property 
values at the beginning and the end of the n-th time step, 
respectively. D(Q) denotes the artificial dissipation operator. The 
values used for the α coefficients, as suggested by Jameson and 
Mavriplis (1986), are 

 

  1 2 3 4 5
1 1 3 1

,  ,  ,  ,  1.
4 6 8 2

= = = = =α α α α α  (12) 

 
In Eq. (11) the convective operator, C(Q), is evaluated at every 

stage of the integration process, but the artificial dissipation operator, 
D(Q), is only evaluated at the two initial stages. This is done with the 
objective of saving computational time, since the evaluation of the last 
is rather expensive. As discussed by Jameson, Schmidt and Turkel 
(1981), this type of procedure is known to provide adequate numerical 
damping characteristics while achieving the desired reduction in 
computational cost. 

Steady-state solutions for the mean flight condition of interest must be 
obtained before the unsteady calculation can be started. Therefore, it is 
also important to guarantee an acceptable efficiency for the code in steady-
state mode. In the present work, both local time stepping and implicit 
residual smoothing (Jameson and Mavriplis, 1986, Jameson and Baker, 
1983 and Jameson and Baker, 1987) are employed to accelerate 
convergence to steady state. More details on convergence acceleration 
techniques are found in Oliveira (1993) and Marques (2004). 

Mesh Generation and Movement 

The meshes used in the present work were generated with the 
commercial grid generator ICEM CFD, a very powerful tool 
capable of creating sophisticated meshes with very good refinement 
and grid quality control. Figures 1(a) and 1(b) show the meshes 
around a NACA 0012 profile and a flat plate, respectively, which are 
employed to obtain the results here presented. 

 

 
(a) 

 
(b) 

Figure 1. Mesh around (a) NACA0012 profile with 284  wal points and (b) 
flat plate with 236 wall points. 

 
Unsteady calculations involve body motion and, therefore, the 

computational mesh should be somehow adjusted to take this 
motion into account. The approach adopted here is to keep the far 
field boundary fixed and to move the interior grid points in order to 
accommodate the prescribed body motion. This was done following 
the ideas presented by Batina (1989), and Rausch, Batina and Yang 
(1990), which model each side of the triangles as a spring with 
stiffness constant inversely proportional to the length of the side. 
Hence, once points on the body surface have been moved and 
assuming that the far field boundary is fixed, a set of static 
equilibrium equations can be solved for the position of the interior 
nodes. Control volume areas for the new grid can, then, be 
computed. For further details, the reader should refer to Marques 
(2004). The mesh velocity components can also be evaluated 
considering the new and old point positions and the time step in a 
geometric conservation law context, as presented by Thomas and 
Lombard (1979). 

Aeroelastic Formulation 

The dynamic system represented is the typical section problem 
(Bisplinghoff, Ashley and Halfman, 1955, and Oliveira, 1993), which 
is an airfoil section with two degrees of freedom (plunge and pitch) 
subjected to aerodynamic, dynamic and elastic forces and moments. 
The governing equation of such dynamic system is given by 

 

( ) ( ) ( ) ,M t K t t+ =      ɺɺη ηη ηη ηη η aQ  (13) 

 
where the generalized mass and stiffness matrices are, respectively, 
given by 
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and the generalized coordinate and force vectors are, respectively,  

 

( ) ( ) ( ){ } ,=
T

t t tξ αηηηη  (16) 

 

  ( ) ( ) ( )
2

.
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  

T
hQ t Q t

t
mb mb

α
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In the previous equations, ω h and ω α  are the uncoupled free 

vibration circular frequencies of each mode, which are defined as 
 

 
1 2

,
 =  
 

h
h

k

m
ω       

1 2

,
 

=   
 

k

I
α

α
α

ω  (18) 

 
where kh and kα  are the stiffness constants in the plunge and pitch 
modes. Besides, m denotes the section mass and Iα  its inertia 
moment respective to the elastic axis over which pitch takes place. 
Moreover, 

ξ
 = h/b, where h is the plunge amplitude and b the airfoil 

semi-chord. Finally, the radius of gyration is given by  
 

1 2

2
.

 =  
 

I
r

mb
α

α  (19) 

 
This system can be more easily studied in the Laplace domain. 

Applying the Laplace transform on Eq. (13), one can obtain 
 

( ) ( ) ( )2 .+ =      s M s K s saQη ηη ηη ηη η  (20) 

 
Therefore, as mentioned before, the main objective of the present 

study is to efficiently determine the generalized aerodynamic force 
vector Qa(s) in the Laplace domain for the transonic regime. This is 
done by evaluating this vector over the frequency range of interest 
and, through analytical continuation (see Churchill, Brown and 
Verhey, 1974) extend such result to the entire s-plane. 

Aeroelastic Analysis Methodology 

The unsteady movements related to the aeroelastic phenomena, 
mainly flutter, can be represented by a series of harmonic motions. 
Therefore, a large computational cost reduction comes from the use of 
the indicial method. According to this approach, the aerodynamic 
response to a harmonic excitation of any frequency can be obtained 
from Duhamel's integral of the response of the flow to an indicial 
motion. Following this same idea, and noticing that the transient flow 
due to an impulsive excitation takes a shorter period of time to die out 
than those that results from an indicial motion, Oliveira (1993) proposed 
a similar methodology where the aerodynamic response is evaluated in 
the frequency domain from the response to a impulsive excitation in the 
time domain. 

Therefore, the aerodynamic calculations for a determined flight 
condition are reduced to a single computational run for each structural 
mode. Such an approach can lead to a drastic reduction in the 
computational cost of aeroelastic analyses using a nonlinear 
aerodynamic formulation. To be more precise, the present approach 

considers that the generalized aerodynamic forces can be constructed by 
the superposition of the effects of each modal displacement evaluated 
separately. Clearly, this means that the formulation is correct for small 
displacement amplitudes. However, since classical airfoil or wing flutter 
are the main concern in the present case, this does not constitute any 
major limitation because flutter onset is the condition sought. Hence, the 
present approach guarantees that the flow nonlinearities and dynamics 
are captured, except for those related to viscous effects which are not 
included in an Euler formulation. 

Nevertheless, the theoretical impulse is a singularity and the 
indicial motion leads to the appearance of infinite velocities, which 
makes both numerically untreatable. Hence, other smoother excitation 
functions are employed (Davies and Salmond, 1980, and Mohr, Batina 
and Yang, 1989). The motion suggested by Bakhle et al. (1991) is 
defined as 

 

( )
1

2
2 1
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max
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t

ttfp t
e t t

t

t t

 (21) 

 
where the bar indicates the dimensionless time and 

maxt  is the 

exponentially-shaped pulse duration. As can be seen in Fig. 2, the 
function defined in Eq. (21) guarantees a smooth motion. 

 

 
Figure 2. Exponentially-shaped pulse excitation in angle of attack. 

 
The methodology consists, then, in obtaining a transfer function in 

the frequency domain applicable to any desirable input. This transfer 
function is the frequency domain response to the impulsive excitation. 
Therefore, this is accomplished using the following steps: 

• Obtaining the steady aerodynamic solution for a given Mach 
number and angle of attack; 

• Performing unsteady aerodynamic response evaluations 
departing from the steady solution given in the previous item. This 
stage leads to time responses in terms of aerodynamic coefficients as a 
result to an exponentially-shaped pulse excitation of each of the 
modes; 

• Obtaining the Fourier transform of the time responses 
applying a Fast Fourier Transform (FFT) algorithm. This is done in 
the present work employing the FFT capability available in the 
commercial program Matlab©; 
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• Approximating the obtained data with an interpolating 
polynomial, shown in Oliveira (1993); 

• Formulating the corresponding eigenvalue problem, valid for a 
determined range of dimensionless velocities, and, finally, flutter 
speed prediction through a root locus analysis. 

As shown by Oliveira (1993), the corresponding frequency 
domain resulting from the FFT procedure is given by 

 

max

1

;      0,1,2,..., ,∞

=
∆

= =
∆

i
f

t N
a i

i N
tc N

 (22) 

 

( )max
2;        

1 2;

=  −

N
N

N
if N even, otherwise, (23) 

 
where c is the chord length and a∞  the freestream speed of sound. 
Equation (22), rewritten in terms of the reduced frequency based on 
the semi-chord (b), stands as  

 

 

max

2
,

;    0,1,2,...,

∞ ∞

∞

= =

= =
∆

b fb
k

U U

i
i N

M t N

ω π

π
 (24) 

 
where M∞  is the Mach number referring to the undisturbed conditions. 

As the input is not exactly an impulse excitation, the real 
impulse response is evaluated using the convolution integral concept 
and its well-known property, as given by Brigham (1988) 

 

  ( ) ( ) ( ) ( ) ( ) ( ),= ∗ ⇒ =g t fp t i t G f Fp f I f  (25) 

 

( ) ( )
( ) .=

G f
I f

Fp f
 (26) 

 
where i(t) represents the time response to a impulsive movement 
and g(t) is the response to the smooth excitation given in Eq. (21). 
The functions in capital letters are discrete Fourier transforms of the 
corresponding functions in low case letters. Therefore, after 
obtaining the FFT of the time response, it has to be divided by the 
FFT of the input pulse function. Although the input is not the exact 
impulsive excitation, it is capable of exciting the reduced 
frequencies of interest in aeroelastic studies. 

Results and Discussion 

Before attempting applications of the proposed methodology, 
some validation simulations were performed with the CFD tool. 
This has been done throughout the entire development of this code 
as can be seen in Azevedo (1992), Oliveira (1993) and Simões and 
Azevedo (1999). The present authors proceeded with this effort 
obtaining the results shown in Figs. 3 to 7 for a NACA 0012 airfoil 
at M∞  = 0.755 submitted to a harmonic pitching motion about the 
quarter-chord point. The motion's reduced frequency is k = 0.0814 
and the amplitude is 2.51º, while the mean angle of attack is 0.016º. 
Figures 3, 4 and 5 present the pressure coefficient along the chord in 
different positions of the cycle and compares them with results 
presented by Batina (1989), which are also obtained numerically 
with a CFD tool similar to the one employed in the present work. 
The solutions in terms of aerodynamic coefficient hysteresis curves 
are given in Figs. 6 and 7, together with experimental data from 
AGARD (1982). The value of Cm is referred to the quarter-chord 

point. The present results are very close to those obtained by Batina 
(1989). Some small differences appear near shocks and the authors 
believe that they are due to the use of a more refined mesh in the 
present work. Moreover, the deviations between numerical and 
experimental results seem to be systematic and caused by 
experimental data reduction errors. 

 

 
 

 
 

 
Figure 3. Comparison of instantaneous pressure dist ributions for the 
NACA  0012 airfoil in pitching motion – Part I. 
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Figure 4. Comparison of instantaneous pressure dist ributions for the 
NACA  0012 airfoil in pitching motion – Part II. 

 

 
 

 
Figure 5. Comparison of instantaneous pressure dist ributions for the 
NACA  0012 airfoil in pitching motion – Part III. 

 

 
Figure 6. Cl hysteresis curve. 
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Figure 7. Cm hysteresis curve. 

 
Once the CFD tool was tested and proved to be a reliable one, 

the next step was to proceed in obtaining the responses of interest 
for the aeroelastic analysis methodology proposed. The approach 
selected was to reproduce the results presented by Rausch, Batina 
and Yang (1990). This reference presents the aerodynamic 
coefficient response in the frequency domain obtained with a pulse 
transfer function approach, very similar to the methodology 
proposed here. Therefore, initially, the response of a flat plate airfoil 
to an exponentially-shaped excitation at M∞  = 0.5 is presented. This 
response was obtained for pitching motion about the quarter-chord 
point, Figs. 8 and 9, and for plunging motion, Figs. 10 and 11. Note 
that no time response to this particular excitation is available in the 
literature. Hence, the results cannot be compared. 

 

 
Figure 8. Cl response along time to an exponentiall y-shaped pulse 
excitation in pitch mode. Flat plate at M ∞ = 0.5. 

 

 
Figure 9. Cm response along time to an exponentiall y-shaped pulse 
excitation in pitch mode. Flat plate at M ∞ = 0.5. 

 

 
Figure 10. Cl response along time to an exponential ly-shaped pulse 
excitation in plunge mode. Flat plate at M ∞ = 0.5. 

 

 
Figure 11. Cm response along time to an exponential ly-shaped pulse 
excitation in plunge mode. Flat plate at M∞ = 0.5. 

 
The corresponding Fourier transform, together with the results 

given by Rausch, Batina and Yang (1990), are shown in Figs. 12 to 
15. These results indicate a very good agreement between 
calculations performed with the proposed method and the literature 
data. 
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Figure 12. CI response in frequency domain to an ex ponentially-shaped 
pulse excitation in pitch mode. Flat plate at M∞ = 0.5. 

 

 
Figure 13. Cm response in frequency domain to an ex ponentially-shaped 
pulse excitation in pitch mode. Flat plate at M ∞ = 0.5. 

 

 
Figure 14. CI response in frequency domain to an ex ponentially-shaped 
pulse excitation in plunge mode. Flat plate at M ∞ = 0.5. 

 

 
Figure 15. Cm response in frequency domain to an ex ponentially-shaped 
pulse excitation in plunge mode. Flat plate at M ∞ = 0.5. 

 
However, the previously discussed results are purely subsonic 

and this is not the real subject of interest of the present study. 
Therefore, the authors considered the same sort of analysis for a 
NACA 0012 airfoil at M∞  = 0.8, for which case results are also 
found in Rausch, Batina and Yang (1990). The time response for 
this test case in terms of Cl and Cm are presented for pitching about 
the quarter-chord and plunging in Figs. 16 to 19. 

 

 
Figure 16. Cl response along time to an exponential ly-shaped pulse 
excitation in pitch mode. NACA 0012 airfoil at M ∞ = 0.8. 

 

 
Figure 17. Cm response along time to an exponential ly-shaped pulse 
excitation in pitch mode. NACA 0012 airfoil at M ∞ = 0.8. 
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Figure 18. Cl response along time to an exponential ly-shaped pulse 
excitation in plunge mode. NACA 0012 airfoil at M ∞ = 0.8. 

 

 

Figure 19. Cm response along time to an exponential ly-shaped pulse 
excitation in plunge mode. NACA 0012 airfoil at M ∞ = 0.8. 

 
The Fourier transforms of such aerodynamic coefficient time 

histories are shown in Figs. 20 to 23 together with the results 
presented by Rausch, Batina and Yang (1990). Once again, the 
results obtained in the present work agree very well with those given 
in the literature. Therefore, the present test case indicates that the 
first three items of the proposed methodology for aeroelastic 
analysis have already been successfully implemented. The work 
performed comprises the evaluation of the aerodynamic forces using 
CFD methods. Hence, the current results demonstrate that the 
unsteady aerodynamic forces are being correctly evaluated and the 
approach is able to yield the required coefficients, in the frequency 
domain, for the desired aeroelastic stability analyses. 

 

 
Figure 20. Cl response in frequency domain to an ex ponentially-shaped 
pulse excitation in pitch mode. NACA 0012 airfoil a t M∞ = 0.8. 

 

 
Figure 21. Cm response in frequency domain to an ex ponentially-shaped 
pulse excitation in pitch mode. NACA 0012 airfoil a t M∞ = 0.8. 

 

 

Figure 22. Cl response in frequency domain to an ex ponentially-shaped 
pulse excitation in plunge mode. NACA 0012 airfoil at M∞ = 0.8. 
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Figure 23. Cm response in frequency domain to an ex ponentially-shaped 
pulse excitation in plunge mode. NACA 0012 airfoil at M∞ = 0.8. 

Concluding Remarks 

This work comprises the evaluation of all the required 
aerodynamic data in the frequency domain for use together with the 
proposed aeroelastic analysis methodology. Therefore, the 
frequency domain results obtained through the execution of the 
steps demonstrated in the present work completely represent the 
aerodynamic behavior involved in the aeroelastic phenomena of 
interest.  

As one can see in the results presented and other cited references, 
the CFD tool developed by the CTA/IAE group has been widely 
tested and it has proved to be a reliable source of unsteady 
aerodynamic data for aeroelastic use in the subsonic and transonic 
regimes. Furthermore, the frequency domain data obtained in the 
present work agree very well with other numerical experiments 
available in the literature, which indicates the correct implementation 
of the aerodynamic operator for the proposed methodology. 

Therefore, such excellent results encourage the authors to move 
forward to achieve the complete implementation of the aeroelastic 
analysis methodology proposed. The implementation and validation 
of the remaining steps of this methodology, which are beyond the 
scope of the present work, will provide the required capabilities to 
study aeroelastic problems using an efficient approach in the 
frequency domain. Therefore, in this context, the present work 
represents a fundamental research development to the evolution of 
computational aeroelastic studies for the aerospace configurations of 
interest to CTA/IAE. 
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