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Unsteady Aerodynamic Forces for
Aeroelastic Analysis of Two-
Dimensional Lifting Surfaces

The present work is part of an effort for develgpa methodology for the aeroelastic
analysis of two-dimensional lifting surfaces usamgunsteady, Euler-based, CFD tool for
the calculation of the aerodynamic operator. TheDQ#6ol solves the flow problem with
the finite-volume method applied to an unstructurgdd context. The proposed
methodology is based on the determination of thedymamic operator with the transfer
function technique, which is given, in the frequedomain, by the analysis of the system
response to an exponentially-shaped pulse in thee tdomain. The response in the
frequency domain is achieved with the Fast FouTieansform (FFT) technique available
in any mathematical manipulation tool, such as fla®. Some numerical experiments are
performed involving unsteady subsonic and transdliws around a flat plate and a
NACA 0012 airfoil, and the results are presenteccasves of generalized aerodynamic
forces. The unsteady simulations start from a cayeck steady state solution obtained by
the same CFD tool. Some unsteady validation resuéscompared with available data in
the literature and the initial steps of the methiody are tested. The frequency domain
results obtained agree very well with other nunarisolutions given in the literature,
which validates the present approach for the eviddmaof the generalized aerodynamic
forces for use in efficient, frequency domain, etastic analyses.

Keywords: Aeroelasticity, CFD, finite-volume discretizatiomnsteady aerodynamics,

unstructured meshes

Introduction

Aeroelasticity can be defined as the science whicidies the
mutual interaction between aerodynamic and strattdynamic
forces. The analysis of dynamic characteristicsitbfer complex or
simple structures are quite developed nowadayaraasf numerical
and experimental methods are concerned. Heneegdtriect to state
that reliability in aeroelastic calculations, fohet problems of
interest to the present authors, is strongly dependn the correct
evaluation of the aerodynamic operator.

Traditionally, the methods developed for deterngnithe
aerodynamic operator for subsonic and supersorgimes are
based on linearized formulations which do not preshe same
satisfactory results in the transonic range. Accgrdo Tijdeman
(1977), this occurs due to the nonlinearity of s@mic flows
characterizing a significant alteration of the fldwehavior, even
when a profile is submitted to small perturbatioAshley (1980)
reported the use of semi-empirical corrections he tinearized
theory results as a mean of improving flutter pcedns.
Nevertheless, Ashley (1980) himself believed tleally satisfactory
aeroelastic quantitative predictions of the tramsargime should
be possible only when accurate, three-dimensianateady CFD
codes were developed. Hence, the methodology hersemted,
which is based on the ideas of Rausch, Batina aryY1990) and
Oliveira (1993), intends to obtain the aerodynaamerator for two-
dimensional lifting surfaces employing modern CIEBhniques.

Computational Fluid Dynamics (CFD) is a subjecttthas
played an extremely important role in recent stsidief
aerodynamics. The possibility of treating numetical broad range
of phenomena which occur in flows over bodies afcfically any
geometry has innumerous advantages over
determinations, such as greater flexibility togethdgth time and
financial resource savings.
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However, obtaining more reliable numerical resufts a
growing number of situations has been one of thgopm@cent
challenges in many science fields. Fletcher (1988a) Hirsch
(1988) show that particulary in aerodynamics, thenagal
phenomena are governed by the Navier-Stokes eaqsatishich
constitute a system of coupled nonlinear partiaffedintial
equations that has no general analytical solutiod that is of
difficult algebraic manipulation. Hirsch (1988) comants, among
other issues concerning CFD techniques, on howinpldy the
mathematical models conveniently in order to ed&®ertumerical
treatment of each case. A survey on this subjealsis presented by
Azevedo (1990). Space and time discretization selsems well as
convergence acceleration techniques, boundary tondi
establishment and other numerical integration t@wks available
and largely used in order to solve such problems.

After selection of the theoretical model, it is ismensable to
define the physical domain where the flow takes@laetermining
the boundary conditions. This solution approach atefs the
discrete representation of the physical domain ai&erthe problem
numerically coherent by defining a computationasmef points or
regions where the calculations are performed. Thshngeneration,
as it is vastly documented in the literatweray. Fletcher (1988b), and
verified by the CTA/IAE work group own experiendgidarella and
Azevedo, 2005), is extremely important and decigiveetermining
the accuracy and convergence of the solution. Téshrntype is also
an essential factor on the CFD tool behavior. $tmed meshes
have the advantage of being well-behaved, the emdst of an
intrinsic correspondence between adjacent nodesaanely good
control over grid refinement through stretchingdtions. However,
this sort of mesh do not adapt readily to comptidageometries,
requiring the adoption of sophisticated multiblonksh techniques.

experimen@n the other hand, unstructured meshes are extydtagible when

it comes to geometric forms and they allow the of@teresting
technigues such as adaptative refinement.

As stated by Marques (2004), together with the w@iah of the
work and projects performed by CTA/IAE, the demafat
aerodynamic parameters has increased considetdablyarticular,
the research group has been charged with the asitmulof diverse
aerodynamic information concerning the various sk rockets,
satellite launchers and other vehicles developedCaL/IAE.
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Nevertheless, the application of CFD tools in theseametric Once again, as usualyepresents the ratio of specific heats. The
analyses has always been limited by the need ofjumde code contravariant velocity componentsd &ndV) are determined by
development and the lack of computational resoucmespatible

with the work to be performed. Therefore, a proginas approach U=u-x andV =v- y, (6)
has been adopted in the development of CFD tod®TIA/IAE and

in ITA, as presented by Azevedo (1990), AzevedopRind Ortega wherex, andy; are the Cartesian components of the mesh velicity
(1995), Fico and Azevedo (1994), Azevedo, Strauss Berrari the unsteady case. For further details on the ieat formulation,
(1997), Bigarelli, Mello and Azevedo (1999), Bigiirand Azevedo such as boundary and initial conditions, the reateuld refer to
(2002), Oliveira (1993), Simdes and Azevedo (1999). Marques (2004).

The present work is based on the finite-volume fdation,
where a CFD tool is applied with unstructured tvwaehsional
meshes around lifting surfaces to acquire unstaagponses to
harmonic and pulse motions. These time-domain resgosupply The algorithm here presented is based on a celerah finite-
the generalized aerodynamic forces necessary ast itp the volume scheme, in which the stored information d@sually the
aeroelastic model. The methodology here preseniéends to variable average value throughout the entire contstume. These
obtain frequency-domain responses from the solgtimna pulse mean values are defined as
motion. That information can be used in the futimeorder to

Numerical Formulation

determine the aeroelastic stability margin withirgle expensive 1
CFD run per structural mode. Q ‘VIVI Qdxdy. @)
1
Aerodynamic Theor etical Formulation Equation (1) can, then, be rewritten for tkth cell as
The CFD formulation used in this work is based be two-
dimensional Euler equations. Due to the use ofruostred meshes iﬁ (Viq)dxdy+ [ (E dy-F d}=0. (8)
and a finite volume discretization, these equatiares used in the oty S
Cartesian form. Besides, as usual in CFD applinatilux vectors
are employed and the equations are nondimensiedalidence, The remaining integration in Eq. (8) representsftbx of the
they can be written as vector quantitie€ andF through each control volume's boundary.
This code was developed to be used with unstruttumeshes
iijdxdy+ [(Edy+F d}=0. (1) composed of triangles. The flux, therefore, caretaluated as the
oty s sum of the flux contributions of each edge, whishobtained

approximately from the average with the neighbashserved
In Eq. (1),V represents the volume of the control volume orguantities, as proposed by Jameson and Mavripl8d)L Hence, a
more precisely, its area in the two-dimensionakcass its surface, convective operator is defined and it is given by
or its side edges in 2-0Q is the vector of conserved properties,

given by [(Edy-Fdy= Q)=
9)
T 3 (
= u  pv . 2 _ _ ) —
Q={p pu pv ¢ @ kél[E(Q,k)(ykz i) = F (Qu) (% = %) |
E and F are the flux vectors in the andy directions,
respectively, defined as Where
1
A Qi :E(Qi +Q), (10)
U+
=y 7P L 3)
oy and the %, Y1) and &, Yio) coordinates are relative to the vertices
e+ pjU+ which define the interface between the cells.
X

The Euler equations are a set of nondissipativeetigic
conservation laws. Hence, as given by Pulliam ()986eir

N numerical treatment requires an inherently disgipaliscretization
_ puv scheme or the introduction of artificial dissipatierms in order to
F= . 4) : - .
oW+ p avoid oscillations near shock waves and to damjh figquency
(e+ p)V+ ¥ uncoupled error modes. Oliveira (1993) states tha flux

evaluation method adopted in the present CFD tahalogous to a
centered difference scheme in finite differencerfidiation. In this

The nomenclature adopted here is the usual in GFB:the case, Pulliam (1986) shows that there is the nigest adding
density,u andv are the Cartesian velocity components ansithe  artificial dissipation terms. Details on the adapteartificial
total energy per unity of volume. The pressprés given by the (dissipation scheme are given in Marques (2004).

perfect gas equation, written as The numerical solution is advanced in time usingpeond-order
accurate, 5-stage, explicit, hybrid scheme whicblved from the
(i, 1 consideration of Runge-Kutta time stepping scheda@seson, Schmidt

p=(r 1){6 >F ( o+ ‘2)} () and Turkel, 1981, and Mavriplis, 1990). This scheaready including

the necessary terms to account for changes inacedl due to mesh
motion or deformation (Batina, 1989), can be wmitks
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stage of the integration process, but the artifissipation operator,

D(Q), is only evaluated at the two initial stages. Tihidone with the A s 0
objective of saving computational time, since thal@ation of the last X
is rather expensive. As discussed by Jameson, Sttamil Turkel (b)
(1981), this type of procedure is known to proadequate numerical Figure 1. Mesh around (a) NACA0012 profile with 284  wal points and (b)
damping characteristics while achieving the desireduction in flat plate with 236 wall points.

computational cost.

Steady-state solutions for the mean flight conalitibinterest must be Unsteady calculations involve body motion and, ¢fane, the
obtained before the unsteady calculation can bedtalherefore, it is computational mesh should be somehow adjusted ke this
also important to guarantee an acceptable effigifanthe code in steady- motion into account. The approach adopted here leep the far
state mode. In the present work, both local tineppitg and implicit  field boundary fixed and to move the interior gpidints in order to
residual smoothing (Jameson and Mavriplis, 198@e3an and Baker, accommodate the prescribed body motion. This wae dallowing
1983 and Jameson and Baker, 1987) are employedcdele@te the ideas presented by Batina (1989), and RausatinaBand Yang
convergence to steady state. More details on ogewee acceleration (1990), which model each side of the triangles asp@ing with

techniques are found in Oliveira (1993) and Marq2es4). stiffness constant inversely proportional to thegta of the side.
Hence, once points on the body surface have beerednand
M esh Generation and M ovement assuming that the far field boundary is fixed, d& ek static

) ) equilibrium equations can be solved for the positd the interior

The meshes used in the present work were genenaedhe nodes. Control volume areas for the new grid cdient be
commercial grid generator ICEM CED a very powerful tool computed. For further details, the reader shouldrr® Marques
capable of creating sophisticated meshes with gend refinement (2004). The mesh velocity components can also baluated
and grid quality control. Figures 1(a) and 1(b)whine meshes considering the new and old point positions andtitne step in a

around a NACA 0012 profile and a flat plate, resipety, which are  geometric conservation law context, as presentedtimmas and
employed to obtain the results here presented. Lombard (1979).

Aeroelastic Formulation

The dynamic system represented is the typical segiroblem
(Bisplinghoff, Ashley and Halfman, 1955, and Oliagi1993), which
is an airfoil section with two degrees of freedgotufige and pitch)
subjected to aerodynamic, dynamic and elastic $oecel moments.
The governing equation of such dynamic systemvisrgby

[MJi(t) +[K I (t) =Qa 1), (13)

where the generalized mass and stiffness matrieegespectively,
given by

476 [ Vol. XXVIII, No. 4, October-December 2006 ABCM
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1 X
[M]=La A, (14)
@ 0
K= , 15
[ ] {O rcfa)g 4o

and the generalized coordinate and force vectegespectively,

20)=(€() ot} @)
Qalt)= {Q;—(bt) ?n”—tf;)}T. a”)

In the previous equationgy, and w, are the uncoupled free
vibration circular frequencies of each mode, wtdoh defined as

12 12
“h (mj ’ “ [Ia] ,

(18)

considers that the generalized aerodynamic foarede constructed by
the superposition of the effects of each modallaigment evaluated
separately. Clearly, this means that the formuiasocorrect for small
displacement amplitudes. However, since classidall @r wing flutter
are the main concern in the present case, this riaesonstitute any
major limitation because flutter onset is the ctiowlisought. Hence, the
present approach guarantees that the flow noriliesaand dynamics
are captured, except for those related to visctiaste which are not
included in an Euler formulation.

Nevertheless, the theoretical impulse is a singyland the
indicial motion leads to the appearance of infinigdocities, which
makes both numerically untreatable. Hence, otheofimr excitation
functions are employed (Davies and Salmond, 198DMohr, Batina
and Yang, 1989). The motion suggested by Bakhlal.gt1991) is
defined as

wherek, andk, are the stifiness constants in the plunge and pit¢Vhere the bar indicates the dimensionless time @nd is the

modes. Besidesm denotes the section mass ahdits inertia

moment respective to the elastic axis over whitbhpiakes place.
Moreover,¢ = h/b, whereh is the plunge amplitude atthe airfoil

semi-chord. Finally, the radius of gyration is givey

la

12
" [WJ .

This system can be more easily studied in the lcaptiomain.
Applying the Laplace transform on Eq. (13), one abtain

SIMn(9+[ Kin(9=0a(3

Therefore, as mentioned before, the main objecivee present
study is to efficiently determine the generalizegiodynamic force
vector Qa(s) in the Laplace domain for the transonic regimds T
done by evaluating this vector over the frequerasyge of interest
and, through analytical continuation (see Churchitown and
Verhey, 1974) extend such result to the erstjplane.

(19)

(20)

Aeroelastic Analysis M ethodology

The unsteady movements related to the aeroeldsénomena,
mainly flutter, can be represented by a seriesanfnbnic motions.
Therefore, a large computational cost reductionesofrom the use of
the indicial method. According to this approache therodynamic
response to a harmonic excitation of any frequeray be obtained
from Duhamel's integral of the response of the flowan indicial
motion. Following this same idea, and noticing tiat transient flow
due to an impulsive excitation takes a shorterogenf time to die out
than those that results from an indicial motioriyéMa (1993) proposed
a similar methodology where the aerodynamic respnevaluated in
the frequency domain from the response to a immibkskcitation in the
time domain.

Therefore, the aerodynamic calculations for a detexd flight
condition are reduced to a single computationalfoureach structural
mode. Such an approach can lead to a drastic i@duict the
computational cost of aeroelastic analyses usingnoalinear
aerodynamic formulation. To be more precise, tresemt approach
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exponentially-shaped pulse duration. As can be gedfig. 2, the
function defined in Eq. (21) guarantees a smoottiano

0.1

0.08

0.06

0.04

alpha (degrees)

0.02

e Lo e )
0 02 04 06 08 1 1.2 14

dimensionless time

Figure 2. Exponentially-shaped pulse excitation in angle of attack.

The methodology consists, then, in obtaining asfierrfunction in
the frequency domain applicable to any desiratpetinThis transfer
function is the frequency domain response to timilgive excitation.
Therefore, this is accomplished using the followsteps:

» Obtaining the steady aerodynamic solution for agiiach
number and angle of attack;

» Performing unsteady aerodynamic response evalgation
departing from the steady solution given in theviaes item. This
stage leads to time responses in terms of aerodgmaefficients as a
result to an exponentially-shaped pulse excitattbneach of the
modes;

» Obtaining the Fourier transform of the time resgsns
applying a Fast Fourier Transform (FFT) algorithrhis is done in
the present work employing the FFT capability ata# in the
commercial program Matlab®©;

October-December 2006, Vol. XXVIII, No. 4 / 477



« Approximating the obtained data with an interpolgti
polynomial, shown in Oliveira (1993);

¢ Formulating the corresponding eigenvalue probleatidvor a
determined range of dimensionless velocities, dindly, flutter
speed prediction through a root locus analysis.

As shown by Oliveira (1993), the corresponding freacy
domain resulting from the FFT procedure is given by

Alexandre N. Marques et al

point. The present results are very close to tlotained by Batina
(1989). Some smalll differences appear near shautghe authors
believe that they are due to the use of a moraeeéfimesh in the
present work. Moreover, the deviations between mizale and

experimental results seem to be systematic and edausy

experimental data reduction errors.

fot b
At N. 22)
8, | .
=——; |=O,1,2,...N
Atc N max
N/2; ) .
Nmax = (N _1)/2;|f N even, otherwise, (23)
. 05 Present
wherec is the chord length ana, the freestream speed of sound. s Batina, 1989
Equation (22), rewritten in terms of the reducestjfrency based on
the semi-chordhy), stands as - oft) = 1.09°
- e
— kt=2
wb 2mrfb I . I PR 1 L 1
k= TR 04 02 0 02 04
o0 .oo (24) xc
oo
= ——: 1=0,12,...
M, At N Nimax

whereM,, is the Mach number referring to the undisturbeaidmns.

As the input is not exactly an impulse excitatiche real
impulse response is evaluated using the convoliniggral concept
and its well-known property, as given by BrigharA§®)

a(t) = fo(t)0i(t) = &( f) = Fp( f) I1( ), (25)
G(f } Present
1(f)= = (( f)) (26) 05 8 Batina, 1989
p
aft) = 2.34°

wherei(t) represents the time response to a impulsive mowveme r kt = 69°
andg(t) is the response to the smooth excitation giveRqn (21). N R R AR EAVERI R
The functions in capital letters are discrete Faruiansforms of the 04 02 xc,)c 02 04

corresponding functions in low case letters. Theesf after
obtaining the FFT of the time response, it hasedlvided by the
FFT of the input pulse function. Although the inpsinot the exact
impulsive excitation, it is capable of exciting theeduced
frequencies of interest in aeroelastic studies.

Results and Discussion

Before attempting applications of the proposed odtlogy,
some validation simulations were performed with @ED tool.
This has been done throughout the entire developofethis code
as can be seen in Azevedo (1992), Oliveira (1988)%imdes and
Azevedo (1999). The present authors proceeded thith effort
obtaining the results shown in Figs. 3 to 7 for A 0012 airfoil
at M,, = 0.755 submitted to a harmonic pitching motion whthe
quarter-chord point. The motion's reduced frequendy= 0.0814
and the amplitude is 2.51°, while the mean anglgttaick is 0.016°.
Figures 3, 4 and 5 present the pressure coeffialeng the chord in
different positions of the cycle and compares theith results
presented by Batina (1989), which are also obtaimecherically
with a CFD tool similar to the one employed in @resent work.
The solutions in terms of aerodynamic coefficieysthresis curves
are given in Figs. 6 and 7, together with experitaledata from
AGARD (1982). The value o€, is referred to the quarter-chord

478 [ Vol. XXVIII, No. 4, October-December 2006
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Figure 3. Comparison of instantaneous pressure dist
NACA 0012 airfoil in pitching motion — Part I.
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Figure 5. Comparison of instantaneous pressure dist ributions for the

NACA 0012 airfoil in pitching motion — Part I1I.
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Figure 4. Comparison of instantaneous pressure dist

NACA 0012 airfoil in pitching motion — Part II.
Figure 6. ClI hysteresis curve.
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Figure 7. Cm hysteresis curve.

Once the CFD tool was tested and proved to beiabtelone,
the next step was to proceed in obtaining the resg® of interest
for the aeroelastic analysis methodology propoddw approach
selected was to reproduce the results presentdglabgch, Batina
and Yang (1990). This reference presents the arewdig
coefficient response in the frequency domain olkethiwith a pulse
transfer function approach, very similar to the moeblogy
proposed here. Therefore, initially, the resporfse ftat plate airfoil
to an exponentially-shaped excitationvit = 0.5 is presented. This
response was obtained for pitching motion aboutqtierter-chord
point, Figs. 8 and 9, and for plunging motion, Fig8 and 11. Note
that no time response to this particular excitat®available in the
literature. Hence, the results cannot be compared.

0.0006

0.0004

0.0002

Cl
[=]

-0.0002

-0.0004

-0.0006

of T T T T T T

dimensionless time

Figure 8. CI response along time to an exponentiall
excitation in pitch mode. Flat plate at M . =0.5.

y-shaped pulse
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-0.0001
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dimensionless time

Figure 9. Cm response along time to an exponentiall y-shaped pulse

excitation in pitch mode. Flat plate atM  » =0.5.
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Figure 10. CI response along time to an exponential ly-shaped pulse

excitation in plunge mode. Flat plate at M . = 0.5.
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(6]
[0} .
-0.002 |-
‘.
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dimensionless time

Figure 11. Cm response along time to an exponential ly-shaped pulse

excitation in plunge mode. Flat plate at M. = 0.5.

The corresponding Fourier transform, together i results
given by Rausch, Batina and Yang (1990), are shawkigs. 12 to
15. These results indicate a very good agreemeinvela
calculations performed with the proposed method thediterature
data.
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Figure 12. CI response in frequency domain to an ex ponentially-shaped Figure 15. Cm response in frequency domain to an ex  ponentially-shaped
pulse excitation in pitch mode. Flat plate at M. = 0.5. pulse excitation in plunge mode. Flat plateat M . =0.5.
However, the previously discussed results are pusebsonic
,L o and this is not the real subject of interest of gresent study.
o E_:eset“t . Therefore, the authors considered the same soanallysis for a
i ’ frerature y NACA 0012 airfoil atM,, = 0.8, for which case results are also
15k found in Rausch, Batina and Yang (1990). The tiemponse for
I this test case in terms 6f andC,, are presented for pitching about
e I the quarter-chord and plunging in Figs. 16 to 19.
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Figure 13. Cm response in frequency domain to an ex  ponentially-shaped
pulse excitation in pitch mode. Flat plate atM . = 0.5.
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Figure 16. CI response along time to an exponential ly-shaped pulse
excitation in pitch mode. NACA 0012 airfoilatM . =0.8.
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Figure 14. CI response in frequency domain to an ex ponentially-shaped

pulse excitation in plunge mode. Flat plateatM . =0.5.
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Figure 17. Cm response along time to an exponential ly-shaped pulse
excitation in pitch mode. NACA 0012 airfoilatM . =0.8.
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Figure 20. Cl response in frequency domain to an ex  ponentially-shaped
Figure 18. CI response along time to an exponential pulse excitation in pitch mode. NACA 0012 airfoila  t M. =0.8.

excitation in plunge mode. NACA 0012 airfoilatM  » =0.8.

ly-shaped pulse

k

Present
! o Literature
B 1 L 1 P - P I
P IR 0 02 0.4 0.6 0.8 1

dimensionless time
Figure 21. Cm response in frequency domain to an ex  ponentially-shaped
Figure 19. Cm response along time to an exponential pulse excitation in pitch mode. NACA 0012 airfoila  t M. =0.8.

excitation in plunge mode. NACA 0012 airfoilatM . =0.8.

ly-shaped pulse

The Fourier transforms of such aerodynamic coeifficitime
histories are shown in Figs. 20 to 23 together wiib results

0

presented by Rausch, Batina and Yang (1990). Ogeinathe NG +Real e © B
results obtained in the present work agree verywith those given RS

in the literature. Therefore, the present test ¢adieates that the 2 @

first three items of the proposed methodology faroalastic Imaginary

analysis have already been successfully implementaé work
performed comprises the evaluation of the aerodynéorces using
CFD methods. Hence, the current results demonstrae the
unsteady aerodynamic forces are being correctjuated and the

approach is able to yield the required coefficieitghe frequency
domain, for the desired aeroelastic stability asedy 5 Present
o Literature >
-6 P I NI I ST Of’o
0 02 04 [oX:] 0.8 1
k

Figure 22. Cl response in frequency domain to an ex  ponentially-shaped
pulse excitation in plunge mode. NACA 0012 airfoil at M. =0.8.
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Figure 23. Cm response in frequency domain to an ex  ponentially-shaped
pulse excitation in plunge mode. NACA 0012 airfoil at M. =0.8.

Concluding Remarks

This work comprises the evaluation of all the reedi
aerodynamic data in the frequency domain for ugetteer with the
proposed aeroelastic analysis methodology. Thexefothe
frequency domain results obtained through the di@twof the
steps demonstrated in the present work complegglyesent the
aerodynamic behavior involved in the aeroelastienpimena of
interest.

As one can see in the results presented and dteémreferences,
the CFD tool developed by the CTA/IAE group hasnbesadely
tested and it has proved to be a reliable sourceurtiteady
aerodynamic data for aeroelastic use in the subsamil transonic
regimes. Furthermore, the frequency domain datairgt in the
present work agree very well with other numericapegiments
available in the literature, which indicates therect implementation
of the aerodynamic operator for the proposed melbgg.

Therefore, such excellent results encourage theoeito move
forward to achieve the complete implementationhef &eroelastic
analysis methodology proposed. The implementatiwh\alidation
of the remaining steps of this methodology, which lbeyond the
scope of the present work, will provide the reqdiicapabilities to
study aeroelastic problems using an efficient apgnoin the
frequency domain. Therefore, in this context, threspnt work
represents a fundamental research developmeneteublution of
computational aeroelastic studies for the aerospactgurations of
interest to CTA/IAE.
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