
A Chebyshev Collocation Spectral Method for Numerical Simulation of … 

J. of the Braz. Soc. of Mech. Sci. & Eng.          Copyright  2007 by ABCM         July-September 2007, Vol. XXIX, No. 3 / 317 

 
 

Johnny de Jesús Martinez 
martinez@peno.coppe.ufrj.br 

COPPE 
Federal University of Rio de Janeiro - UFRJ 

Cidade Universitária 
21945-970 Rio de Janeiro, RJ, Brazil 

Paulo de Tarso T. Esperança 
ptarso@peno.coppe.ufrj.br 

COPPE 
Federal University of Rio de Janeiro - UFRJ 

Cidade Universitária 
21945-970 Rio de Janeiro, RJ, Brazil 

 
 
 
 
 
 
 
 
 
 

A Chebyshev Collocation Spectral 
Method for Numerical Simulation of 
Incompressible Flow Problems 
This paper concerns the numerical simulation of internal recirculating flows 
encompassing a two-dimensional viscous incompressible flow generated inside a 
regularized square driven cavity and over a backward-facing step. For this purpose, the 
simulation is performed by using the projection method combined with a Chebyshev 
collocation spectral method. The incompressible Navier-Stokes equations are formulated 
in terms of the primitive variables, velocity and pressure. The time integration of the 
spectrally discretized, incompressible Navier-Stokes equations is performed by a second-
order mixed explicit/implicit time integration scheme. This scheme is a combination of the 
Crank-Nicolson scheme operating on the diffusive terms and a second-order Adams-
Bashforth scheme acting on the advective terms. The projection method is used to split the 
solution of the incompressible Navier-Stokes equations in two decoupled problems: the 
Burgers equation to predict an intermediate velocity field and the Poisson equation for the 
pressure, which is used to correct the intermediate velocity field and satisfy the continuity 
equation. Numerical simulations for flows inside a two-dimensional regularized square 
driven cavity for Reynolds numbers up to 10000 and over a backward-facing step for 
Reynolds numbers up to 875 are presented and compared with numerical results 
previously published, where good agreement is demonstrated. 
Keywords: regularized square driven cavity, backward-facing step, chebyshev collocation 
spectral method, incompressible Navier-Stokes equations, projection method 
 
 
 

Introduction 

1Internal recirculating flows generated within a bounded domain 
are very important under a technological perspective and also of a 
great scientific interest because they display several aspects of fluid 
mechanical phenomena in a very simple geometrical setting. Thus, 
corner vortices, longitudinal vortices, transition, and turbulence all 
occur naturally and can be studied in the same closed geometry 
(Shankar and Deshpande, 2000).  

Numerical simulations of the Navier-Stokes equations for 
studying two-dimensional flows of incompressible viscous fluid are 
generally based upon a primitive variables formulation (velocity and 
pressure) or vorticity-streamfunction formulation. The major 
difficulty arising with the former formulation comes from the 
coupling of the pressure with the velocity, to satisfy the 
incompressibility condition. The continuity equation contains only 
velocity components, and there is no direct link with the pressure as 
it happens for compressible flow through the density (the lack of 
evolution equation for the pressure in primitive variables 
formulation is the source of difficulty). The use of a vorticity-
streamfunction formulation of the equations avoids this problem. 
However, although its application to two-dimensional flows is quite 
common, the extension to three-dimensional problems is not 
straightforward. Thus, the primitive variables formulation is 
preferable because it is easily extended to three dimensions. 

Several methods were proposed to overcome the difficulty 
arising in the primitive variables formulation. Among these, the 
projection methods or fractional steps methods (splitting methods) 
gained a new interest because of theirs non iterative nature, no 
requirement of any specific memory storage and appropriate use for 
simulation of unsteady incompressible flows. These methods belong 
to the predictor-corrector algorithms, where the pressure acts as a 
projection of the predicted velocity field (intermediate velocity 
field) onto a divergence-free space. In fact, there are several variants 
of the original projection method proposed by Chorin (1968) and 
Temam (1968). However, the use of projection methods has been 
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popularized associated to finite difference, volume or finite element 
methods, and there are few applications reported on spectral 
methods (Huges and Randriamampianina, 1998). 

The main objective of this paper is to develop an efficient 
numerical method for the solution of a two dimensional 
incompressible viscous fluid with internal recirculating flows 
generated inside a bounded geometry. For this purpose, the 
numerical solution of incompressible Navier-Stokes equations in 
two dimensions (INSE2D) is based upon a Chebyshev collocation 
spectral method (also named Chebyshev pseudospectral method) in 
conjunction with a second-order projection method and coupled 
with appropriate boundary conditions. The motivation for using 
collocation spectral methods stems from their high precision and 
very low phase errors for the prediction of time-dependent flow 
regimes. A time integration of the equations system is performed by 
using a semi-implicit second-order accurate scheme (second-order 
Adams-Bashforth and Crank-Nicolson). 

Spectral methods have been used in combination with temporal 
schemes of high order (at least order three). For example, Botella 
(1997) used a temporal scheme of order three, to improve the 
accuracy of his algorithm that involved a variant of the projection 
method with a pseudospectral method. In the present paper the 
algorithm is based on an original combination that involves the 
projection method with a semi-implicit temporal discretization of 
second order (which guarantees a good stability of the method) in a 
structure of spectral collocation. This numerical algorithm uses the 
technique of the complete diagonalization (non-iterative technique) 
which is very effective and fast for the direct solution of the 
resulting equations after the spatial and temporal discretization. 

Two benchmark problems are chosen to assess the accuracy of 
the Chebyshev collocation spectral method. The first one deals with 
the regularized square driven cavity flow for Reynolds numbers up 
to 10000. The second problem considers the flow over a backward-
facing step in a channel for Reynolds numbers up to 875. Very good 
agreement is found between the numerical results of the present 
method and numerical results previously published by other authors. 

The paper is organized as follows. At first, the mathematical 
formulation is presented, including the governing equations and the 
projection method. The next section is devoted to the numerical 
formulation, consisting of the temporal and spatial discretizations of 



Johnny de Jesús Martinez and Paulo de Tarso T. Esperança 

318 / Vol. XXIX, No. 3, July-September 2007 ABCM 

the resulting equations, after the application of the projection 
method. In the following section the numerical results related to the 
two benchmark problems are presented and compared with 
numerical results previously published. The last section presents the 
conclusions. 

Nomenclature 

ic  = coefficients to evaluate the first derivate matrix 
)1(D  

)1(D  = Chebyshev collocation first derivative matrix 
)1(

ik
D  = coefficients of matrix )1(D  

H  = 1, non-dimensional channel height 

2H/  = non-dimensional channel step height 

1sH  = horizontal extension at the bottom left of the secondary 

vortices 

2sH  = horizontal extension at the bottom right of the secondary 

vortices 

3sH  = horizontal extension at the top left of the secondary 

vortices 

)(xhi  = Lagrange polynomials 

L  = H30 , longitudinal non-dimensional channel length 

cL  = characteristic length (either length of the square cavity or 

channel height, H ) 

N  = number of polynomials or collocation points in x 

M  = number of polynomials or collocation points in y 

bN  = number of points indicating the starting of the Buffer zone 

xN  = number of points indicating the position of the outflow 

boundary 

P  = 2
0  UP ρ , non-dimensional pressure field  

P  = dimensional pressure field 

Re  = νcLU0 , Reynolds number characteristic of the flow 

js  = general filter function 

t  = cLUt 0 , non-dimensional time 

t  = dimensional time 

u  = non-dimensional horizontal component of velocity 

0U  = dimensional reference velocity 

)( t,xuN  = polynomial approximation of degree N  of the 

function )( t,xu  

)(tûk  = time dependent expansion spectral coefficients 

v  = non-dimensional vertical component of velocity 

V  = 0UV = )( v,u , non-dimensional velocity vector 

V
~
 = non-dimensional intermediate velocity vector at time 

tn ∆)1( +  

V  = dimensional velocity vector 

1sV  = vertical extension at the bottom left of the secondary 

vortices 

2sV  = vertical extension at the bottom right of the secondary 

vortices 

3sV  = vertical extension at the top left of the secondary vortices 

x  = cLx , non-dimensional horizontal coordinate  

x  = dimensional horizontal coordinate 

ix  = Chebyshev-Gauss-Lobatto points 

cx  = horizontal position of the primary vortices 

1sx  = horizontal position at the bottom left of the secondary 

vortices 

2sx  = horizontal position at the bottom right of the secondary 

vortices 

3sx  = horizontal position at the top left of the secondary 

vortices 

y  = cLy , non-dimensional vertical coordinate  

y  = dimensional vertical coordinate 

cy  = vertical position of the primary vortices 

1sy  = vertical position at the bottom left of the secondary 

vortices 

2sy  = vertical position at the bottom right of the secondary 

vortices 

3sy  = vertical position at the top left of the secondary vortices 

w  = boundary velocity 

0w  = initial velocity field 

)(xTk  = )( 1 xcoskcos − , Chebyshev polynomials of order k  

)(xTN′  = first-order derivative of the Chebyshev polynomial of 

order N , )(xTN  

Greek Symbols 

t∆  = non-dimensional time step 

ct∆  = non-dimensional critical time step 

ν  = kinematic viscosity 
ω  = vorticity 
ρ  = density  

)(xkφ  = basis functions 

ψ  = stream function 

Ω  = internal computational domain 
Ω∂  = boundary of domain 

℘ = projection operator 

ikδ  = Kronecker delta operator 

τ̂  = unitary vector tangent to the boundary 
n̂  = unitary vector normal to the boundary 
∇  = gradient operator 

2∇  = Laplacian operator 

Superscripts 

)2()1(  ,  = order of the first and second derivative 
11   +− nnn ,,  = variables evaluated at time t , tt ∆− , tt ∆+  

´  = indicates derivative with respect to x  

Subscripts 

ki,  = relative to the number of polynomials or collocation 
points 

Mathematical Formulation 

Governing Equations 

Two-dimensional viscous incompressible fluid flows are 
governed by the Navier-Stokes equations. The dimensionless 
unsteady Navier-Stokes equations for incompressible flows in 
Cartesian coordinates may be written in primitive variables as 

 

VPV.V
t

V 2

Re

1
)( ∇+−∇=∇+

∂

∂
     in     Ω  (1) 

 
0=∇ V.      in     Ω  (2) 
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where the unknowns are the vector V , which represents the velocity 
of the flow and the scalar P , which represents the pressure field. 
Here, Re  is the Reynolds number of the flow, 0U  is the reference 

velocity, cL  represents the characteristic length and ν  the 

kinematical viscosity. Let Ω  be the internal computational domain 
with sufficiently smooth boundaries Ω∂ . The initial condition is 
given as 

 

owV  t == 0      in     Ω  (3) 

 
satisfying Eq. (2) (the initial velocity field ow  is solenoidal). 

Equations (1) and (2) are completed with an appropriate boundary 
condition for the velocity field, 

 

wV =      on     Ω∂  (4) 
 
The Navier-Stokes equations were non-dimensionalized using 

the following dimensionless variables: 
 

0
2
0

0   ,  ,  ,  ,
U

V
V

U

P
P

L

Ut
t

L

y
y

L

x
x

ccc

=====
ρ

 (5) 

Projection Method 

The major difficulty to solve numerically the incompressible 
Navier-Stokes equations (INSE) arises from the fact that the 
velocity V  and the pressure P  are coupled together by the 
incompressibility constraint (Eq. (2)). To overcome this difficulty, 
Chorin (1968) and Temam (1968), proposed the projection method 
(or fractional step method), which decouples the velocity and the 
pressure fields. The projection method has been widely used and has 
proven to be very efficient for this type of problem. 

These classes of methods permit to uncouple the velocity and 
the pressure in each time step by reducing the solution of the 
Navier-Stokes equations to the solution of two successive problems. 
The first step solves an intermediate velocity, which does not satisfy 
the incompressibility condition (the velocity field is not solenoidal), 
while in the second step the intermediate velocity is projected onto a 
divergence-free space. This last step is equivalent to the solution of 
a Poisson equation for pressure, which is used to correct the 
intermediate velocity in order to fulfill the incompressibility 
condition. 

The projection methods are based on the observation that the 
left-hand side of Eq. (1) is a Hodge decomposition. Hence an 
equivalent projection scheme is given by 

 







∇+∇−℘=

∂

∂
VV.V

t

V 2

Re

1
)(  (6) 

 
where ℘  is the operator which projects a vector field onto the space 

of divergence-free vector fields with appropriate boundary 
conditions. 

The projection ℘ can be defined by the solution of a Poisson 

equation. Specifically, let φ∇+=VW  be the Hodge decomposition 

of W , where φ  is a scalar field and V is the divergence-free 

velocity field that is required to satisfy wV =∂Ω . Then, in order to 

determine V  from W  let (Brown, Cortez and Minion, 2001): 
 

φ∇−=℘= WWV )(  (7) 

 
where 

W .∇=∇ φ2      in     Ω  (8) 

 

)  (ˆˆ wW . n. n −=∇φ      on     Ω∂  (9) 

 
Following Streett and Macaraeg (1989/90), the semi-discretized 

version of a semi-implicit projection method applied to Eqs. (1) and 
(2) can be written in two steps as follows: 

 
a. The advection-diffusion step solves the intermediate velocity 

field at time t)n( ∆1+ , V
~  by 

 

)()(
Re

1
~

VNLVD
t

VV n

−=
−

∆
     in     Ω  (10) 

 
with the intermediate boundary conditions 

 

)2(ˆ ˆ
~

ˆ 1−∇−∇+= nn PPt . τ.VτV. τ ∆      on     Ω∂  (11) 

 

.VnV .n  ˆ
~

 ˆ =      on     Ω∂  (12) 
 

where V)V.()V(NL ∇=  and V)V(D
2∇=  represent the 

advection and diffusion terms. 
 
b. The pressure correction step solves the Poisson equation for 
1+nP  from 
 

t

V .
P
n

∆

~
12 ∇
=∇ +      in     Ω  (13) 

 
with the homogeneous Neumann boundary condition: 
 

0ˆ 1 =∇ +nP . n      on     Ω∂  (14) 
 
Then the velocities are updated with 
 

11 ~ ++ ∇−= nn PtVV ∆      in     ΩΩ ∂+  (15) 
 
This step can be viewed as the projection of the velocity field 

onto the divergence-free space. At the end of the full step there 
exists a nonzero tangential component of the velocity on the 
boundary.  

The magnitude of this finite slip velocity can be reduced by a 

proper choice of the intermediate boundary condition on V
~
 (Streett 

and Macaraeg, 1989/90). The slip velocity may be reduced to 

)( 3
tO ∆  through the boundary condition for the intermediate 

tangential velocity component, Eq. (11). This intermediate boundary 
condition is obtained from the Eq. (15) with an expansion of the 

term 1+∇ nP  in Taylor series about ntt =  and an approach of finite 

differences of the term n
tP∇  (see Streett and Macaraeg, 1989/90). 

Numerical Formulation 

Temporal Discretization 

The temporal integration used in the projection method is based 
on a second-order explicit-implicit scheme, which combines an 
explicit second-order Adams-Bashforth scheme for the advection 
terms and an implicit Crank-Nicolson scheme for dealing with the 
diffusion terms: 
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)(
2

1
)(

2

3
)( 1−−= nn VNLVNLVNL  (16) 

 

2

)]()
~
([

)(
nVDVD

VD
+

=  (17) 

 
Equations (16) and (17) are substituted in the Burgers equation 

(Eq. (10)), and at each time step, the solution of the problem reduces 
to the resolution of Burgers and Poisson equations. 

Spatial Discretization 

Equations obtained from the semi-discretized version of the 
projection method are spatially discretized using a Chebyshev 
collocation spectral method. The collocation spectral method is 
characterized by the fact that the numerical solution is forced to 
satisfy the governing equations exactly at collocation points. So, the 
series expansion for a function ),( txu  on the domain 1] ,1[−  may be 

approximated as  
 

)( )(ˆ),(
0

xtutxu k

N

k
kN φ∑

=
=  (18) 

 
where the )(xkφ  are the trial functions (also known as basis 

functions) and the )t(ûk  are the time dependent expansion spectral 

coefficients.  
For a Chebyshev collocation method, the functions )(xkφ  are 

the Chebyshev polynomials of order k , )(xTk ; 
 

)( )(ˆ),(
0

xTtutxu k

N

k
kN ∑

=
=  (19) 

 
and the interpolation points are the so-called Chebyshev-Gauss-
Lobatto points, 

 

,..., N, i
N

i
xi 10        

 
cos =








=

π  (20) 

 
which correspond to the extreme points of the Chebyshev 
polynomials of order N , 

 

)coscos()( 1
xNxTN

−=  (21) 
 
The expansion coefficients, )t(ûk  may be evaluated by the 

inverse relation  
 

,..., N, k
N

ik

c

txu

Nc
tu

N

i i

iN

k
k 10  ,cos

),(2
)(ˆ

0
=








= ∑

=

π  (22) 

 
where ic  and 1=kc  for 121 −= N,..,,k,i  and 20 == Ncc . 

 
The collocation spectral method can be seen as a technique of 

interpolation, so Eq. (19) also can be expressed in terms of Lagrange 
polynomials de order N , )(xhi  such that 

iki xh δ=)( , which is the 

Kronecker operator. The Lagrange polynomials for the Chebyshev-
Gauss-Lobatto points (Eq. (20)) may be represented by the 
expression: 

 

N,...,,i,
xxNc

xTx
xh

ii

N
i

i 10   
)(

)()1()1(
)(

2

21

=
−

′−−
=

+
 (23) 

where 1=ic  for 11 −= ,..,Ni  and 20 == Ncc , (Canuto et al., 

2006; Peyret, 2002). 
 
The differentiation step can be accomplished in the transformed 

space (“transform method”) or in physical space (“matrix 
multiplication method”). The first method is performed efficiently 
by means of a fast cosine transform with a recurrence relation in 
spectral space (see Canuto et al., 2006; Martinez, 1999) and the 
second method is based on explicit expressions obtained by 
differentiating the Lagrange polynomials. The matrix multiplication 
method is used in this paper because it is very efficient and easy to 
implement. 

The spatial derivative of )t,x(uN  at the collocation points 
ix  is 

evaluated using the analytical derivative of the Lagrange 
polynomials, 

 

∑
=

==′
N

k
k

)(
ikiN N,...,,i,t,xuDt,xu

0

1 10   )()(  (24) 

 

where )(D 1  is the Chebyshev collocation derivative matrix. This 

matrix )(D 1  is given by the following expression: 
 



















==
+

−

==
+

≤=≤
−

−

≠
−

−

=

+

N.ki,
N

,ki,
N

,N-ki,
)x

x

k,i,
)xx(c

)c

D k

k

kik

ki
i

)(
ik

          
6

12

0             
6

12

11          
1( 2

         
1( 

2

2

2
1  (25) 

 
This expression is easily found in the literature of the spectral 

methods (Boyd, 2001; Canuto et al., 2006; Deville et al., 2002; 
Peyret, 2002; Solomonoff and Turkel, 1989; Trefethen, 2000). The 

Chebyshev collocation second derivative matrix )(D 2  can be 
obtained analytically using an explicit expression (see Peyret, 2002) 

or by the following relation 212 )D(D )()( = . 
The results presented so far can be readily extended to two-

dimensions. If an unknown matrix U  is defined such that 

ijji u)y,x(U = , then the partial derivatives of the interpolant 

evaluated at the collocation points, can be expressed in terms of 
matrix-matrix products, where differentiation with respect to x  
corresponds to multiplying the rows of xD (collocation derivative 

matrix in x ) by the columns of U , and differentiation with respect 
to y  corresponds to multiplying the rows of U  by the columns of 

T
yD  (collocation derivative matrix transpose in y ). 

The algebraic system formed by the Helmholtz (Burgers) and 
Poisson equations obtained after the temporal and spatial 
discretizations has to be solved at each time step, using a complete 
diagonalization of the operators in both directions. This matrix 
diagonalization scheme was introduced by Lynch et al. (1964) for 
Finite Difference Methods and considered for Spectral Methods by 
Ehrenstein and Peyret (1989), Zhao and Yedlin (1994) and 
especially for the solution of the Poisson equation in polar and 
cylindrical coordinates by Chen et al. (2000). The computation of 
eigenvalues, eigenvectors and the inversion of the corresponding 
matrices are performed once in a preprocessing step before starting 
the time integration. Thus, at each time step, the solution is obtained 
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from simple product of matrices (see Peyret, 2002; Chen et al., 
2000; Martinez, 2005). 

Numerical Results 

Regularized Square Driven Cavity Flow 

In order to take advantage of the high accuracy of the 
Chebyshev collocation spectral method, a regularized square driven 
cavity is considered, where the singularity at the upper corners is 
removed using a parabolic horizontal velocity distribution instead of  
a constant velocity equal to one (the usual driven cavity flow). 

The regularized square driven cavity (see Fig. 1a) is a model for 
flow in a cavity where the upper boundary moves to the right with a 

horizontal velocity distribution of ( )22 116 xx − , while the other three 

boundaries are kept stationary (no-slip boundary conditions) and 
this generates the internal recirculating flow in the cavity. The 
horizontal velocity distribution produces a maximum velocity of 

01max .u =  and the Reynolds number in this problem is defined by 

the following relation: 
 

νν /./Lu cmax 01Re ==  (26) 

 
The initial condition for the cases of Re ≤ 1000 starts from rest. 

The initial condition for the cases of Re ≥ 2000 is the steady state 
solution of the previous Reynolds number in order to accelerate the 
temporal integration process. 

 

 
Figure 1. Regularized square driven cavity flow: (a) Boundary conditions; 
(b) Flow configuration and nomenclature (Tanahashi and Okanaga, 1990). 

 

The time accuracy of the method is checked on the steady-state 
solution of the regularized square driven cavity flow for three values 
of the Reynolds number, Re = 100, 400 and 1000. To measure the 
temporal accuracy, the discrete norm of the divergence on the inner 
collocation points, .V∇  has been considered: 

 

∑ ∑
−

=

−

=
∇

−−
=∇

1

2

1

2

22
)],([

)1)(1(

1 N

i

M

j
ji yx.V

MN
.V  (27) 

 
Figure 2 shows the variation of the discrete norm of the 

divergence on the inner collocation points with the time step t∆  for 
the steady-state solutions of three values at Re = 100, 400 and 1000 
on a grid of Chebyshev of 33x33. In this figure, it can be noticed 
that as the time step diminishes the discrete norm of the divergence 
also diminishes (order of accuracy increases). Our numerical 
experiments indicate that the critical time step ct∆ (maximal time 

step to guarantee the stability of the method) varies with the 
Reynolds number. Thus, for a Reynolds number of 100 it is 

necessary a 040 .t ≤∆ )040(∆ .tc =  for stability of the scheme, 

while that, for a Reynolds number of 1000 a value of 

010 .t ≤∆ )010(∆ .tc =  is required for the scheme to become 

stable. Then, the choice of a time step of 0.001 is enough to 
guarantee the stability of the method as well as a high precision for 
all the Reynolds numbers to be studied.  

To study the convergence of the solution with respect to the 
spatial resolution, the stream function ψ  and the vorticity ω  

associated with the regularized cavity flow has been considered. 
Thus, at each time step, the vorticity ω  is computed according to 

 

y

u

x

v nn
n

∂

∂
−

∂

∂
=

++
+

11
1ω  (28) 

 
and the steady-state solution is reached when 

 

,...2,1,0   ,102
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2
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1
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1
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1
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=<
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=
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=

+

−

=
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=

+

∑ ∑

∑ ∑
nx

t
N

i

M

j

n
ji

ji

N

i

M

j

n
ji

n
ji

ji

ω∆

ωω
 (29) 

 
The streamfunction ψ  is computed using the following Poisson 

equation 
 

112 ++ −=∇ nn ωψ      in     Ω  (30) 

 

01 =+nψ      on     Ω∂  (31) 

 

 
Figure 2. Variation of the discrete norm of the divergence with the time 

step ∆t  on a grid of Chebyshev of 33x33. 

 

The convergence is assessed by considering the steady-state 
regularized driven cavity flow for two values of Re = 100 and 400. 
The comparisons of some characteristic flow variables are made 
with those of Botella (1997), who used a third-order time accurate 
Chebyshev projection scheme for approximating the Navier-Stokes 
incompressible equations, and Ehrenstein and Peyret (1989), who 
used a Chebyshev collocation method for solving the Navier-Stokes 
equations based upon a vorticity-stream function formulation. The 
comparisons were carried out for different spatial resolutions on the 
maximal value of the streamfunction ψ  on the inner collocation 

points and the maximal value of the vorticity ω  on the moving top 

side )1( ,x : 

)(max1 ji y,xM ψ=   on the inner collocation points; 

)1,(max2 ixM ω=   on the collocation points of the upper side 

1=y . 

),x(M 1max3 ω=   from solution interpolated on 201 equally 

spaced points on 1=y . 
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Tables 1  and  2, respectively, display these comparisons. For  
Re = 100, the results of the present method for 1M  and 2M  are in 

good agreement with the results obtained by Botella (1997) and also 
by Ehrenstein  and  Peyret (1989) for  a  grid 17>=MN . For Re = 
400, the values of 1M  and 2M  obtained by the present method 

agree well with those results obtained by Botella (1997) and by 
Ehrenstein and Peyret (1989) for a grid 21>= MN . The evolution 
of 1M  and 2M , when the spatial resolution N  increases, is not the 

best indication of convergence of the solution. The sensitive 
quantity such as 2M  does not give a precise account of the maximal 

value of the vorticity ω , because of the strong variation of the 
vorticity on the moving top side )1,(xω , and the unequal 

distribution of the Chebyshev-Gauss-Lobatto points. So, it is much 
more significant to consider the maximal value of the polynomial 

),x(N 1ω  on ],[x 1 1−∈ . From the knowledge of the grid values 

N,..,,i),,x( i 2 1  1 =ω , the continuous polynomial ),x(N 1ω  is 

reconstructed through the Chebyshev expansion (Eq. 19) after 
having calculated the Chebyshev coefficient with Eq. (22). Thus, the 
maximal value of the polynomial ),x(N 1ω  taken on 201 equally 

spaced points on the moving top side is denoted by 3M  (Peyret, 

2002). 
The evolution of the quantity 3M , when N  increases, provides  

a  monotonic convergence of  the  numerical solution. For a 
sufficient number of collocation points, the present method 
converges for very  near values  to those obtained  by Botella (1997) 
and Ehrenstein  and  Peyret (1989)  (see Table 1 and 2). Thus, for 
Re = 100 and 400, the values de 3M  obtained by the present 

method for 33=N  ( 3M  = 13.4443 and 3M  = 24.9110) and 

41=N  ( 3M  = 13.4444 and 3M  = 24.9109) show that 33 

collocation points are sufficient to represent correctly a regularized 
 

Table 1. Comparison of the characteristic flow variables 1M , 2M , 3M for the regularized square driven cavity at Re = 100. 

MN =  1M  

Present 

Method 

1M  

Botella (1997) 

2M  

Present 

Method 

2M  

Botella (1997) 

2M  

Ehrenstein & 

Peyret (1989) 

3M  

Present 

Method 

3M  

Botella (1997) 

3M  

Ehrenstein & 

Peyret (1989) 

17 8.3115E-02 8.3160E-02 13.3347 13.3467 13.3687 13.4628 13.4476 13.4663 

21 8.2673E-02 8.2694E-02 13.1869 13.1759 13.1780 13.4472 13.4441 13.4459 

25 8.3306E-02 8.3315E-02 13.4291 13.4226 13.4227 13.4449 13.4446 13.4446 

33 8.3400E-02 8.3402E-02 13.3441 13.3423 13.3422 13.4443 13.4448 13.4447 

41 8.3595E-02 - 13.4430 - - 13.4444 13.4447 - 
 

Table 2. Comparison of the characteristic flow variables 1M , 2M , 3M  for the regularized square driven cavity at Re = 400. 

MN =  1M  

Present 

Method 

1M  

Botella (1997) 

2M  

Present 

Method 

2M  

Botella (1997) 

2M  

Ehrenstein & 

Peyret (1989) 

3M  

Present 

Method 

3M  

Botella (1997) 

3M  

Ehrenstein & 

Peyret (1989) 

17 8.5341E-02 8.5777E-02 24.7189 24.7799 25.2329 25.0855 25.1604 25.4675 

21 8.5113E-02 8.5192E-02 24.6189 24.6268 24.6693 24.9362 24.9273 24.9846 

25 8.5671E-02 8.5716E-02 24.9172 24.9157 24.9344 24.9176 24.9148 24.9333 

33 8.5467E-02 8.5480E-02 24.7821 24.7845 24.7845 24.9110 24.9111 24.9110 

41 8.5893E-02 - 24.8622 - - 24.9108 24.9109 - 

 
cavity flow, the relative difference between 3M  obtained for 

33=N  and for 41=N  is less than 8E-06. This relative difference 
is the same for the values de 3M  obtained by Botella (1997). 

Then, to represent well the steady-state flow with the vortices 
inside of the regularized cavity for all the numbers of Reynolds a 
mesh of 33x33 was used in combination with a time step fixed of 
0.001 to guarantee a high precision and stability of the present 
method as well as avoiding high computational cost. 

The flow configuration is characterized by the magnitude and 
the location of the centers of the primary and secondary vortices. 
The steady state streamfunction contours were computed solving the 
equation of Poisson (Eqs. (30) - (31)). The center of the primary 
vortex was defined using the criterion of the location of the 
minimum value of the streamfunction. The centers of the secondary 
vortices were defined using the criterion of the location of the 
maximum value of the streamfunction and the centers of the vortices 
tertiary were defined using the criterion of the location of the 
minimum value of the streamfunction. 

Table 3 shows the comparison of the some characteristic values 
of the regularized square driven cavity flow with previously 

published numerical results obtained by Shen (1991), according to 
the nomenclature in Fig. 1b. Shen (1991) used the projection 
scheme of Kim and Moin (1985) in conjunction with a Chebyshev-
Tau space discretization. Shen (1991) results were based on uniform 
grids of 17x17 up to 49x49 depending on the Reynolds numbers 
(see Table 3). Although we have used only a 33x33 grid for all 
cases, the solutions are in good agreement. 

The numerical results obtained by Ghia et al. (1982) for the 
driven cavity flow (not-regularized) for Reynolds numbers up to 
10000 are also shown in the Table 3. Ghia et al. (1982) used the 
vorticity-streamfunction formulation of incompressible Navier-
Stokes equations and a multigrid method, with a 129x129 uniform 
mesh at Re = 1000 and a 257x257 uniform mesh at Re ≥ 5000. 

The comparison of the some characteristic values of the 
regularized driven cavity flow with numerical results obtained by 
Ghia et al. (1982) shows that the vortex dynamics between the two 
cavity flows (regularized and not-regularized) is very similar 
although the quantitative characteristics are somewhat different. 

Figures 3a - 3f show the steady state streamlines of the 
regularized square driven cavity flow for Reynolds numbers up to 
10000. In these figures can be noted the variation of the magnitude 
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and location of the centers of the primary and secondary vortices 
with Reynolds numbers. The some streamfunction contour values 
for all Reynolds number are shown in theses Figures. 

In the Figs. 3a, 3b and 3c can also be observed the formation 
and growing of the secondary vortices at the bottom left and bottom 
right of the cavity when the Reynolds number increases. These 
figures show mainly that the secondary vortices for the Reynolds 
numbers studied can be very well represented using only 33x33 
points of collocation, thanks to the condensed distribution of the 
Chebyshev-Gauss-Lobatto points near the boundary. 

Figures 3d, 3e and 3f show the streamlines of the steady flow 
for three Reynolds numbers (Re = 2000, 5000 and 10000). Once 
again, can be observed the formation, evolution and growing of 
another secondary vortex that appears at the top left of the 
regularized cavity. At Re = 10000, a tertiary vortex becomes visible 
at the bottom right of the cavity with center in (0.945, 0.04) and 
another small tertiary vortex begins to appear at the top right corner 
(see Fig. 3f). These figures show than the secondary and tertiary 
vortices for Reynolds numbers up 10000 can be very well 
represented with only 33x33 points of Chebyshev collocation. 

 

Table 3. Comparison of some characteristic values of the regularized square driven cavity flow. 

Re Parameter Present Method 

(*) 

(Regularized) 

Shen (1991) 

(Regularized) 

(Grid) Ghia et al. (1982) 

(Not-Regularized) 

 

 

100 

 

(xc, yc) 

(xs1, ys1) 

(xs2, ys2) 

(Hs1, Vs1) 

(Hs2, Vs2) 

(0.607, 0.753) 

(0.032, 0.032) 

(0.955, 0.052) 

(0.13, 0.14) 

(0.14, 0.14) 

(0.609, 0.750) 

(0.031, 0.031) 

(0.953, 0.047) 

- 

- 

 

 

(17x17) 

(0.6172, 0.7344) 

- 

- 

- 

- 

 

 

400 

 

(xc, yc) 

(xs1, ys1) 

(xs2, ys2) 

(Hs1, Vs1) 

(Hs2, Vs2) 

(0.578, 0.615) 

(0.045, 0.041) 

(0.900, 0.115) 

(0.135, 0.110) 

(0.250, 0.315) 

(0.578, 0.625) 

(0.031, 0.047) 

(0.922, 0.094) 

- 

- 

 

 

(17x17) 

(0.5547, 0.6055) 

 

(0.8906, 0.1250) 

 

(0.2167, 0.3203) 

 

 

1000 

 

(xc, yc) 

(xs1, ys1) 

(xs2, ys2) 

(Hs1, Vs1) 

(Hs2, Vs2) 

(0.545, 0.575) 

(0.077, 0.068) 

(0.876, 0.118) 

(0.205, 0.170) 

(0.320, 0.335) 

(0.547, 0.578) 

(0.078, 0.063) 

(0.922, 0.094) 

- 

- 

 

 

(25x25) 

(0.5313, 0.5625) 

(0.0859, 0.0781) 

(0.8594, 0.1094) 

(0.2188, 0.1680) 

(0.3034, 0.3536) 

 

 

2000 

 

(xc, yc) 

(xs1, ys1) 

(xs2, ys2) 

(xs3, ys3) 

(Hs1, Vs1) 

(Hs2, Vs2) 

(Hs3, Vs3) 

(0.535, 0.555) 

(0.09, 0.09) 

(0.856, 0.107) 

(0.028, 0.888) 

(0.255, 0.195) 

(0.35, 0.35) 

(0.05, 0.14) 

(0.531, 0.547) 

(0.094, 0.094) 

(0.922, 0.094) 

(0.031, 0.908) 

- 

- 

- 

 

 

(33x33) 

- 

- 

- 

- 

- 

- 

- 

 

 

5000 

 

(xc, yc) 

(xs1, ys1) 

(xs2, ys2) 

(xs3, ys3) 

(Hs1, Vs1) 

(Hs2, Vs2) 

(Hs3, Vs3) 

(0.518, 0.543) 

(0.081, 0.121) 

(0.818, 0.081) 

(0.082, 0910) 

(0.350, 0.270) 

(0.370, 0.415) 

(0.130, 0.260) 

(0.516, 0.531) 

(0.094, 0.094) 

(0.922, 0.094) 

(0.078, 0.908) 

- 

- 

- 

 

 

(33x33) 

(0.5117, 0.5352) 
(0.0703, 0.1367) 
(0.8086, 0.0742) 
(0.0625, 0.9102) 
(0.3184, 0.2643) 
(0.3565, 0.4180) 
(0.1211, 0.2693) 

 

 

10000 

 

(xc, yc) 

(xs1, ys1) 

(xs2, ys2) 

(xs3, ys3) 

(Hs1, Vs1) 

(Hs2, Vs2) 

(Hs3, Vs3) 

(0.509, 0.523) 

(0.080, 0.140) 

(0.772, 0.063) 

(0.090, 0.915) 

(0.350, 0.300) 

(0.390, 0.440) 

(0.173, 0.315) 

(0.516, 0.531) 

(0.094, 0.094) 

(0.922, 0.094) 

(0.094, 0.908) 

- 

- 

- 

 

 

(49x49) 

(0.5117, 0.5333) 

(0.0586, 0.1641) 
(0.7656, 0.0586) 
(0.0703, 0.9141) 
(0.3438, 0.2891) 
(0.3906, 0.4492) 
(0.1589, 0.3203) 

(*) – All results using a 33x33 grid 
 

Shen (1991) found a stationary solution up to Re = 10000. He 
found that the first Hopf bifurcation (when the steady flow loses its 

stability to the benefit of a periodic flow) took place at a critical 
value located between 10000<Re<10500. At Re = 16000, the 
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computed solution loses the time periodicity and becomes quasi-
periodic, which indicated that another bifurcation occurs at a critical 
Reynolds number between 15000<Re<16000. Botella (1997) used a 
third-order time accurate Chebyshev projection scheme to compute 
the flow at Re = 10300, starting from steady solution at Re = 10000 
and the flow reached a periodic state. 

In our study, we found that the flow converges to steady state 
for Reynolds numbers up to  10000 and our numerical results did 
not show any  evidence of a Hopf bifurcation, in agreement with the 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Steady state streamlines of the regularized square driven cavity 
flow: (a) Re = 100, (b) Re = 400, (c) Re = 1000, (d) Re = 2000, (e) Re = 5000, 
(f) Re = 10000. 

 
(d) 
 

 
(e) 
 

 
(f) 

Figure 3. (Continued). 

 
results obtained by Shen (1991) and Botella (1997). 

Finally, the  u   and  v   velocity  component  profiles  along  the 
centerlines  of the regularized square  driven cavity for  Reynolds  
numbers up to 10000 are shown in the Fig. 4a and  Fig.4b. 
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(a) 

 

 
(b) 

Figure 4. Variation of the velocity profiles on the centerline of the 

regularized driven cavity for some Reynolds numbers: (a) u -velocity, (b) 

v -velocity. 

Flow over a Backward-Facing Step 

The steady viscous incompressible flow over a backward-facing 
step is a benchmark problem that has been studied by numerous 
authors using a wide variety of numerical methods. Consider the 
area containing a step, as shown in Fig. 5. The channel is defined to 
have an unitary height H  with a step height localized in the 
upstream inlet region equal to 2H/  and the downstream channel 
length is HL 25= . The coordinate system to describe the locations 
in the channel is centered at the step corner. The definition of  the  
problem  as  well  as  the  nomenclature  used  follows  Gartling 
(1990). 

 

 
Figure 5. Geometry of the backward-facing step and boundary conditions. 

 
The boundary conditions for the channel geometry are the no-

slip conditions for all walls. The inlet velocity field is specified as a 
parallel flow with a parabolic horizontal component defined by; 

 
)y.(y)y(u −= 5024      for     500 .y ≤≤  (32) 

 
This parabolic profile produces a maximum inflow velocity of 

51max .u =  and an average inflow velocity 01.uavg = . The outflow 

boundary condition used is a velocity field obtained from the 
parabolized Navier-Stokes incompressible equations and a Buffer 
zone is placed at the end of the channel (see Fig. 5). The Reynolds 
number is defined by the following relation: 

 
νH/uRe avg=  (33) 

 
A Buffer zone technique (Streett and Macaraeg, 1989/90) is 

implemented on a single domain. This technique recognizes the fact 
that the source of possible reflections from the outflow boundary is 
the elliptic nature of the Navier-Stokes equations arising from the 
viscous diffusion terms and from the pressure field. The idea is to 
remove this ellipticity at the outflow boundary. Then, the first 
source of ellipticity; the normal viscous terms are smoothly reduced 
to zero at the outflow boundary multiplying by a filter function 

js . 

Similarly, the ability of the pressure field to carry signals back into 
the domain from the outer boundary is attenuated to zero at outflow 
by multiplying the source term of the pressure Poisson equation by 
the filter function. In the present simulations, the filter function 
utilized  is  a  general  function  very  similar to  that  used  by  
Joslin et.al. (1991) which is expressed as 
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1  (34) 

 
where bN  is the number of the point that marks the beginning of the 

Buffer zone and xN  is the number of the point that marks the 

position of the outflow boundary. 
All numerical simulations for the backward-facing step flow 

were computed using a dimensionless channel length of H25 , an 
appropriate grid of 91x41 points of Chebyshev collocations. The 
Buffer zone was set on point 79 of the grid (using 12 points of 
collocation in this zone) and the time step used in all simulations 
was 0.005 to guarantee the stability of the present method. 

Table 4 shows the comparison of  some characteristic values of 
the backward-facing step for Re = 800 with previously published 
numerical results obtained by Gartling (1990), that used the 
Galerkin finite element method with a grid of 8000 (400x20) 
elements with 9 nodes per element. Although we have used only a 
coarse grid of 91x41 collocation points of Chebyshev for all cases, 
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the comparison of the positions of the separation and reattachments 
points shows good agreement. 

Table 5 shows the comparison of lengths of recirculation 
regions in the backward-facing step for Reynolds number of 800 

with numerical results obtained by others authors. The comparison 
of the present results shows good agreement with results of Kim and 
Moin (1985) and Gartling (1990). Kim and Moin (1985) used a 
finite difference method with a grid of 101x101. 

 

Table 4. Comparison of some characteristic values of the backward-facing step for Re = 800. 

Vortex Localization (x, y) Gartling (1990) 

Grid 400x40 

Present Method 

Grid 91x41 

Top vortex Separation point 
Reattachment point 

(4.85, 0.50) 
(10.48, 0.50) 

(4.81, 0.50) 
(10.45, 0.50) 

Bottom vortex Separation point 
Reattachment point 

(0.00, 0.00) 
(6.09, 0.00) 

(0.00, 0.00) 
(6.00, 0.00) 

 

Table 5. Comparison of lengths of recirculation regions in the backward-facing step for Re = 800. 

Lengths Kim and Moin (1985) 

Grid 101x101 

Gartling (1990) 

Grid 400x40 

Present Method 

Grid 91x41 

Upper wall separation zone 5.75 5.63 5.64 

Lower wall separation zone 6.0 6.09 6.0 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 6. Steady state streamlines of the backward-facing step flow: (a) Re 
= 100, (b) Re = 500, (c) Re = 700, (d) Re = 800, (e) Re = 850, (f) Re = 875 
(Martinez, 2005). 

 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure 6. (Continued). 
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Figures 6a - 6f show the steady state streamlines of the 
backward-facing step flow for Reynolds numbers up to 875. Note 
that these figures only show the first 30 step heights )/H( 2  of the 

channel ))/H(x( 15230 == . 

In these figures, it can be observed the formation and growth of 
the vortices that appear at the top and bottom of the backward-
facing step when the Reynolds number increases. For example, for 
Reynolds numbers of 800 the flow separates at the step corner and 
forms a large recirculation eddy (Bottom vortex) with a 
reattachment point on the lower wall positioned approximately 12 
step heights downstream )x( 6≈ . A second recirculation eddy (Top 

vortex) forms on the upper wall beginning approximately 10 step 
heights downstream )x( 5≈  and finishing approximately at 21 step 

heights downstream ).x( 510≈ . The figures show that the vortices 

for these Reynolds numbers (Re = 100, 500, 700, 800, 850 and 875) 
can be very well represented using a coarse grid of 91x41 
collocation points of Chebyshev. 

Table 6 shows some characteristic values of the two separation 
zones that occur in the backward-facing step for Reynolds number 
of 875. 

 
 

Table 6. Some characteristic values of the separation zones of the 
backward-facing step for Re = 875. 

 Vortex centre 

(x, y) 

Separation 

point 

Reattachment 

point 

Top vortex (7.748, 0.297) (4.97, 0.50) (11.26, 0.50) 

Bottom vortex (3.644, -0.206) (0.00, 0.00) (6.14, 0.00) 

 
 

 
(a) 

Figure 7. u -velocity component profiles across the channel at  7x =   and  

15x = :  (a) Re = 800, (b) Re = 875. 

 

 
(b) 

Figure 7. (Continued). 

 
Figure 7a shows the comparison of u  velocity component 

profiles across the channel located at 7=x  (14 step heights 
downstream of the step)  and  15=x  (30 step heights downstream 
of the step) for Reynolds number of 800 with numerical results 
obtained by Gartling (1990). Here it can be observed the good 
agreement between velocity profiles obtained by the present method 
and those obtained by Gartling (1990). The variation of u  velocity 
component profiles across the channel located at 7=x and 15=x  
for Reynolds number of 875 is also shown in the Fig. 7b. 

Finally, the comparison of vorticity profiles across the channel 
located at 7=x  and 15=x  for Reynolds number of 800 is shown 
in the Fig. 8a. Once again, can be noted the good agreement 
between  vorticity  profiles obtained by the present method and 
those obtained by Gartling (1990). Figure 8b shows the variation of 
vorticity  profiles across  the  channel  located at 7=x  and 15=x  
for  Reynolds  number  of  875. 
 

 
(a) 

Figure 8. Vorticity profiles across the channel at 7x =   and  15x = : (a) 

Re = 800, (b) Re = 875. 

 



Johnny de Jesús Martinez and Paulo de Tarso T. Esperança 

328 / Vol. XXIX, No. 3, July-September 2007 ABCM 

 
(b) 

Figure 8. (Continued). 

Conclusions 

The projection method combined with the Chebyshev 
collocation spectral method associated with a second order explicit-
implicit time scheme and appropriate boundary conditions, has 
shown to be a very stable scheme when applied to the solution of the 
Navier-Stokes equations for two-dimensional incompressible flow. 

This combination of the projection scheme in conjunction with a 
Chebyshev collocation spectral method has been able to predict very 
well the behavior of the recirculating zones of the two-dimensional 
regularized square driven cavity flow for Reynolds numbers up to 
10000 and the separation zones of the steady viscous incompressible 
flow over a backward-facing step for Reynolds numbers up to 875. 
A good agreement was obtained from comparison of the numerical 
results obtained by the present method with available numerical 
solutions. 
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