Acessibilidade / Reportar erro

AGEs accumulation is related to muscle degeneration and vascular calcification in peritoneal dialysis patients

Abstract

Background:

Patients with chronic kidney disease (CKD) are affected by dynapenia, sarcopenia, and vascular calcification. Advanced glycation end products (AGEs) may accumulate in peritoneal dialysis (PD) patients and favor sarcopenia via changes in collagen cross-linking, muscle protein breakdown, and the calcification of arterial smooth muscle cells via p38-MAPK activation. The aim of this study is to explore the relationships between AGEs, muscle degeneration, and coronary artery calcification.

Methods:

This was a clinical observational study in patients with CKD undergoing PD, in which serum and skin AGEs (AGEs-sAF), cumulative glucose load, muscle strength and functional tests, muscle ultrasounds with elastography, coronary artery calcium (CAC) quantification, and muscle density by multislice computed tomography were measured.

Results:

27 patients aged 48±16 years, dialysis vintage of 27±17 months, had AGEs-sAF levels of 3.09±0.65 AU (elevated in 13 [87%] patients), grip strength levels of 26.2±9.2 kg (11 [42%] patients with dynapenia), gait speed of 1.04±0.3 m/s (abnormal in 14 [58%] patients) and "timed-up-and-go test" (TUG) of 10.5±2.2s (abnormal in 7 [26%] patients). Correlations between AGEs-sAF levels and femoral rectus elastography (R=-0.74; p=0.02), anterior-tibialis elastography (R= -0.68; p=0.04) and CAC (R=0.64; p=0.04) were detected. Cumulative glucose load correlated with femoral rectal elastography (R=-0.6; p=0.02), and serum glycated hemoglobin concentrations correlated with psoas muscle density (R= -0.58; p=0.04) and CAC correlated with psoas muscle density (R=0.57; p=0.01) and lumbar square muscle density (R=-0.63; p=0.005).

Conclusions:

The study revealed associations between AGEs accumulation and lower muscle stiffness/density. Associations that linked muscle degeneration parameters with vascular calcification were observed.

Keywords:
Renal Insufficiency, Chronic; Muscle Strength; Uremia; Vascular Calcification

Resumo

Histórico:

Pacientes com doença renal crônica (DRC) são afetados pela dinapenia, sarcopenia e calcificação vascular. Produtos finais da glicação avançada (AGEs) podem se acumular em pacientes em diálise peritoneal (DP) e favorecer a sarcopenia por meio de alterações em ligações cruzadas do colágeno, quebra da proteína muscular e calcificação das células do músculo liso arterial por meio da ativação da p38-MAPK. O objetivo deste estudo é explorar as relações entre AGEs, degeneração muscular e calcificação da artéria coronária.

Métodos:

Este foi um estudo clínico observacional em pacientes com DRC submetidos à DP, no qual foram medidos os AGEs séricos e teciduais (AGEs-sAF), a carga cumulativa de glicose, a força muscular e testes funcionais, ultrassonografias musculares com elastografia, quantificação do cálcio da artéria coronária (CAC), e a densidade muscular por tomografia computadorizada multislice.

Resultados:

27 pacientes com idade entre 48±16 anos, tempo de diálise entre 27±17 meses, tinham níveis de AGEs-sAF de 3,09±0,65 UA (elevado em 13 [87%] pacientes), níveis de força de preensão de 26,2±9,2 kg (11 [42%] pacientes com dinapenia), velocidade de marcha de 1,04±0,3 m/s (anormal em 14 [58%] pacientes) e teste "timed-up-and-go" (TUG) de 10,5±2,2s (anormal em 7 [26%] pacientes). Foram detectadas correlações entre os níveis AGEs-sAF e a elastografia do reto femoral (R=-0,74; p=0,02), a elastografia tibial anterior (R= -0,68; p=0,04) e a CAC (R=0,64; p=0,04). A carga cumulativa de glicose se correlacionou com a elastografia do reto femoral (R=-0,6; p=0,02), as concentrações séricas de hemoglobina glicada se correlacionaram com a densidade muscular do psoas (R= -0,58; p=0,04) e o CAC se correlacionou com a densidade do músculo psoas (R=-0,57; p=0,01) e a densidade do músculo quadrado lombar (R=-0,63; p=0,005).

Conclusões:

O estudo revelou associações entre o acúmulo de AGEs e menor rigidez/densidade muscular. Foram observadas associações que ligavam parâmetros de degeneração muscular com a calcificação vascular.

Descritores:
Insuficiência Renal Crônica; Força Muscular; Uremia; Calcificação Vascular

Introduction

Chronic kidney disease (CKD) is highly prevalent worldwide and is associated with high morbidity and mortality rates as a result of numerous complications11 Thomé FS, Sesso RC, Lopes AA, Lugon JR, Martins CT. Brazilian chronic dialysis survey 2017. J Bras Nefrol. 2019 Jun;41(2):208-14. DOI: https://doi.org/10.1590/2175-8239-JBN-2018-0178
https://doi.org/10.1590/2175-8239-JBN-20...

2 Zhang QL, Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health. 2008 Apr;8:117.

3 Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease: a systematic review and meta-analysis. PLoS One. 2016 Jul;11(7):e0158765.

4 Garg AX, Clark WF, Hayes RB, House AA. Moderate renal insufficiency and the risk of cardiovascular mortality: results from the NHANES I. Kidney Int. 2002 Apr;61(4):1486-94.

5 Weiner DE, Tighiouart H, Amin MG, Stark PC, Macleod B, Griffith JL, et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol. 2004 May;15(5):1307-15.
-66 Viegas C, Araújo N, Marreiros C, Simes D. The interplay between mineral metabolism, vascular calcification and inflammation in chronic kidney disease (CKD): challenging old concepts with new facts. Aging (Albany NY). 2019;11(12):4274-99..

Recent studies have revealed a high prevalence of sarcopenia in patients with CKD, the presence of which can lead to such unfavorable outcomes as bone fractures, high hospitalization rates and mortality77 Souza VA, Oliveira D, Barbosa SR, Corrêa JOA, Colugnati FAB, Mansur HN, et al. Sarcopenia in patients with chronic kidney disease not yet on dialysis: analysis of the prevalence and associated factors. PLoS One. 2017 Apr;12(4):e0176230.,88 Moorthi RN, Avin KG. Clinical relevance of sarcopenia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2017;26(3):219-28..CKD has been documented to induce a catabolic state mediated by inflammatory mechanisms and metabolic derangements, including malnutrition, insulin/insulin-like growth factor-1 resistance, and pro-inflammatory cytokine expression. Inflammatory processes triggered by reduced renal function and uremic toxins result in imbalances between muscle tissue repair and degradation. One consequence of such imbalance is a reduction of muscle synthesis99 Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol. 2014;10(9):504-16.

10 Gordon BS, Kelleher AR, Kimball SR. Regulation of muscle protein synthesis and the effects of catabolic states. Int J Biochem Cell Biol. 2013 Oct;45(10):2147-57. DOI: https://doi.org/10.1016/j.biocel.2013.05.039
https://doi.org/10.1016/j.biocel.2013.05...

11 Adey D, Kumar R, McCarthy JT, Nair KS. Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab. 2000 Feb;278(2):E219-25.
-1212 Holliday MA, Chantler C, MacDonnell R, Keitges J. Effect of uremia on nutritionally-induced variations in protein metabolism. Kidney Int. 1977 Apr;11(4):236-45..

This complex pathophysiology of skeletal muscle degradation in CKD has common features with the mechanisms for cardiovascular disease development, namely the interplay of multiple factors such as oxidative/nitrative stress, inflammation, and uremic toxins1313 Sárközy M, Kovács ZZA, Kovács MG, Gáspar R, Szücs G, Dux L. Mechanisms and modulation of oxidative/nitrative stress in type 4 cardiorenal syndrome and renal sarcopenia. Front Physiol. 2018 Nov;9:16486. DOI: https://doi.org/10.3389/fphys.2018.01648
https://doi.org/10.3389/fphys.2018.01648...
. It is speculated that advanced glycation end products (AGEs) are involved in the genesis of vascular calcification and sarcopenia1414 Zhu Y, Ma WQ, Han XQ, Wang Y, Wang X, Liu NF. Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Sci Rep. 2018 Sep;8:13730. DOI: https://doi.org/10.1038/s41598-018-31877-6
https://doi.org/10.1038/s41598-018-31877...

15 Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, et al. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018 Jul;35:443-50. DOI: https://doi.org/10.1007/s10719-018-9831-x
https://doi.org/10.1007/s10719-018-9831-...

16 Payne GW. Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation. 2006;13(4):343-52.

17 Snow LM, Fugere NA, Thompson LV. Advanced glycation end-product accumulation and associated protein modification in type II skeletal muscle with aging. J Gerontol A Biol Sci Med Sci. 2007 Nov;62(11):1204-10.
-1818 Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019 Jun;10:183-7. DOI: https://doi.org/10.1007/s13340-019-00400-1
https://doi.org/10.1007/s13340-019-00400...
.

AGEs are believed to act through their specific receptor (RAGEs) in muscles and vessels, resulting in inflammation, endothelial dysfunction, vascular calcification, and pathological alteration to the blood flow of skeletal muscles1515 Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, et al. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018 Jul;35:443-50. DOI: https://doi.org/10.1007/s10719-018-9831-x
https://doi.org/10.1007/s10719-018-9831-...
,1616 Payne GW. Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation. 2006;13(4):343-52.. In addition, muscle proteins such as beta-enolase, actin, and creatine kinase have been observed to target glycation with aging or CKD1717 Snow LM, Fugere NA, Thompson LV. Advanced glycation end-product accumulation and associated protein modification in type II skeletal muscle with aging. J Gerontol A Biol Sci Med Sci. 2007 Nov;62(11):1204-10.. Evidence from clinical settings shows that AGEs accumulation in the body is associated with low hand grip strength, slow gait speed, and increased muscle weakness1919 Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):132-7.,2020 Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010 Jan;108(1):191-5..

CKD patients on peritoneal dialysis (PD) are potentially more likely to form and accumulate AGEs because the reactive carbonic compounds present in the body diffuse into the peritoneal cavity and join with the reactive carbonic compounds in the dialysate2121 Ishida M, Kakuta T, Miyakogawa T, Tatsumi R, Matsumoto C, Fukagawa M. Association between asymmetric dimethylarginine and pentosidine in dialysis effluent of peritoneal dialysis patients. Tokai J Exp Clin Med. 2016 Jun;41(2):97-100.. Solutions used for PD have high levels of glucose in their composition; the heat sterilization used for these solutions can cause AGEs and pro-oxidant molecule generation2222 Roumeliotis S, Eleftheriadis T, Liakopoulos V. Is oxidative stress an issue in peritoneal dialysis? Semin Dial. 2019 Sep;32(5):463-6..

The aim of this study was to explore the relationship between the accumulation of AGEs (in skin and serum) and parameters related to skeletal muscle quality, quantity, and function, as well as with coronary artery calcium accumulation in patients with CKD on PD.

Material and Methods

This was a clinical, observational and cross-sectional pilot study conducted among clinically stable CKD patients on PD at the Nephrology Service of the Hospital de Clínicas of the State University of Campinas (UNICAMP) from June 2018 to April 2019. Written informed consent was obtained from all subjects, and the ethics committee of UNICAMP approved the study protocol under the CAAE number 79826317.8.0000.5404. The study was performed in accordance with the precepts of the Declaration of Helsinki.

During the study inclusion period, 45 patients were in a PD program at the unit. All patients were invited to participate in the study and assessed according to the following inclusion criteria: having stage 5 CKD according to the KDIGO criteria2323 Kidney Disease: Improving Global Outcomes (KDIGO). CKD Work Group. KDIGO 2012 - Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013 Jan;3(1):1-163., being in a chronic PD program for more than 3 months, age > 18 years, and able to grant free and informed consent in a form. The exclusion criteria were: the presence of severe and uncontrolled infectious or inflammatory disease, a diagnosis of hematologic or solid organ cancer, chronic liver disease or jaundice, a history of organ transplantation, the presence of amputation, mobility restriction or accident sequelae, and cerebrovascular disease that made walking difficult or impossible.

Clinical, demographic, and laboratory data such as age, gender, body mass index (reference range: 18.5 a 24.9 kg/m2), diagnosis of diabetes mellitus, PD vintage, kt/V, renal function, residual diuresis, and cumulative glucose load were evaluated. Patients were treated either by continuous ambulatory peritoneal dialysis (CAPD) or automated peritoneal dialysis (APD). The dialysate used by patients had glucose concentration ranging from 1.5 to 4.25% and calcium ion concentration from 2.5 to 3.5%. To calculate the cumulative glucose load, daily glucose exposition was estimated from the dialysate glucose concentration in relation to the daily total infused volume and multiplied by 30 and by the number of months on PD treatment, obtaining a value in kilograms of glucose. Laboratory tests were performed using the following methods: hemoglobin - automated (reference range: 10 - 12 g/dL); albumin - colorimetric (bromocresol green) (reference: > 3.5 g/dL); calcium - colorimetric (reference range: 8.8 - 10.2 mg/dL); phosphorus - UV phosphomolibidate (reference: < 5.5 g/dL); glycated hemoglobin - high performance liquid chromatography (HPLC) (reference: < 5.7%), and parathormone (PTH) by electrochemiluminescence (Roche(r), USA) (reference range: 15 - 65 pg/mL).

Evaluation of calcium accumulation in coronary arteries and muscle density

Non-contrast multislice cardiac computed tomography (CT) was employed to perform coronary artery calcium (CAC) detection and quantification via an electrocardiographically driven volumetric acquisition mode with a tube voltage of 120 kV and collimation width of 3.0 mm (Canon Aquilion CT 64, Canon System, Japan). The images were analyzed using the software dedicated to the CAC score (Vitrea, Calcium Scoring, Vital Images, Japan). The Agatston method was used to express the values of coronary calcification (reference value: = 0)2424 Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Junior M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990 Mar;15(4):827-32.. The densities of lumbar square and psoas muscles (expressed in Hounsfield units) were evaluated.

Quality, quantity, and function assessment of skeletal muscles

Elastography (Toshiba Aplio 500; 14 MHz high frequency linear transducer) of the following lower limb muscles was performed: femoral rectus, gastrocnemius, and anterior tibialis. This yielded data on muscle thickness (in mm), elastography (muscle stiffness expressed by tissue conduction velocity, in m/s), and ultrasound signal intensity. Functional tests of muscle strength and performance were then conducted, in which handgrip strength (in kg) assessments were performed using a Saehan SH5001 hydraulic dynamometer (Saehan Corporation, Changwon, 51342, Korea). Measurements were taken in the dominant arm, with the patient in sitting position and the elbow at a 90-degree angle. Averages between the results of three measurements were considered for analysis. Values ​​of 30 kg for men and 20 kg for women were considered as the cutoff2525 Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010 Jul;39(4):412-23.. Patients with handgrip strengths below these values were diagnosed with dynapenia. Dynapenia was considered as the loss of muscle strength or power regardless of muscle size88 Moorthi RN, Avin KG. Clinical relevance of sarcopenia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2017;26(3):219-28..

For functional evaluations, "timed-up-and-go" test (TUG) and gait speed test were applied. In the TUG test, the patient was instructed to get up from a chair, walk a 3-m linear path, then return and sit in the original position. A time of 9.2 s was established as a cutoff reference, corresponding to the 25th percentile of the distribution curve of this parameter in the study sample. In the gait speed test, the patient was instructed to travel a timed distance of 10 m at normal pace from which the initial 2 m (acceleration) and final 2 m (deceleration) were disregarded. The mean time between the three measurements was considered as the average gait speed of each patient. The cutoff point was set at the speed of 1 m/s2525 Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010 Jul;39(4):412-23..

Evaluation of ages accumulation in skin (ages-saf) and serum

The accumulation of AGEs through skin auto-fluorescence (AGEs-sAF) was measured using the AGE-ReaderTM device (DiagnOptics BV, Groningen, The Netherlands) according to the manufacturer's recommendations. This device non-invasively measures fluorescence emitted by the skin that is influenced by the intensity of AGEs deposition. The device calculates the relationship between emitted and reflected excitation light. In this study, AGEs-sAF levels were expressed in arbitrary units (UA) and measured in triplicate on the ventral side of the forearm. Areas with arteriovenous fistulas, scars, and tattoos were avoided for clarity of reading. According to the manufacturer, the AGE-Reader(TM) and its software have been validated in patients with a 6-percent photo-type skin reflection index (Fitzpatrick class I to IV). Individuals whom had black skin color (Fitzpatrick classification V and VI) were not measured for AGEs-sAF due to their skin reflectance index <6%, according to manufacturer instructions2626 Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988 Jun;124(6):869-71.,2727 Smit AJ, Smit JM, Botterblom GJ, Mulder DJ. Skin autofluorescence based decision tree in detection of impaired glucose tolerance and diabetes. PLoS One. 2013 Jun;8(6):e65592..

The reference values ​​of the AGEs-sAF levels were grouped by age as follows: 20 to 29 years, 1.53 arbitrary units (AU); 30 to 39 years, 1.73 UA; 40 to 49 years, 1.81 UA; 50 to 59 years, 2.09 UA; 60 to 69 years, 2.46 UA; 70 to 79 years, 2.73 UA; and > 80 years, 2.71 UA2828 Koetsier M, Lutgers HL, Jonge C, Links TP, Smit AJ, Graaff R. Reference values of skin autofluorescence. Diabetes Technol Ther. 2010;12(5):399-403.. Serum glycated hemoglobin levels were measured as a direct way to quantify circulating AGEs.

Statistical Analysis

Data were expressed according to the mean ± SD or median and interquartile range (showed in parenthesis), as appropriate. Mean comparisons were performed using a Student's t-test or the Mann-Whitney test for continuous variables. Spearman's rank correlation coefficient was used to evaluate the relationships between AGEs-sAF and selected variables. The threshold for statistical significance was set at p < 0.05. All statistical analyses were performed using SPSS software (version 22.0, SPSS Inc., Chicago-IL).

Results

Twenty-seven patients, 14 of which were women (52%), aged 48 ± 16 years with dialysis vintages of 27 ± 17 months were included in the study. Arterial hypertension was observed as the main cause of CKD in 8 of the patients (30%), followed by diabetes mellitus in 3 (11%), and undetermined causes in 6 (22%). AGEs-sAF levels were above the estimated age value in most patients (13 [87%]). AGEs-sAF level measurements were not possible to perform in 5 (18.5%) patients due to the V-VI skin photo-type and in 7 (26%) patients due to renal replacement therapy modality changes that took place during the data collection period. Clinical, demographic, and laboratory data of the sample as well as results regarding the parameters related to the accumulation of AGEs, CAC score, characteristics and muscle performance tests are recorded in Table 1.

Table 1
Clinical and demographic characteristics, data on general laboratory and AGEs-related parameters, CAC score, and skeletal muscle parameters

Almost half of the patients in the sample were diagnosed as having dynapenia (11, [42%], of which 6 [54.5%] were women). Among the patients with dynapenia, lumbar square muscle density was about half of that observed in patients without dynapenia (15.7 vs. 31 HU; p = 0.04). Patients with dynapenia presented a trend of higher cumulative glucose load (143 [103 to 184] vs. 81 [39 to 128] kg; p = 0.06) compared to those without a dynapenia diagnosis. Gait speed was considered outside of reference range in 14 (58%) patients and correlated with age (R = -0.43; p = 0.03), handgrip strength (R = 0.5; p = 0.01), and mean time to TUG (R = -0.69; p = 0.001). TUG results were above reference values in 7 (26%) patients.

Correlations between ages accumulation, cumulative glucose load, and skeletal muscles parameters

AGEs-sAF levels negatively correlated with the elastography of the femoral rectus (R = -0.74; p = 0.02) and anterior tibialis (R = -0.68; p = 0.04). Cumulative glucose loads also negatively correlated with the elastography of the femoral rectus (R = -0.6; p = 0.02). Serum glycated hemoglobin levels negatively correlated with psoas muscle density (R = -0.58; p = 0.04) (Figures 1A to 1D).

Figure 1
Correlations between advanced glycation end products (AGEs) accumulation in the skin, cumulative glucose load, and skeletal muscle parameters.

Correlations between skeletal muscle parameters and coronary artery calcium score

Moderate negative correlations were observed between psoas and lumbar square muscle density and CAC (R = -0.57; p = 0.01 and R = -0.63; p = 0.005, respectively) (Figures 2A and 2B).

Figure 2
Correlation between muscle density and coronary artery calcium score.

Correlation between ages accumulation in skin and coronary artery calcium score

Within the sample, 18 patients (67%) underwent CAC score measurements, yielding a median value of 35 (0 - 291) Agatston. Eleven (61%) patients had positive CAC score. A moderate positive correlation was observed between the accumulation of AGEs-sAF and CAC score (R = 0.64; p = 0.04) (Figure 3A).

Figure 3
Correlation between advanced glycation end products (AGEs) accumulation in skin and coronary artery calcium score.

Discussion

This study revealed the following main findings: first, elevated levels of AGEs-sAF and abnormal CAC score were detected in most patients. Second, AGEs accumulation was found to correlate negatively with ultrasound elastography and muscle density. Third, muscle density was negatively correlated with CAC score. Finally, AGEs accumulation was found to correlate to both skeletal muscle parameters and CAC score.

Skeletal muscle degeneration in CKD is multifactorial, involving uremic toxins, chronic inflammation, insulin resistance, malnutrition, and oxidative stress2929 Avin KG, Moorthi RN. Bone is not alone: the effects of skeletal muscle dysfunction in chronic kidney disease. Curr Osteoporos Rep. 2015 Feb;13:173-9. DOI: https://doi.org/10.1007/s11914-015-0261-4
https://doi.org/10.1007/s11914-015-0261-...
. The results of the interaction of these factors with skeletal muscle can be expressed through loss of muscle mass, strength (dynapenia), or functionality. Applying the results of elastographic ultrasound examinations to the structural abnormalities of muscle tissue can be quite complex3030 Drakonaki EE, Sudoł-Szopińska I, Sinopidis C, Givissis P. High resolution ultrasound for imaging complications of muscle injury: is there an additional role for elastography?. J Ultrason. 2019;19(77):137-44..

The meaning of ultrasound wave propagation velocity within skeletal muscle has yet to be established fully. The type of muscle, its functional demand, the nature of the lesion and its evolutionary phase may influence the interpretation of elastography results3030 Drakonaki EE, Sudoł-Szopińska I, Sinopidis C, Givissis P. High resolution ultrasound for imaging complications of muscle injury: is there an additional role for elastography?. J Ultrason. 2019;19(77):137-44.

31 Hatta T, Giambini H, Uehara K, Okamoto S, Chen S, Spreling JW, et al. Quantitative assessment of rotator cuff muscle elasticity: reliability and feasibility of shear wave elastography. J Biomech. 2015;48(14):3853-8.

32 Gilbert F, Klein D, Weng AM, Köstler H, Schmitz B, Schmalzl J, et al. Supraspinatus muscle elasticity measured with real time shear wave ultrasound elastography correlates with MRI spectroscopic measured amount of fatty degeneration. BMC Musculoskelet Disord. 2017;18:549.
-3333 Rosskopf AB, Ehrmann C, Buck FM, Gerber C, Flück M, Pfirrmann CW. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality. Radiology. 2016 Feb;278(2):465-74.. Clinical data suggests that reduced ultrasound wave propagation velocity in skeletal muscles may indicate lower stiffness, liposubstitution, edema or atrophy, while increased velocity can translate into inflammation and fibrosis3030 Drakonaki EE, Sudoł-Szopińska I, Sinopidis C, Givissis P. High resolution ultrasound for imaging complications of muscle injury: is there an additional role for elastography?. J Ultrason. 2019;19(77):137-44..

In the present study, reduced ultrasound wave propagation velocity observed in the femoral rectus and anterior tibialis muscles had a negative correlation with AGEs accumulation, which indicates less muscular stiffness due to atrophy and liposubstitution; these results are compatible with the process of sarcopenia. The same reasoning applies to the interpretation of the negative correlation between muscle density analyzed by CT and the accumulation of AGEs.

Evidence in the literature suggests a relationship between AGEs accumulation and reduced muscle function, dynapenia, or sarcopenia1919 Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):132-7.,3434 Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol. 2007;103(6):2068-76.,3535 Drenth H, Zuidema S, Bunt S, Bautmans I, Van Der Schans C, Hobbelen H. The contribution of advanced glycation end product (AGE) accumulation to the decline in motor function. Eur Rev Aging Phys Act. 2016 Mar;13:3. DOI: https://doi.org/10.1186/s11556-016-0163-1
https://doi.org/10.1186/s11556-016-0163-...
, possibly mediated by stress induction and inflammation2929 Avin KG, Moorthi RN. Bone is not alone: the effects of skeletal muscle dysfunction in chronic kidney disease. Curr Osteoporos Rep. 2015 Feb;13:173-9. DOI: https://doi.org/10.1007/s11914-015-0261-4
https://doi.org/10.1007/s11914-015-0261-...
,3636 Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab. 2008;4(5):285-93.. However, at present there are no data on the relationship between AGEs accumulation and sarcopenia in patients with CKD on PD.

Clinical studies have documented the relationship between sarcopenia and cardiovascular risk indices, such as carotid intima thickness, epicardial adiposity, and less brachial artery flow-mediated dilation3737 Lai S, Muscaritoli M, Andreozzi P, Sgreccia A, De Leo S, Mazzaferro S, et al. Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition. 2019 Jun;62:108-14.

38 Kato A, Ishida J, Endo Y, Takita T, Furuhashi M, Maruyama Y, et al. Association of abdominal visceral adiposity and thigh sarcopenia with changes of arteriosclerosis in haemodialysis patients. Nephrol Dial Transpl. 2011 Jun;26(6):1967-76.
-3939 Delgado-Frías E, González-Gay MA, Muñiz-Montes JR, Rodriguez-Bethencourt MAG, González-Dias A, Diaz-González F, et al. Relationship of abdominal adiposity and body composition with endothelial dysfunction in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2015 Jul/Aug;33(4):516-23.. The accumulation of adipose tissue in skeletal muscle or its liposubstitution produces pro-atherogenic and proinflammatory cytokines with a paracrine effect that promotes coronary disease4040 Kerr JD, Holden RM, Morton AR, Nolan RL, Hopman WM, Pruss CM, et al. Associations of epicardial fat with coronary calcification, insulin resistance, inflammation, and fibroblast growth factor-23 in stage 3-5 chronic kidney disease. BMC Nephrol. 2013;14:26.. This hypothesis is in line with the lower muscle density (as a translation of liposubstitution) and elevated CAC score observed in the current study.

A relationship between AGEs accumulation and the accumulation of calcium in the coronary arteries was also observed. Studies have shown that AGEs affect vascular endothelium and induce foam cell formation, apoptosis, calcium deposition, oxidative stress, and inflammation1515 Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, et al. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018 Jul;35:443-50. DOI: https://doi.org/10.1007/s10719-018-9831-x
https://doi.org/10.1007/s10719-018-9831-...
,1919 Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):132-7.. These phenomena in combination result in the progression of vascular calcification and atherosclerotic plaque4141 Menini S, Iacobini C, Ricci C, Fantauzzi CB, Salvi L, Pesce CM, et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc Res. 2013 Dec;100(3):472-80.

42 Kay AM, Simpson CL, Stewart Junior JA. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res. 2016;2016:6809703.

43 Molinuevo MS, Fernández JM, Cortizo AM, McCarthy AD, Schurman L, Sedlinsky C. Advanced glycation end products and strontium ranelate promote osteogenic differentiation of VSMCs in vitro: preventive role of vitamin D. Mol Cell Endocrinol. 2017;450:94-104.
-4444 Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling. J Biochem Biophys Res Commun. 2012 Jul;423(4):684-9.. In turn, the calcification of arteries that supply muscle tissue can impair the muscle regeneration process1515 Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, et al. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018 Jul;35:443-50. DOI: https://doi.org/10.1007/s10719-018-9831-x
https://doi.org/10.1007/s10719-018-9831-...
.

A controversial aspect in the literature is cumulative glucose exposure through peritoneal dialysis solutions and the accumulation of AGEs or potential consequences in muscles. Although our results point to a correlation between cumulative glucose load and skeletal muscle parameters, other authors have reported that hemodialysis patients may have higher accumulation of AGEs than PD patients4545 Hörner DV, Selby NM, Taal MW. Factors associated with change in skin autofluorescence, a measure of advanced glycation end products, in persons receiving dialysis. Kidney Int Rep. 2020 Feb;5(5):654-62.,4646 Vongsanim S, Fan S, Davenport A. Comparison of skin autofluorescence, a marker of tissue advanced glycation end-products in peritoneal dialysis patients using standard and biocompatible glucose containing peritoneal dialysates. Nephrology (Carlton). 2019 Aug;24(8):835-40.. Vongsanim et al., observed no clear relationship between biocompatible dialysates and skin auto-fluorescence, suggesting that other factors than PD fluid AGEs content appear more important in determining this parameter4646 Vongsanim S, Fan S, Davenport A. Comparison of skin autofluorescence, a marker of tissue advanced glycation end-products in peritoneal dialysis patients using standard and biocompatible glucose containing peritoneal dialysates. Nephrology (Carlton). 2019 Aug;24(8):835-40..

The present pilot study had some limitations, such as a sample consisting of a low number of patients from a single center. Further, skeletal muscle biopsies were not performed for specific analysis. Additionally, the methodology used to evaluate skeletal muscle quality by ultrasound with elastography is a new technique and awaits validation in this population. Another limitation of the study is the absence of hemodialysis patients as a comparison group for the analysis. Our findings cannot be extended to all CKD patients since the presence of the uremic environment with all its repercussions could have different impact along CKD stages or in hemodialysis patients. The strength of the study is the hypothesis generated from the results, by which AGEs have a role in the pathophysiology of both skeletal muscle derangements and vascular calcification. According to this hypothesis, there is a reciprocal relationship between muscle disease in CKD and the development of vascular calcification (Figure 4A).

Figure 4
Diagram of the hypothesis about the pathophysiological interaction between muscular disease, vascular calcification, and AGEs accumulation in patients with CKD. AGEs promoted by CKD in addition to excessive glucose exposition from PD solutions contributes to skeletal muscle degeneration. Paracrine changes from the liposubstituted muscle tissue are involved in the development of vascular calcification that in turn impairs the blood supply to skeletal muscles. AGEs: advanced glycation endproducts; CKD: chronic kidney disease; PD: peritoneal dialysis.

This study reveals associations between AGEs accumulation and lower muscle stiffness/density (likely due to liposubstitution and atrophy) associated with CAC deposition. While interesting, these results are presently inconclusive in terms of the causal relationship between AGEs, sarcopenia, and vascular calcification.

Further studies are needed to address this problem in patients with CKD in PD and to establish whether AGEs-sAF levels, data from ultrasounds with elastography, or skeletal muscle density by CT may serve as surrogate markers of dynapenia or sarcopenia. These surrogate markers could allow early interventions such as dietary counseling, strengthening exercises, and functional m+uscle training to be applied to benefit patients.

Acknowledgments

The authors thank the Nephrology team at the Integrated Nephrology Center, UNICAMP Clinical Hospital, in particular the Dr. Carolina Urbini dos Santos, Dr. Patrícia Schincariol, and the patients included in the study.

Referências

  • 1
    Thomé FS, Sesso RC, Lopes AA, Lugon JR, Martins CT. Brazilian chronic dialysis survey 2017. J Bras Nefrol. 2019 Jun;41(2):208-14. DOI: https://doi.org/10.1590/2175-8239-JBN-2018-0178
    » https://doi.org/10.1590/2175-8239-JBN-2018-0178
  • 2
    Zhang QL, Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health. 2008 Apr;8:117.
  • 3
    Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease: a systematic review and meta-analysis. PLoS One. 2016 Jul;11(7):e0158765.
  • 4
    Garg AX, Clark WF, Hayes RB, House AA. Moderate renal insufficiency and the risk of cardiovascular mortality: results from the NHANES I. Kidney Int. 2002 Apr;61(4):1486-94.
  • 5
    Weiner DE, Tighiouart H, Amin MG, Stark PC, Macleod B, Griffith JL, et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol. 2004 May;15(5):1307-15.
  • 6
    Viegas C, Araújo N, Marreiros C, Simes D. The interplay between mineral metabolism, vascular calcification and inflammation in chronic kidney disease (CKD): challenging old concepts with new facts. Aging (Albany NY). 2019;11(12):4274-99.
  • 7
    Souza VA, Oliveira D, Barbosa SR, Corrêa JOA, Colugnati FAB, Mansur HN, et al. Sarcopenia in patients with chronic kidney disease not yet on dialysis: analysis of the prevalence and associated factors. PLoS One. 2017 Apr;12(4):e0176230.
  • 8
    Moorthi RN, Avin KG. Clinical relevance of sarcopenia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2017;26(3):219-28.
  • 9
    Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol. 2014;10(9):504-16.
  • 10
    Gordon BS, Kelleher AR, Kimball SR. Regulation of muscle protein synthesis and the effects of catabolic states. Int J Biochem Cell Biol. 2013 Oct;45(10):2147-57. DOI: https://doi.org/10.1016/j.biocel.2013.05.039
    » https://doi.org/10.1016/j.biocel.2013.05.039
  • 11
    Adey D, Kumar R, McCarthy JT, Nair KS. Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab. 2000 Feb;278(2):E219-25.
  • 12
    Holliday MA, Chantler C, MacDonnell R, Keitges J. Effect of uremia on nutritionally-induced variations in protein metabolism. Kidney Int. 1977 Apr;11(4):236-45.
  • 13
    Sárközy M, Kovács ZZA, Kovács MG, Gáspar R, Szücs G, Dux L. Mechanisms and modulation of oxidative/nitrative stress in type 4 cardiorenal syndrome and renal sarcopenia. Front Physiol. 2018 Nov;9:16486. DOI: https://doi.org/10.3389/fphys.2018.01648
    » https://doi.org/10.3389/fphys.2018.01648
  • 14
    Zhu Y, Ma WQ, Han XQ, Wang Y, Wang X, Liu NF. Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Sci Rep. 2018 Sep;8:13730. DOI: https://doi.org/10.1038/s41598-018-31877-6
    » https://doi.org/10.1038/s41598-018-31877-6
  • 15
    Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, et al. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J. 2018 Jul;35:443-50. DOI: https://doi.org/10.1007/s10719-018-9831-x
    » https://doi.org/10.1007/s10719-018-9831-x
  • 16
    Payne GW. Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation. 2006;13(4):343-52.
  • 17
    Snow LM, Fugere NA, Thompson LV. Advanced glycation end-product accumulation and associated protein modification in type II skeletal muscle with aging. J Gerontol A Biol Sci Med Sci. 2007 Nov;62(11):1204-10.
  • 18
    Mori H, Kuroda A, Matsuhisa M. Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int. 2019 Jun;10:183-7. DOI: https://doi.org/10.1007/s13340-019-00400-1
    » https://doi.org/10.1007/s13340-019-00400-1
  • 19
    Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD. Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci. 2009 Jan;64(1):132-7.
  • 20
    Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol. 2010 Jan;108(1):191-5.
  • 21
    Ishida M, Kakuta T, Miyakogawa T, Tatsumi R, Matsumoto C, Fukagawa M. Association between asymmetric dimethylarginine and pentosidine in dialysis effluent of peritoneal dialysis patients. Tokai J Exp Clin Med. 2016 Jun;41(2):97-100.
  • 22
    Roumeliotis S, Eleftheriadis T, Liakopoulos V. Is oxidative stress an issue in peritoneal dialysis? Semin Dial. 2019 Sep;32(5):463-6.
  • 23
    Kidney Disease: Improving Global Outcomes (KDIGO). CKD Work Group. KDIGO 2012 - Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013 Jan;3(1):1-163.
  • 24
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Junior M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990 Mar;15(4):827-32.
  • 25
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010 Jul;39(4):412-23.
  • 26
    Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988 Jun;124(6):869-71.
  • 27
    Smit AJ, Smit JM, Botterblom GJ, Mulder DJ. Skin autofluorescence based decision tree in detection of impaired glucose tolerance and diabetes. PLoS One. 2013 Jun;8(6):e65592.
  • 28
    Koetsier M, Lutgers HL, Jonge C, Links TP, Smit AJ, Graaff R. Reference values of skin autofluorescence. Diabetes Technol Ther. 2010;12(5):399-403.
  • 29
    Avin KG, Moorthi RN. Bone is not alone: the effects of skeletal muscle dysfunction in chronic kidney disease. Curr Osteoporos Rep. 2015 Feb;13:173-9. DOI: https://doi.org/10.1007/s11914-015-0261-4
    » https://doi.org/10.1007/s11914-015-0261-4
  • 30
    Drakonaki EE, Sudoł-Szopińska I, Sinopidis C, Givissis P. High resolution ultrasound for imaging complications of muscle injury: is there an additional role for elastography?. J Ultrason. 2019;19(77):137-44.
  • 31
    Hatta T, Giambini H, Uehara K, Okamoto S, Chen S, Spreling JW, et al. Quantitative assessment of rotator cuff muscle elasticity: reliability and feasibility of shear wave elastography. J Biomech. 2015;48(14):3853-8.
  • 32
    Gilbert F, Klein D, Weng AM, Köstler H, Schmitz B, Schmalzl J, et al. Supraspinatus muscle elasticity measured with real time shear wave ultrasound elastography correlates with MRI spectroscopic measured amount of fatty degeneration. BMC Musculoskelet Disord. 2017;18:549.
  • 33
    Rosskopf AB, Ehrmann C, Buck FM, Gerber C, Flück M, Pfirrmann CW. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality. Radiology. 2016 Feb;278(2):465-74.
  • 34
    Haus JM, Carrithers JA, Trappe SW, Trappe TA. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol. 2007;103(6):2068-76.
  • 35
    Drenth H, Zuidema S, Bunt S, Bautmans I, Van Der Schans C, Hobbelen H. The contribution of advanced glycation end product (AGE) accumulation to the decline in motor function. Eur Rev Aging Phys Act. 2016 Mar;13:3. DOI: https://doi.org/10.1186/s11556-016-0163-1
    » https://doi.org/10.1186/s11556-016-0163-1
  • 36
    Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab. 2008;4(5):285-93.
  • 37
    Lai S, Muscaritoli M, Andreozzi P, Sgreccia A, De Leo S, Mazzaferro S, et al. Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition. 2019 Jun;62:108-14.
  • 38
    Kato A, Ishida J, Endo Y, Takita T, Furuhashi M, Maruyama Y, et al. Association of abdominal visceral adiposity and thigh sarcopenia with changes of arteriosclerosis in haemodialysis patients. Nephrol Dial Transpl. 2011 Jun;26(6):1967-76.
  • 39
    Delgado-Frías E, González-Gay MA, Muñiz-Montes JR, Rodriguez-Bethencourt MAG, González-Dias A, Diaz-González F, et al. Relationship of abdominal adiposity and body composition with endothelial dysfunction in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2015 Jul/Aug;33(4):516-23.
  • 40
    Kerr JD, Holden RM, Morton AR, Nolan RL, Hopman WM, Pruss CM, et al. Associations of epicardial fat with coronary calcification, insulin resistance, inflammation, and fibroblast growth factor-23 in stage 3-5 chronic kidney disease. BMC Nephrol. 2013;14:26.
  • 41
    Menini S, Iacobini C, Ricci C, Fantauzzi CB, Salvi L, Pesce CM, et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc Res. 2013 Dec;100(3):472-80.
  • 42
    Kay AM, Simpson CL, Stewart Junior JA. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res. 2016;2016:6809703.
  • 43
    Molinuevo MS, Fernández JM, Cortizo AM, McCarthy AD, Schurman L, Sedlinsky C. Advanced glycation end products and strontium ranelate promote osteogenic differentiation of VSMCs in vitro: preventive role of vitamin D. Mol Cell Endocrinol. 2017;450:94-104.
  • 44
    Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling. J Biochem Biophys Res Commun. 2012 Jul;423(4):684-9.
  • 45
    Hörner DV, Selby NM, Taal MW. Factors associated with change in skin autofluorescence, a measure of advanced glycation end products, in persons receiving dialysis. Kidney Int Rep. 2020 Feb;5(5):654-62.
  • 46
    Vongsanim S, Fan S, Davenport A. Comparison of skin autofluorescence, a marker of tissue advanced glycation end-products in peritoneal dialysis patients using standard and biocompatible glucose containing peritoneal dialysates. Nephrology (Carlton). 2019 Aug;24(8):835-40.

Publication Dates

  • Publication in this collection
    26 Feb 2021
  • Date of issue
    Apr-Jun 2021

History

  • Received
    25 May 2020
  • Accepted
    20 Nov 2020
Sociedade Brasileira de Nefrologia Rua Machado Bittencourt, 205 - 5ºandar - conj. 53 - Vila Clementino - CEP:04044-000 - São Paulo SP, Telefones: (11) 5579-1242/5579-6937, Fax (11) 5573-6000 - São Paulo - SP - Brazil
E-mail: bjnephrology@gmail.com