
Behavioural Specification of
Middleware Systems

Abstract
The number of open specifications of middleware

systems and middleware services is increasing. Despite
their complexity, they are traditionally described through
APIs (the operation signatures) and informal prose (the
behaviour). This fact often leads to ambiguities, whilst
making difficult a better understanding of what is actually
described. In this paper, we adopt software architecture
principles for structuring middleware specifications
together with LOTOS for formalising their behaviour. The
adoption of software architecture principles makes
explicit structural aspects of the middleware. Meanwhile,
the formalisation enables us to check behavioural
properties of the middleware. In order to illustrate our
approach, we present a LOTOS specification of the well-
known object-oriented middleware CORBA..

Keywords: Middleware, LOTOS, Software
Architecture, Formalisation.

1. INTRODUCTION

The number of open specifications of middleware
systems [5][27] is rapidly increasing. Those specifications
are usually implemented according to open standards
such as DCE (Distributed Computing Environment) [21],
RM-ODP (Reference Model – Open Distributed
Processing) [11], EJB (Enterprise Java Beans) [14] and
CORBA (Common Object Request Broker Architecture)
[18][18]. The open specifications of middleware services
have also been popular through the JTS (Java Transaction

Service) [25] and JMS (Java Message Service) [24].

Middleware specifications are not trivial to be
understood, as the middleware itself is usually very
complex [8]. Firstly, they have to hide the complexity of
underlying network mechanisms from the application.
Secondly, the number of services provided by the
middleware is increasing, e.g., the CORBA specification
includes fourteen services. Finally, in addition to hiding
communication mechanisms, the middleware also has to
hide failures, mobility, changes in network traffic
conditions, and so on. From the point of view of application
developers, they very often do not know how the
middleware actually works. From the point of view of
middleware developers, the complexity places many
challenges that include how to integrate services in a single
product [26] or how to satisfy new requirements of
emerging applications [6].

The aforementioned specifications are usually
described through APIs. Essentially, the service’s
operation signatures are described in CORBA IDL
(Interface Definition Language) and the behaviour of each
operation is described by informal prose. For example, the
CORBA common object services (e.g., security,
transaction) are described in IDL CORBA and informal
text [19]. In practical terms, developers who want to
implement those services have a hard task to produce a
final product by interpreting what the specifications
actually describe.

In this context, we present an approach for
structuring the middleware architecture using software

Nelson Souto Rosa & Paulo Roberto Freire Cunha

Universidade Federal de Pernambuco
Centro de Informática - Caixa Postal 7851 50740-540 - Recife - PE - Brazil

{nsr_prfc}@cin.ufpe.br



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

64

architecture principles [22]. The middleware software
architecture is defined at three different levels of
abstractions, which are usually adopted by application
developers, standard bodies and middleware developers.
At the same time, we propose the adoption of the LOTOS
language [7] for describing the behaviour of these software
architectures. In fact, LOTOS is used as an ADL
(Architecture Description Language)  [16] that allows to
formally specify the behaviour of middleware software
architectures. It is worth observing that we are not
interested in any particular middleware model [9] or
middleware product.

On the one hand, the adoption of software
architecture principles is interesting as it treats with
the system complexity by separating communication and
computation as-pects. Additionally, the software
architecture enables us to have a structural view of the
middleware. On the other hand, the use of LOTOS allows
the checking (by using tools) of particular behavioural
properties of middleware systems, e.g., deadlock
freedom, liveness and safety. It also makes possible to
check the behavioural equivalence either between the
specifications of different middleware models or
between two specifications during the refinement
process. For the first case, if one desires to replace a
transactional middleware with a procedural one, it is
possible to check if their behaviours are equivalent.
Furthermore, a formal specification eliminates
ambiguities in the middleware specification and
provides a better understanding of what is actually
described. Finally, the formalisation creates the
possibility of automatic generation of tests.

Formal description techniques have been used
together middleware in the RM-ODP [11], in which the
trader service is formally specified in E-LOTOS [12].
Most recently, the Z notation and High Level Petri Nests
have been adopted for specifying CORBA services [3],
Naming service [13], Event service [4] and Security
service [2]. All those works, however, do not adopt
software architecture principles for structuring the
service descriptions. In terms of software architecture,
a few ADLs like Wright (a CSP-based ADL) [1] include
the possibility of describing the behaviour of the
software architecture. However, there are not tools
available for manipulating Wright specifications.
Medvidovic [15] has observed the convergence of
middleware and software architecture principles in an
informal way. Finally, it is possible to note that the
software architecture principles are widely adopted to
build distributed applications, but its benefits are rarely
applied to the middleware systems.

This paper is organised as following: Section 2
introduces basic concepts useful for understanding the rest

of this paper. Section 3 presents how architectural elements
(components, connectors and configuration) are defined in
LOTOS. Next, Section 4 presents how architectural elements
are put together to define middleware software architectures
in LOTOS. Section 5 illustrates the proposed approach by
specifying the software architecture of CORBA. Finally, the
last section presents the conclusions and some directions
for future work.

2. BASIC CONCEPTS

Prior to presenting the structure and the
behavioural description of middleware software
architectures, next sections introduce some basic concepts
of software architecture and LOTOS. Additionally, we
present the temporal logic used to express the temporal
properties of  LOTOS specifications.

2.1. SOFTWARE ARCHITECTURE

The definition of software architectures involves the
use of three basic abstractions: components, connectors
and configurations [22][16]. A component is a unit of
computation or a data store. Components represent a wide
range of different elements, from a simple procedure to an
entire application, and have an interface used to
communicate the component with the external environment.
A connector is an architectural building block used to model
interactions among components and rules that govern those
interactions. Some examples of connectors include client-
server protocols, variables, buffers, sequence of procedure
calls and so on. A connector has an interface that contains
interaction points between the connector and the component
and other connectors attached to it. Finally, the
configuration describes how components and connectors
are wired together.

2.2. LOTOS
A LOTOS specification describes a system

through a hierarchy of active components, or processes.
A process is an entity able to realize non-observable
internal actions, and also interact with other processes
through externally observable actions. The unit of atomic
interaction among processes is called an event. Events
correspond to a syn-chronous communication that may
occur among processes able to interact with one another.
Events are atomic, in the sense that they happen
instantaneously and are not time consuming. The point
where an event interaction occurs is known as a port.
Such event may or may not actually involve the exchange
of values. A non-observable action is referred to as an
internal action or internal event. A process has a finite
set of ports that can be shared.

An essential component of an specification or



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

65

process definition is its behaviour expression. A
behaviour expression is built by applying an operator
(e.g., parallel operator “||”) to other behaviour expressions.
A behaviour expression may also include instantiations
of other processes, whose definitions are provided in
the “where” clause following the expression [7]. The
complete list of basic LOTOS behaviour expressions is
given in Table 1, which includes all basic-LOTOS
operators. Symbols ‘B’, ‘B

1
’, ‘B

2
’ in the table stand for

any behaviour expression, and “i” is a internal action.

Table 1: Syntax of behaviour expressions in basic LOTOS [7]

Next, we present the LOTOS specification of a
simple client-server system made up of a client and a server:

The top-level specification (3) is a parallel
composition (operator ‘||’) of the processes Client
and Server, i.e., every action externally observable
executed by the process Client must be synchronised
to the process Server. The process Client (5)
performs two actions, namely request and reply
(6), and then reinstantiate. The action-prefix operator
(‘;’) defines the temporal ordering of the actions
request and reply (the action request occurs before
the action reply) in the Client. Informally, the Server
(8) receives a request (10), processes it (11) and then
sends a reply (12) to the process Client.

It  is worth pointing out that LOTOS
specifications may be compared in order to check their
behavioural equivalences such as strong equivalence,
observational equivalence and safety equivalence. All
of them are checked through the CADP Toolbox .

2.3. TEMPORAL LOGIC

A temporal property defined in this paper is
expressed as a logic formula that is evaluated by a tool
(the “evaluator” of the CADP Toolbox). The “evaluator”
performs an on-the-fly verification of a property on a
given LTS (Labelled Transition System) generated from
the LOTOS specification. The temporal logic used to
express the properties is called regular alternation-free
mu-calculus and it is an extension of the alternation-free
fragment of the modal mu-calculus with action predicates
and regular expressions over action sequences.



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

66

The logic is built from three types of formulas:
action formula (A), regular formula (R) and state formula
(F). An action formula is a logical formula built from basic
action predicates and Boolean connectives. A regular
formula is a logical formula built from action formulas
and traditional expression operators. A regular formula R
denotes a sequence of (consecutive) LTS transitions
such that the word obtained by concatenating their labels
belongs to the regular language defined by R. Finally, a
state formula is a logical formula built from Boolean,
modal and fixed-point operators. The axiom of the
grammar is the F formula. These formulas enable us to
define some interesting temporal properties of LOTOS
specifications such as safety, liveness and fairness.

• Safety Properties

A safety property informally expresses that
“something bad never happens”, e.g., deadlock, a reply
without a request. An example of safety property is
defined in the following state formula:

[ true*.”OPEN !1".(not “CLOSE !1”)*.”OPEN !2"]
false

In this formula, the looping operator “[ ]” has been
used to define an axiom. According to the semantics of
this operator, a state of the LTS satisfies “[“ R “]” F iff all
transition sequences starting at the state and satisfying
R are leading to states satisfying F. Hence, the formula
states that every time process 1 enters in its critical section
(action “OPEN !1”) , it is not possible that process 2 also
enters its critical section (action “OPEN !2”)  before
process 1 has left its critical section (action “CLOSE !1”).

• Liveness Properties

Liveness properties informally express that
“something good eventually happens”, e.g., the
reachability on a sequence. An example of liveness
property is defined in the following state formula:

<true* . “GET ! 0”> true

The looping operator “< >” used in this formula
has the following semantics: a state of the LTS satisfies
“<“ R “>” F iff there is (at least) one transition sequence
starting at the state, satisfying R, and leading to a state
satisfying F. Hence, the previous formula states that there
exists a sequence leading to a “GET !0” action after
performing zero or more transitions.

• Fairness Properties

Fairness properties are similar to liveness
properties, except that they express reachability of
actions by considering only fair execution sequences. A
sequence is fair iff it does not infinitely often enable the
reachability of a certain state without infinitely often

reaching it. An example of a fairness property is shown
in the follows:

[true* . “SEND” . (not “RECV”)*] <(not “RECV”)
* . “RECV”> true

This formula expresses that after every message
emission (action “SEND”), all fair execution sequences
will lead to the reception of the message “action “RECV”
after a finite number of steps.

3. SOFTWARE ARCHITECTURE IN LOTOS
As mentioned in Section 1, the LOTOS language

is adopted as an ADL. In order to model software
architectures in LOTOS, the basic architectural
elements, namely components, connectors and
configuration (defined in Section 2.1) must be
represented by LOTOS elements. In fact, LOTOS has
not been designed to be an ADL and its only abstraction
is the process (see Section 2.2).

Next sections present how the behaviour of
architectural elements is specified in LOTOS.

3.1. COMPONENTS

According to Medvidovic [16], an ADL may
include the following elements in order to describe a
component:  the component’s interface (set  of
interaction points between the component and the
external world), the component’s type (for the reuse
of the component), the component’s semantics (the
component’s behaviour), some con-straints (a property
of or assertion about a part of the system), evolution
(ability to specify modification of component’s
properties) and non-functional properties (e.g.,
security and fault-tolerance).

Figure 1:  Structure of the component.

A component is modelled in LOTOS through
the basic abstraction provided by the language, the
process.  Figure 1 shows informally how an
architectural component is structured in LOTOS. The
component’s interface is mapped to the set of ports of
the LOTOS process (inv and ter), whilst the process
behaviour refers to the component’s behaviour. The
component behaviour is specified as a parallel
composition of three LOTOS processes (3-5) as shown
in the following:



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

67

The process Send (7) specifies the behaviour of the
requests issued by the component (operations the component
needs from the external world), whilst the process Receive
(8) refers to the requests received by the component
(operations the component provides to the external world).
The process StateProc (9) represents the component state.
The behaviour of the Component is a parallel composition
of three processes, Send, Receive, and StateProc. In
practical terms, the processes Send and Receive “execute”
in parallel (parallel operator without synchronisation ‘|||’), but
they have to syncronise with the process StateProc that
mantains the component state.

It is worth observing that the ports inv (a short for
“invocation”) and ter (a short for “termination”) are used
for invocations from/to the component and for returning
results to/from the component, respectively. For example, a
client component in a client-server interaction makes requests
through the port inv and waits for the reply in the port ter.
Meanwhile, a server component receives the requests in the
port inv and returns the result in the port ter.

3.2. CONNECTORS

In a similar way to components, the connector
specification includes the interface, types, semantics,
constraints, evolution and non-functional properties.
Despite the use of similar elements for describing the
connector, the semantics of a connector is obviously
different from the component. As mentioned before, the
connector is responsible for defining how two (or more)
components interact together. Figure2. depicts how an
architectural connector is defined in LOTOS.

 Figure 2: Structure of the connector

A connector is also modelled in LOTOS through the
basic abstraction provided by the language, the process.
The connector is made up with three processes, namely
Source, Sink and Choreography, as follows:

 The process Sink (9) refers to the transport of
messages the connector receives from the components
plugged to it. The process Source (8) models the transport
of messages that the connector has to send. The process
Choreography (10-12) takes responsibility of ordering
the messages the connector receives and sends, i.e., it
coordinates the way the components plugged to the
connector interact.  In more practical terms, the process
Choreography usually defines the communication
protocol the connector implements.

3.3 CONFIGURATION

The architectural configuration consists of the
composition of components and connectors together (see
Figure3). The configuration is the top-level specification.
It is made up of the composition of LOTOS processes, i.e.,
the components and connectors together  (B1 || B2 || B3).

Figure 3: Structure of the configuration

A basic architectural rule must be followed to define
the configuration: two components cannot be connected
directly, i.e., there is a connector between any two com-
ponents in the configuration. For example, a connector is
necessary between the client and the server components
in order to explicitly define how those elements interact.

Next, we present how those elements are used to
specify middleware software architectures at three different
abstraction levels.



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

68

4. MIDDLEWARE SOFTWARE ARCHITECTURE IN

LOTOS
Since middleware systems neither perform any

application-specific computation nor store data, they are
naturally modelled as connectors. Unlike the usual
connectors (see Section 2.1), the middleware provides
services in addition to explicitly modeling the
communication between components. In the software
architecture discipline, however, only components (not
connectors) are traditionally decomposed into smaller
elements or provide services.

In order to define the middleware software
architecture in LOTOS, we have adopted an approach in
which the architecture is viewed at three different levels
of abstractions: a simple connector that enables the
interaction between distributed applications, a composite
connector made up of services and a distributed composite
con-nector. In fact, these levels represent refinement steps
in the design of a middleware platform.

The middleware software architecture has been
defined following some basic principles:

• Each service provided by the middleware (e.g.,
security, event, naming) defines a component in
the composite connector. Additionally, each
service may be defined as a composition of fine-
grained components. For example, the CORBA
security service is made up of a principal
authenticator and a component responsible for
the cryptography. Both are accessible remotely;

• The communication service, whatever the
middleware model or product, is the only
mandatory service. Whether the middleware has
additional services or not, it enormously depends
on the middleware specification (or standard
specification); and

• The services of the distributed composite
connector are defined through two parts, namely
client (or sender) and server (or receiver) parts.
The un-derlying communication layers (e.g.,
transport and network layers) are also defined as
a connector.

Next sections present how the middleware software
architecture is defined in each abstraction level by
adopting the abstractions defined in Section 3.

 4.1. SIMPLE CONNECTOR

The middleware as a simple connector is the highest
abstraction view of the middleware. At this level, the
middleware specification is commonly used/understood
by application developers who are not interested in details

of how the middleware actually works. In fact, the
application developer views the middleware as a
communica-tion element that transports messages
between components.

 Figure 4: Middleware as a simple connector

Figure4 shows the middleware as a simple connector
(without services) that simply defines how the components
C1 and C2 interact on the point of view of an external observer.
In this particular case, the middleware receives an invocation
from component C1 (1) that contains both the name of the
requested service and the operation being requested. Next,
the middleware passes both of them to C2 (2) and waits for
the reply that comes from C2 (3). Finally, the middleware
passes the reply containing the result to C1 (4).

The behaviour of those components and the
middleware together is shown in the following trace
obtained by simulation in the CADP Toolbox:

It is worth noting that at this level of abstraction, the
description of the middleware behaviour is very simple/
abstract and it is not possible to know how a request is
actually passed between C1 and C2. In practical terms, the
behaviour of individual middleware products may not be
differentiated (by an external observer) when the mid-dleware
is viewed as a simple connector. The only exception occurs if
two middleware systems have different communication
models, e.g., OOM (Object-Oriented Middleware) and MOM
(Message-oriented Middleware). For example, in the previous
trace, the middleware transfer both the requests (2) from C1
to C2 and the replies from C2 to C1. However, in a MOM, the
request (service and operations) is simply replaced by a
message and the reply is not necessary.

4.2. COMPOSITE CONNECTOR

The middleware as a composite connector is
typically adopted in open specifications such as CORBA,
JMS and JTS. Unlike the application developer who views



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

69

the mid-dleware as simply as a communication element, in
this case the middleware is viewed as a collection of
services such as security, event, time, transaction and so
on. Hence, the middleware “aggregates” value to the
communication through these services.

Figure 5: Middleware as a composite connector

In Figure5, the number of available services and the
way they may be composed depend on the particular
middleware being specified. For example, when a request
gets in the middleware, it may firstly pass to the security
service and then the transaction service before being
forwarded to the remote component. Hence, an important
point of this specification is the ordering of composition of
the middleware services. For this particular purpose, we
adopt the LOTOS constraint-oriented specification style in
which the Choreography constrains both the component
interactions and the way the services are composed.

The process Choreography of Figure5 is specified
in the following:

In this particular case, according to the constraints
imposed by Choreography, after the request gets in
the middleware (2), it is passed to Service1 (3-4)
followed by Service2 (5-6). Then, the request is sent to
C2 (7) where it is processed and sent back to C1 (8-9).

At this level of abstraction, the behaviour of distinct
middleware systems still not differentiated by an external
observer (observational equivalence), i.e., the application
passes a request to the middleware and whatever the
services found in the middleware, the application receives a

reply without knowing the actual path taken by the request.
However, a closer observation (strong equivalence) may
reveal that the behaviours of two middleware systems that
provide distinct services are not the same.

4.3. DISTRIBUTED COMPOSITE CONNECTOR

Finally, the last view of middleware software
architectures concerns to middleware developers, i.e., a
detailed view of the middleware. The middleware is now
defined as a distributed composite connector, which is
decomposed into two parts, referred to as Middleware
Transmitter and Middleware Receiver (see Figure6).

Figure 6: Middleware as a Distributed Composite Connector

The Middleware Transmitter receives requests from
C1 and passes it to the Middleware Receiver through
another connector (the network). The Middleware Receiver
receives the request from the network, passes it to C2 and
waits for the reply that must be sent to the C1 through the
network and the Middleware Transmitter.

The top-level specification (1) of the software
architecture presented in Figure6 is shown in the following:



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

70

The middleware in the transmitter side, the process
MiddlewareTransmitter (7) and the middleware in the
receiver side, the process MiddlewareReceiver (14) have
not the same behaviour. This is an interesting point to be
observed as middleware products are different in both sides.
This fact has a direct impact on how the middleware services
are composed. Additionally, a service (or some of its
components) may be present in the server and absent in the
client. Hence, the process Choreography and the set of services
in both sides may be different.

5. CASE STUDY: CORBA
As widely known, CORBA is a standard that has been

adopted for building middleware products. According to the
CORBA specification, in addition to the communica-tion service
(ORB), fourteen distributed services can be by the middleware:
persistence, externalisation, events, transactions, properties,
concurrency, relationships, time, licensing, trader, naming,
query, collections, lifecycle and security [19]. All these services
are not usually implemented in a single product, but some of
them such as the naming, life cycle and communication services
are usually available in any CORBA-complaint products.

Two points must be observed in the CORBA software
architecture. Firstly, the CORBA standard defines that the COS
services may be either inside or outside the ORB [18]. In this
particular architecture, we adopt the second approach. Secondly,
the stubs, skeletons and POA (Portable Object Adapter) have
been incorporated by the ORB and are not explicit elements in
the software architecture.

5.1. CORBA AS A SIMPLE CONNECTOR

The behaviour of CORBA as a simple connector is
very similar to the one shown in Figure 4. At this level of
abstraction, CORBA receives a request from the client and
sends it to the server. After being processed, the reply is sent
back to the client. The behaviour of the simple connector
CORBA is specified as the temporal ordering of events executed
in the CORBA interface. The CORBA interface is made up of
the dynamic invocation, stub, ORB, static skeleton, dynamic
skeleton and POA interfaces.

The specification of the choreography of CORBA that
defines the way the invocations to CORBA are ordered is shown
in the following:

Next section presents the CORBA as composite
connector that provides a more detailed view of CORBA.

5.2. CORBA AS A COMPOSITE CONNECTOR

CORBA as a composite connector is defined as a
collection of services according to Section 4.2. Figure 7 (some
services have been omitted in the figure for clarity) presents
the CORBA software architecture, which is composed by
COS services (components) and ORBCore (connector). The
ORBCore is defined as a connector for three main reasons: it
implements the communication service between applications,
it is the communication channel between COS services and
two or more components cannot communicate directly
(architectural constraint presented in Section 2.1).

Figure 7: CORBA as a Composite Connector

The top-level specification is a parallel composition
of fourteen different services (components), the process
ORBCore, the process Choreography, the process Sink
and the process Source:



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

71

As defined in Section 4.2, the LOTOS process
Choreography takes responsibility for ordering the actions
performed by the middleware and defining the way the
services are composed. For example, an ordering constraint
related to the naming service (referred to COSNaming) may
define that every distributed service must be registered in
the naming service before being used by clients.
Additionally, clients must obtain an interface reference to
the service in order to use it.

Next specification presents a possible
choreography for  the CORBA software architecture
presented in Figure 7.

This Choreography defines that first possible action
is a component asking for its own registration (operation
“register” defined by the second parameter in invR !
COSnaming ! register;) with COSnaming (2). The request
is passed to the COSnaming service (3) that performs a
non-observable action and returns the result (4) to the
Choreography and finally the result is sent back to the
requester component (5). After the registration being ok, a
component looks for the service just registered (6). Then,
following the same steps of the operation register (6-8),
the component is allowed to make as many requests as it
desires to do. Finally, the Choreography enters in a loop
that defines how two components interact to invoke an
already registered service (12-15).

5.3. CORBA AS A DISTRIBUTED COMPOSITE CONNECTOR

The view of CORBA as a distributed composite
connector is the most detailed one if compared to the views
presented in Sections 5.1 and 5.2. Figure 8 presents the
elements of the CORBA software architecture. For simplicity

the service provided by the middleware have been
grouped in the dashed box named Service. Additionally,
the connectors Network and ORBCore (both in the client
and server sides) have been simplified.

 Figure 8: CORBA as a Distributed Composite Connector

The top-level specification of the CORBA
distributed composite connector is shown in the following:

Three parts compose this specification: the client
side (the processes Client and CORBAClient), the
Network (the process Network) and the server side (the
processes Server and CORBAServer). A client’s request
gets in the CORBA through CORBAClient. The process
CORBAClient receives the request passes it to the proper
set of services and then sends it to Network. The process
Network transports the request to CORBAServer which
forwards the request to Server. The reply to Client
takes a similar path in the reverse order.

5.4. TEMPORAL PROPERTIES OF CORBA SOFTWARE

ARCHITECTURES

As mentioned before, the adoption of LOTOS as
an ADL enables us to use tools both to check temporal
properties and to compare CORBA software architecture



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

72

specifications. The checking is performed by defining
properties in the temporal logic (see Section 2.3) and
checking them against specifications. In relation to the
second task, the behavioural equivalence of the CORBA
software architectures presented in Sections 5.1, 5.2 and
5.3 have been verified. In particular, those specifications
have been compared (in pairs) using a bisimulator and
defining a relation of observational equivalence. In
practical terms, those specifications are observationally
equivalent, i.e., from the point of view of an external
observer, the CORBA specifications are equivalent.

The temporal properties that have been defined for
the CORBA software architectures are presented in the
following:

• Deadlock freedom (safety property):

     [ true* ] <true> true

It states that every state has at least one successor.

• Safety property of the composite connector
presented in Section 4.2: a middleware service
terminates before any other service starts. This
property is expressed as a state formula as follows

[true* . ‘INV1 \(!.Service1.\) \(!.*\)’ . (not ‘TER1
\(!.Service1.\) \(!.*\)’)* . ‘INV2 \(!.Service2.\) \(!.*\)’] false

It states that every time Service1 starts (action
‘INV1 \(!.Service1.\) \(!.*\)’), Service2 cannot start (action
‘INV2 \(!.Service2.\) \(!.*\)’) before Service1 terminates
(action ‘TER1 \(!.Service1.\) \(!.*\)’).

In a similar way, the state formula in the following
defines that if Service2 has started (action ‘INV2
\(!.Service2.\) \(!.*\)’), Service1 cannot starts (action ‘INV2
\(!.Service2.\) \(!.*\)’) before Service2 terminates (action
‘TER2 \(!.Service2.\’):

[true* . ‘INV2 \(!.Service2.\) \(!.*\)’ . (not ‘TER2
\(!.Service2.\) \(!.*\)’)* . ‘INV1 \(!.Service1.\) \(!.*\)’ ] false

• Safety property of the composite connector: the
composition of the services in the composite
connector shown in Figure 5 defines that Service1
is performed before Service2. The state formula
in the following expresses this property:

[(not ‘INV1 \(!.Service1.\) \(!.*\)’ and true*) . ‘INV2
\(!.Service2.\) \(!.*\)’] false

It states that it is not possible that Service1 starts
(action  ‘INV1 \(!.Service1.\) \(!.*\)’) after Service2 (action
‘INV2 \(!.Service2.\) \(!.*\)’).

• Fairness property of the distributed composite
connector presented in Section 4.3:

[true* . ‘INV1 \(!.Service1.\) \(!.*\)’ . (not ‘TER1
\(!.Service1.\) \(!.*\)’)*] <(not ‘TER1 \(!.Service1.\) \(!.*\)’)*
. ‘TER1 \(!.Service1.\) \(!.*\)’ > true

This formula expresses that after every invocation
of Service1 (action ‘INV1 \(!.Service1.\) \(!.*\)’), all fair
execution sequences will lead to its termination (action
‘TER1 \(!.Service1.\) \(!.*\)’).

6. RELATED WORK

We can identify two categories of researches in
the literature that are mostly related to our paper. The first
one concerns works that focus on formal aspects of ADLs.
The second one encompasses all the works that have been
done in the formalisation of middleware systems. It is worth
observing that Medvidovic [15] has also observed the
convergence of middleware and software architecture
principles in an informal way. Formal aspects of ADLs
include the use of formal ADLs such as Wright [1]. In
terms of formal description of middleware systems, the
basic idea is to use a formal description technique for
specifying several aspects of middleware. In particular,
formal description techniques such as E-LOTOS [12], Z
notation [2], and Petri Nets [3] [4] have been used to
specify functional aspects, whilst Petri nets have also been
adopted to model middleware performance aspects [23][10].

Wright [1] is an ADL that provides a formal basis
for the description of architectural configurations and
architectural styles. Those descriptions are carried out
through a CSP-like that allows to specify the absctract
behaviour of architectural components and connectors.
Similarly to LOTOS, the formal basis of Wright  provides a
sound basis for reasoning about systems properties.
Additionally, both of them  address the formalisation of
behavioural aspects of systems. As Wright has been
specially designed to describe software architectures, it
already includes component, connectors and
configuration as first-class elements. As LOTOS has not
these abstrac-tions, the only abstractions available to
model component, connectors and configuration are the
“process” and “specification”. However, component
(Send and Receive) and connector’s (Source, Sink and
Coreography) elements in LOTOS have been defined in
such way that facilitates and respects the inherent
differences between the roles (computation and
communication, respectively) of theses elements. Finally,
LOTOS is a standardised language and has a very good



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

73

tool support (absent in Wright) that enable us to easily
check properties, to verify refinement, to generate tests
and so on.

 In the RM-ODP [11],  the trader service is formally
specified through an extension of basic LOTOS named E-
LOTOS [12]. By comparing with our approach, the main
and significant difference is the absence of  software
architecture principles and abstraction levels of
specification in order to structure the trader specification.
This fact makes very difficult to understand the whole
specification. E-LOTOS may effectively be adopted in the
future due to its improvements to LOTOS, but there still
having a lack of tools to support the automatic verification
of properties and refinement.

Bastide [3][4] adopts the Cooperative Objects (CO)
formalism to specify middleware behaviour. CO is a dialect
of object-structured, high-level Petri nets used to generate
tests and verify inconsistences of the OMG specification
of CORBA Event service. In a similar way to E-LOTOS, the
basic difference of our approach refers to the use of
software architecture principles and abstraction levels to
threat with  the complexity of middleware system
specifications. Another point that may be mentioned is
the better readability of LOTOS specification compared to
Petri nets.

Basin [2] focuses on the uses the Z notation to
analyse the CORBA Secutity Service. Having the main
objective of taking advantage of formalisation to make
proofs of properties, this approach concentrates on
defining a formal data model to the CORBA Security Service.
There is a significative difference to our approach that
refers to the fact we addresses behaviour aspects instead
data. Hence, despite being formal, the objects being
formalised are completely different.

Fernandes [10] and Souza [23] also adopt Petri nets
for describing middleware aspects. However, their focus
are on the generation of formal models  that include
performance elements. The proposed models do not serve
to check properties such as deadlock freedom or safety,
but only quantitative and qualitative properties. Hence, in
a similar way to the use of Z notation, this approach has
not the focus on the behaviour itself.

7. CONCLUSIONS AND FUTURE WORK

This paper has illustrated how to adopt software
architecture concepts together with the formal description
technique LOTOS in order to describe the behaviour of
middleware systems. The middleware itself is defined as a
connector and its structure is defined through software
architecture elements (component, connectors and
configuration). Then, the middleware software architecture

behaviour is described in LOTOS. Due to its complexity,
the middleware software architecture is presented at three
abstractions levels that represent traditional views of the
middleware: middleware as a simple connector (application
developer’s view), middleware as a composite connector
(standards’ view) and middleware as a distributed
composite connector (middleware developer’s view). It is
worth observing that this approach of point of views  is
close to the idea of RM-ODP viewpoints, i.e., each
viewpoint captures a facet of design. However, our
approach of “separation of concerns”  only refers to
architectural aspects. Hence,  instead enterprise,
technology, information, operational, and engineering
aspects, it only covers architectural facets.

An approach based on software architecture
concepts enables us to explicitly define the middleware
internal structure and to separate computation and
communication elements of middleware systems. The
definition of the middleware software architecture facilitates
the understanding of the complex structure of middleware
systems as components and connectors have well-defined
roles. Additionally, the software architecture serves as the
basis for the implementation of middleware standards.

The adoption of LOTOS for describing the
middleware software architecture behaviour enables us to
check behaviour properties of each individual middleware
systems and middleware services specifications.
Furthermore, it makes it possible formally verify the
behavioural equivalence of different middleware systems.
This is not possible if conventional ADLs is adopted
instead LOTOS. We know that LOTOS has not been
originally designed to be used like an ADL (e.g., ADLs
have proper abstractions to model component and
connectors), but its limitations are compensated by its
powerful ability for describing behaviour and the set of
tools available.

The presented LOTOS specifications serve as a
basis for very interesting future work. We are currently
interested in the refinement of middleware specifications
in which the refinement process follows the rules of the
software architecture refinement. The proposed
formalisation also opens a new track on how to compose
middleware services, which is a basic task of adaptive
middleware systems. Finally, LOTOS specifications can
also be used to express and verify concurency models
and real-time properties of middleware systems.

REFERENCES

[1] R. J. Allen. A Formal Approach to Software
Architecture. PhD Thesis, School of Computer
science, Carnegie Mellon University, 1997.



Behavioural Specification of Middleware SystemsNelson Souto Rosa & Paulo Roberto Freire Cunha

74

[2] D. Basin, F. Rittinger, L. Viganò. A Formal Analysis of
the CORBA Security Service. Lecture Notes in
Computer Science, 2272:330-349, 2002.

[3] R. Bastide, P. Palanque, O. Sy, D. Navarre. Formal
Specification of CORBA Services: Experience and
Lessons Learned. In Proceedings  of OOPSLA, pages
105-117, 2000.

[4] R. Bastide, O. Sy, D. Navarre, P. Palanque. A Formal
Specification of the CORBA Event Service. In
Proceedings of FMOODS, pages 371-396, 2000.

[5] P. A. Bernstein. Middleware: A Model for Distributed
System Services. Communications of the ACM, 39
(2):87-98, 1996.

[6] G. Blair, G. Coulson, R. Philippe, M. Papathomas. An
Architecture for Next Generation Middleware.
Proceedings of Middleware, pages 191-206, 1998.

[7] T. Bolognesi, E. Brinksma. Introduction to the ISO
Specification Language LOTOS. Computer Networks
and ISDN Systems,  14(1): 25-59, 1987.

[8]  A. T. Campbell, G. Coulson, M. E. Kounavis, M. E.:
Managing Complexity: Middleware Explained. IT
Professional, 1(5):22-28, 1999.

[9] W. Emmerich. Software Engineering and Middleware:
A Roadmap. Proceedings  of Second International
Workshop on Software Engineering and
Middleware, pages 119-129, Limerick, Ireland

[10] S. F. L. Fernandes, W. J. Silva, M. J. C. Silva, N. S.
Rosa, P. R. M. Maciel, D. F. Sadok. On the Generalised
Stochastic Petri Net Modelling of Message-Oriented
Middleware Systems. Proceedings  of the 23rd IEEE
International Performance, Computing, and
Communications Conference, pages 783-788, 2004.

[11] ISO 10476-1: Reference Model of Open Distributed
Processing (Part I) – Overview. July (1995)

[12] ISO 15437: Enhancements to LOTOS (E-LOTOS)
(2001)

[13] D. Kreuz. Formal Specification of CORBA Services
Using Object-Z. Proceedings  of Second IEEE
International Conference on Formal Engineering
Methods, 1998.

[14] V. Matena, M. Hapner. Enterprise JavaBeans. Sun
Microsystems (1998)

[15] N. Medvidovic, E. Dashofy, R. Taylor. On the Role of
Middleware in Architecturebased Software
Development. International Journal of  Software
Knowledge Engineering , 13(4):367–393, 2003.

[16] N. Medvidovic, R. N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on
Software Engineering, 26(1):70-93, 2000.

[17] M. Moriconi, X. Qian, R. A. Riemenschneider. Correct
Architecture Refinement. IEEE Transactions on
Software Engineering, 21(4): 356-372, 1995.

[18] OMG: Common Object Request Broker Architecture
- Core Specification (CORBA 3.0) (2002)

[19] OMG: CORBAservices: Common Object Services
Specification. (1998)

[20] F. Plasil, S. Visnovsky. Behavior Protocols for
Software Component. IEEE Transacitons on Software
Engineering, 28(11): 1056-1076, 2002.

[21] W. Rosenberry, D. Kenney, G. Fisher. Understanding
DCE. Ed.O’Reilly & Associates, (1993)

[22] M. Shaw, D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Ed. Prentice
Hall, (1996)

[23] F. N. Souza, R. D. Arteiro, N. S. Rosa, P. R. M.  Maciel.
Using Stochastic Petri Nets for Performance
Modelling of Application Servers. Proceedings  of
the Performance Modelling, Evaluation, and
Optimisation of Parallel and Distributed Systems,
pages 1-8, 2006.

[24] Sun Microsystems Inc. Java Message Service
Specification. http://java.sun.com/products/jms/,
March (2002)X. B. Young. MyWWWPaperTile. http:/
/www.complete.address, Jan. 1998

[25] Sun Microsystems, Inc.: JavaTM Transaction Service
Specification.  http://java.sun.com/products/jts/
(1999)

[26] N. Venkatasubramanian. Safe Composability of
Middleware Services. Communications of the ACM,
45(6):49-52, 2002.

[27] S. Vinoski. Where is Middleware?. IEEE Internet
Computing, 6(2):83-85, 2002.


