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Abstract
The design and development of distributed software

is a complex task. This was not different in OurGrid,
a project whose objective was to develop a free-to-join
grid. After two years of development, it was necessary
to redesign OurGrid in order to cope with the integration
problems that emerged. This paper reports our experi-
ence in using Aspect-Oriented Programming (AOP) in the
process of redesigning the OurGrid middleware. The es-
sential direction of our approach was to get the project
(and the software) back in shape. We discuss how the
lack of separation of concerns created difficulties in the
project design and development and how AOP has been
introduced to overcome these problems. In particular, we
present the event-based pattern designed to better iso-
late the middleware concerns and the threads. Besides,
we also present the aspects designed for managing the
threads and for aiding the testing of multithreaded code.
We also highlight the lessons learned in the process of
regaining control of the software.

Keywords: Separation of Concerns, AspectJ, Grid
Computing, Software Reengineering, Software Architec-
ture, Tests

1. Introduction
OurGrid is an open, free-to-join, cooperative grid

in which institutions donate their idle computational re-
sources in exchange for accessing someone else’s idle
resources when needed [8, 35]. OurGrid leverages the
fact that people do not use their computers all the time.
OurGrid started by providing a simple and complete way
for users to run applications over all resources they could

log in [9]. This solution has grown in several ways and
has become widely used. Several research results (e.g.,
fault management [25], resource sharing [2, 3], applica-
tion scheduling [12], etc) have been incorporated into the
original prototype. The architecture of the system had to
be modified to accommodate such new features. If on
the one hand the inclusion of new capabilities was a good
evolution for the original idea; on the other hand, it in-
troduced chaos to the project. Most of the new features
have been developed by independent teams. In order to
help the integration process, automatic tests needed to be
provided by each integrator, and all the tests needed to be
executed before the integration was completed. However,
providing high-quality automatic tests for a grid solution
is a complex task. Besides the usual difficulties in devel-
oping and testing multi-threaded and distributed software,
grids add new challenges due to their wide-dispersion,
loose coupling, and presence of multiple administrative
domains. In fact, both grid infrastructure and applications
are currently very brittle [27]. After the integration pro-
cess, OurGrid 2.0 was released and used. At this point,
the bugs begun to appear and we started to identify im-
provements that needed to be performed. Nevertheless,
changing the code in a secure way had become a chal-
lenge and a very error-prone task. The several application
concerns were not well isolated, and the application tests
were not reliable since they could fail either due to an in-
sufficient time to wait before an assertion or due to a bug.
At that point, we have decided to experiment with AOP
techniques to identify the problems associated with the
software. The first step was to use AspectJ to debug Our-
Grid and get a better idea and control of its threads, espe-
cially during tests. By doing so, we could get a working
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version of OurGrid with a reduced number of bugs (Our-
Grid 2.1.3). Another concern was the software evolution.
This working version was very hard to evolve. Then we
started an effort to isolate concerns or aspects of the appli-
cation, redesigning it using an architecture where threads
could be well managed and where the tests could be more
deterministic and easier to implement.

In this paper we report our experience in using AOP
during the OurGrid development, especially in a critical
phase of the project, and we present the redesigned Our-
Grid architecture. The main contribution was a better
separation of concerns, which makes easier the integra-
tion of new features to the software as well as improves
OurGrid’s usability. Another contribution is the develop-
ment of a general package for thread management using
AspectJ. This package aids in testing and debugging of
multithreaded code.

This work is organized as follows. Section 2 briefly
presents AOP and the AspectJ language. Section 3
presents the problems we faced during the OurGrid de-
velopment, in special, for not dealing correctly with dis-
tinct aspectsof the software. Section 4 presents how we
used AspectJ to identify the OurGrid problems and to sup-
port the testing process. Section 5 presents the redesigned
OurGrid aiming an isolation of concerns and threads man-
agement using an event-based architecture. Section 6 is
the evaluation section, where we analyze the OurGrid re-
design and we present the lessons learned during the pro-
cess. Section 7 discusses some related work. Finally, Sec-
tion 8 presents our conclusions and suggests directions for
future research.

2. AOP Overview
Separation of concerns is an important matter for soft-

ware development. In its most general form, separation
of concerns refers to the ability to identify, encapsulate,
and manipulate the parts of a software that are relevant
to a particular concept, goal, task, or purpose [33]. By
analyzing the application concerns, we can organize and
decompose software into smaller, more manageable and
comprehensible parts that address one or more concerns.

Programming paradigms address this issue in distinct
forms (e.g., procedures and functions, modules, objects).
However, not allaspectsthat need to be addressed in
a program can be encapsulated in traditional program-
ming ways to separate concerns (e.g. message logging
or error handling). This is because these aspects are usu-
ally scattered across the code, which makes maintenance
and evolution complicated. Aspect-Oriented Program-
ming (AOP) [21] is a programming paradigm that aims to
clearly address theaspectsthatcrosscuttraditional mod-
ules. AOP proposes that those aspects (e.g., transaction,
message logging, error handling, failure handling, and
output formatting) should be written separately from the
functional code.

An example of an aspect language is AspectJ [20],
which is a general-purpose aspect-oriented extension for
Java. It supports the concept ofjoin points, which
are well-defined points in the execution flow of a pro-
gram [34]. It also has a way of identifying particular join
points (namedpointcuts) and a mechanism to change the
application behavior at join points (namedadvice).

Pointcut designators identify particular join points by
picking out a subset of all the join points in the program
flow [20] and the corresponding values of objects at those
points. A pointcut example is shown in the following:

pointcut startingApplication():
execution (public static void

main(String [])) ;

This pointcut captures the execution of any public and
static method calledmain that has aString[] param-
eter and hasvoid as its return type. This is just one
example of the several kinds of pointcuts provided by As-
pectJ.

Advice declarations are used to define code that runs
when a pointcut is reached. For example, we can define
code to run before a pointcut as shown in the following
example:

before(): startingApplication(){
System.out.println(
"The system will start");

}

With this advice, a message is displayed on the stan-
dard output before the execution of anymain method
identified by thestartingApplication pointcut.
Besides thebefore advice, AspectJ also provides
after andaround advice. The former runs after the
computation under the join point finishes, while the latter
runs when the join point is reached, and has explicit con-
trol over whether the computation under the join point is
allowed to run at all [34].

AspectJ also has a way of statically affecting a pro-
gram. With inter-typedeclarations, the static structure
of a program can be changed. For example, we can
change the members of a class and the relationship be-
tween classes [34].

Finally, AspectJ has the concept of anaspect, which is
a modular unit of crosscutting implementation. An aspect
is defined similar to a class definition, and it can have
methods, fields, constructors, initializers, named point-
cuts, advice and inter-type declarations. In short, aspects
group pointcuts, advice, and inter-type declarations. The
aspect code is combined with the primary program code
by an aspectweaver[40].

3. Getting into Trouble during the Develop-
ment of OurGrid

In this section we give an overview of OurGrid and
grid computing. Then, we discuss the problems we had
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in the process used to build this grid middleware. Finally,
we describe the project status before the redesign.

3.1. OurGrid overview
OurGrid is an open, free-to-join, cooperative grid in

which participants donate their idle computational re-
sources in exchange for accessing other participants’ idle
resources when needed [8]. It aims to enhance the com-
puting capabilities of research labs around the world, by
allowing them to trade resources that would otherwise be
wasted. OurGrid was designed to be scalable, both in the
sense that it supports thousands of labs, and that joining
the system is straightforward. In fact, anyone can just
download the OurGrid software and join the grid. There
is no need for paperwork or human negotiation, as it is the
case for other grids [8].

The current design of OurGrid assumes applications
to be Bag-of-Tasks (BoT). A Bag-of-Tasks application is
a parallel application composed of independent tasks that
can be executed in any order. A typical example of a BoT
application is a set of tasks composing a parameter-sweep
simulation. BoT applications are both relevant and suited
for execution in grids. OurGrid is open-source and it is
available for downloading athttp://www.ourgrid.
org. The current status of the OurGrid community is
available athttp://status.ourgrid.org. The
OurGrid basic architecture shown in Figure 1 comprises
the following elements: theGrid Machines (GuMs), the
Grid Machine Providers (GuMPs) and theScheduler.

We may summarize the communication between these
elements as follows. The user submits jobs to theSched-
uler. TheScheduler then requests machines (GuMs) to
the providers (GuMPs) and allocates the received GuMs
to execute the tasks of the submitted jobs. AGuMP con-
trols machines in a given administrative domain. GuMPs
can trade machines among themselves using an incentive-
compatible peer-to-peer protocol [2,3].

In the 1.0 version of OurGrid1, users could submit
their jobs directly through theScheduler remote ob-
ject or using Linux shell scripts. The machines available
for the jobs in the initial versions were just those previ-
ously configured in a local grid machine provider.

OurGrid 2.0 brought a host of new features com-
pared with the 1.0 version, such as new scheduling heuris-
tics [12,30] and a new way to obtain GuMs using a peer-
to-peer community [3]. However, the process of incor-
porating these functionalities faced some problems. As
with other grid systems [27], the result was a brittle code.
Besides the classic difficulties in developing and testing
multi-threaded and distributed software, grids add new
challenges due to their wide-dispersion, loose coupling,
and presence of multiple administrative domains. In par-
ticular, we had very serious problems in testing the soft-
ware.

1Version 1.0 of OurGrid was originally called MyGrid and it was re-
leased in the beginning of 2003

3.2. Problems in our development process
The process used to build OurGrid was XP-based [5].

However, during the development of the initial Our-
Grid versions, practices such as “Continuous Integration”,
“Pair Programming”, “Collective Ownership” and “Small
Releases” were not used.

In contrast with the weakness of omitting some prac-
tices, there was a strong point in the process by the use of
“automatic tests”. However, even the tests had problems
(low coverage and non determinism) and the test-first ap-
proach (implement the tests before the functionality being
tested) was not used due to the system complexity and the
strict deadlines.

Once the initial version of OurGrid was developed,
several research efforts evolved in parallel. The evolu-
tion of the OurGrid code and the external features were
managed separately (e.g., different branches in a reposi-
tory, bug fixing, etc.). Then, after one year, each branch
needed to be integrated into the repository main branch in
order to release version 2.0 with several new features.

The integration of each new feature (each branch in
the repository tree) was a hard task. First, the auto-
matic tests took a long time to be performed (more than
3 hours). Second, sometimes the tests failed because of
timing problems, that is, the time the test would wait be-
fore assertion was not enough because the functionality
to be tested had not finished yet. This happened because
the test thread usually created other threads that would ac-
tually make the assertions correct. Therefore, sometimes
it was necessary to includesleep calls on the tests to
make them wait before these assertions. In several cases
the code was committed with bugs because application
developers interpreted failures as an insufficient “sleep”
time in the thread control of the test. Finally, some of the
failures were really bugs, especially those related to the
order of execution of threads that were not foreseen. Such
bugs made the tests pass sometimes and fail in others.

The result of this integration approach was a reposi-
tory with non-deterministic tests whose failures could not
be well diagnosed. This was due to the increase in the
number of threads and synchronized blocks in the applica-
tion (for example, there were 174 synchronized blocks at
the end of this set of integrations). The worst scenario was
that each thread could freely “walk” throughout a poorly
modularized code, making deadlocks easy to be created
and difficult to be detected. To make things worse, be-
cause tests would take a long time, developers would fre-
quently interrupt a test and execute it later without notic-
ing that the delay could be the result of a deadlock that
only happened in a certain threads configuration. Besides
the testing problems, the code was not well understood
by the whole development team and evolution (including
bug fixing) had become a hard problem, especially be-
cause separation of crosscutting concerns and even of the
concerns that were not so crosscutting has not been con-
sidered during the integration.
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Figure 1. OurGrid Architecture Basics

4. Using Aspects to Diagnose the Problems
and Test OurGrid

Because the code of OurGrid was handled by sev-
eral people (around 20) without usingpair programming
and not focusing on thecollective code ownershipprac-
tice [5], it was difficult to understand strange behaviors of
the complete application. An even more difficult task was
to correct the bugs. Bug fixing begun to take much more
time than expected after the release of versions 2.0 and
2.1. As a consequence, we started an effort to better un-
derstand the code in order to make its evolution possible.
At this phase,aspects[21] were introduced.

4.1. Management of application threads during de-
bugging and testing

The main problem was to understand the behavior of
the application threads. In order to do that using pure
object-oriented programming, we would need to insert
code in several parts of the application (e.g., in each
thread creation,sleep andwait call, etc). So, we de-
cided to use AOP to help in this process. In the end, AOP
was not only used to debug the code, but also to improve
the testing process by controlling the application threads
before performing assertions.

However, there were problems regarding the use of
AOP by the development team. First, only one person
was familiar with AOP and second, the team was very
heterogeneous and changed frequently. The solution was
to devise a transparent way to introduce AOP. This would
allow anyone to use it, even without AOP knowledge.
The programmers simply needed to compile their pro-
grams with a different command and to know the meth-
ods of a class that provided services that made the tests
threads wait for the other application threads before pro-
ceeding. For the debugging process, we did not focus
on much transparency because our intention was only to
understand the problems in application threads. More
specifically, we wanted to identify the following points:
when threads started and finished to run, when the threads
waited on a monitor or when these waiting threads were
notified. This debugging code led to a general package
for testing calledorg.ourgrid.threadservices,

Figure 2. Thread Services class operations

which can be reused in other projects.
The OurGrid tests use the JUnit framework [24],

which is based on assertions. Each test invokes the ap-
plication and then it makes an assertion to verify if a
certain state has been reached. Before these assertions,
we usually usedsleep calls with a certain amount of
time to wait until a certain condition to be tested was
achieved. This happened because the test thread usually
created other threads that actually changed the application
state to the one expected by the test assertion. Neverthe-
less, the sleep time was not a good solution because it is
dependent on the machine being used in the test and on
the load it faces.

The org.ourgrid.threadservices pack-
age solves this problem. It was accessed through the
ThreadServices class, which is a common class with
a set of static operations (illustrated in Figure 2). From
the methods available, the most used for tests was the
waitUntilWorkIsDonemethod. This method makes
the caller thread wait until all threads started by the test
have finished or were waiting on a monitor. The other
methods used to make the test thread to wait (methods
wait*) were also widely used and they replaced most
of the sleep calls from the tests, making them faster
and more deterministic. For instance, if we wanted to
test the Scheduler, the test would submit a job to it and
then verify if the job had been successfully executed
asserting that the job state was finished. Before asserting
if the execution had successfully finished, we would call
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the ThreadServices.waitUntilWorkIsDone
method and then, the test thread would wait until the
scheduler thread and the other threads started by the test
had finished running or were waiting on a monitor.

In order to use the services shown in Figure 2, be-
sides invoking theThreadServices class on the tests,
it was necessary to replace the command used to com-
pile the application before the tests. In more practical
terms, application developers need to invoke theant as-
pectscommand. This did not cause any impact in the de-
velopment process since developers already used Ant [18]
for testing and compiling.

In order to implement theThreadServices meth-
ods without directly changing any part of the code, we
have implemented theRunningThreadsMonitor as-
pect. TheRunningThreadsMonitor aspect man-
ages the application threads with the help of a Java class
called ThreadLists, which manages thread collec-
tions. Some of theRunningThreadsMonitor point-
cut definitions are the following.

pointcut threadStartCalls(Thread t):
call(public void start())&& target(t);

pointcut waitCalls(Object o):
call(public void wait())&& target(o);

pointcut runnableRunExecutions():
execution(public void Runnable+.run());

The threadStartCalls pointcut illustrated
above collects every call to thestart method on a
Thread object. ThewaitCalls pointcut collects
every call to thewait method on any0bject. This
will indicate that one of the threads will be waiting
on a given object. TherunnableRunExecutions
captures the moment a thread is actually running. This
corresponds to the execution of everyrun method from
aRunnable object or from a class that implements this
interface, such as theThread class. These execution
points were important to capture, because in most of the
tests the threads are only started (i.e., thestart method
is called). However, when thestart method returns, it
does not mean that therun method has started.

In the following, we show a number ofadvices that
present the code to be run immediately before the point-
cuts described above are reached.

before(Thread t): threadStartCalls(t){
tLists.includeInStartedThreads(t);

}

before(): runnableRunExecutions(){
tLists.includeInRunningThreads(
Thread.currentThread());

}

before(Object o): waitCalls(o) &&
!within(ThreadLists){
tLists.addWaiting(o);

}

The code inside each advice will include the threads
captured by the pointcuts in different collections of
threads according to their state (started, running or wait-
ing). As theThreadLists class is responsible for these
collections of threads, the inclusion is done through an in-
stance of this class, namedtLists. Note that in the last
advice we take the caution of excluding thewait calls
that were inside theThreadLists class itself.

We have also included anafter advice to remove
a thread from the collection of running threads after the
run method execution has finished:

after(): runnableRunExecutions(){
tLists.removeRunnableThread();

}

Another twobefore advices have also been imple-
mented, as illustrated below. They are invoked when
notify andnotifyAll methods are called during the
execution, but not withinThreadLists class. They
are responsible for notifying thetLists object about
threads that may stop to wait, and that could, therefore,
have changed their state.

before(Object o):(
call(public void notifyAll()))
&& target(o) &&!within(ThreadLists){

tLists.notifyAllWaitingThreads(o);
}

before(Object o):(
call(public void notify()))
&& target(o) &&!within(ThreadLists){

tLists.notifyOneWaitingThread(o);
}

As could be seen,ThreadLists is responsi-
ble for managing the state of application threads.
It implements the functionality that waits until a
given configuration of threads is achieved or prints
threads in a given state, which is provided by the
ThreadServices class (see Figure 2). In order to do
this, theRunningThreadsMonitor aspect replaces
the ThreadServices static methods implementation
using the AspectJaround advice. Developers would
use static methods fromThreadServices class, but
would be in fact using a real instance ofThreadLists
instantiated by theRunningThreadsMonitor as-
pect. This little “trick” was essential to make the use of
aspects transparent to most programmers.

One of these advices is shown below. The others fol-
low the same idea.

void around(): execution(public static void
org.ourgrid.threadServices.ThreadServices.
waitUntilWorkIsDone()){

tLists.waitUntilWorkIsDoneNotifying();
}

This advice defines that instead of exe-
cuting what is defined in the body of the
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ThreadServices.waitUntilWorkIsDone
method, the waitUntilWorkIsDoneNotifying
method is called on theThreadLists instance owned
by the aspect.

4.2. Finding deadlocks through existing tests
After we have solved the problems of non-

deterministic tests that failed because of timing problems,
we still had the challenge of discovering application dead-
locks.

We randomly called thesleep method (with a ran-
dom time at a given interval) on running threads so that
application threads would run in different orders. Aspects
aided in this task and provided a solution more appropri-
ated than those based on pure object-oriented approach
where several parts of the code needed to be changed.
Testing would then be run over and over seeking for a
deadlock.

A single advice in a new aspect (the
ThreadSleeperAspect) was necessary to per-
form this task:

before(): call (* *(..))
&& withincode (* *..*.run()) {
makeThreadSleepIfItIsHerTurn();

}

This advice invokes the
makeThreadSleepIfItIsHerTurn method
before the execution of every call to any method inside
a run method execution. The method invoked inside
the advice verifies if the sleep should be called or not,
according to a random choice, and then invokessleep
on the currently executing thread choosing a random
interval.

Although this aspect was really useful for us in order
to find deadlocks, randomsleep calls considerably in-
creased the execution time of tests. Therefore, the tests
should not be executed every time with thesesleep
calls. As we were using AspectJ, in order to perform this,
we just exclude theThreadSleeperAspect from the
weaving process. To do that, the developers simply
needed to use a different Ant task to compile.

In order to find a deadlock through a test that some-
times gets blocked and sometimes passes, the developers
must include the aspect and execute the test many times.
The more executions, the more likely a problem is found.
If there is no deadlock suspicion, developers can normally
execute their tests without this aspect. However, auto-
matic tools, such as Linuxcrontab command, must be
used to invoke the execution of the tests for several times
using this aspect to assure all tests are passing and that
they are not getting blocked.

The use of aspects for threads management during de-
bugging and testing aided tremendously in the project
critic phase. Besides that, they were not very difficult
to be developed since there was someone already famil-
iar with AOP in the team. Using the developed aspects

was kept easy as it was introduced in a transparent way
through a different call to a tool already know by the de-
velopment team (Apache Ant tool).

5. The Redesign of OurGrid
According to the analysis based on the aspects in-

cluded in the code, we discovered that a reengineering
process was necessary or we would lose the control of
the code completely. The main goal of this process was to
well isolate internal concerns (aspects) of the grid middle-
ware and to better control the application threads. Some
classes could be reused, but others had to be completely
rewritten or created.

In this reengineering process, we have tried to iden-
tify patterns in the concerns implementations that would
make evolution easier. Besides that, identified patterns
could also be used for future concerns to be included on
the middleware. For simplification, we will just consider
the OurGrid broker (called MyGrid) redesign to illustrate
our experience and share some ideas from this process.

The first concern to isolate was the user interface. In
the early versions of OurGrid, users had to directly ac-
cess remote objects through RMI [17] or Linux scripts,
and they were always forced to change their grid appli-
cations when any interface (or script) changed or when
a new interface was added. Besides, if the communi-
cation infrastructure changed, users had to make several
changes in their application if directly accessing the code
(which was the most common use). Moreover, it was
not clear for the users which methods exposed by the re-
mote interfaces should be used. Therefore, we have de-
fined theorg.ourgrid.mygrid.ui.UIServices
interface to offer all MyGrid services. This interface is
illustrated in Figure 3 and it can be accessed via Java or
using script wrappers from the OurGrid distribution. My-
Grid also offers a graphical user interface that accesses the
UIServices services. More details about the UI ser-
vices can be found in the OurGrid manual [35]. Besides
isolating the user interface, we needed to isolate internal
concerns of MyGrid. In this isolation, we needed to or-
ganize the application threads and minimize the probabil-
ity of introducing deadlocks in the evolution of the soft-
ware. In order to do that, we have modularized the solu-
tion and employed an event-based architecture for com-
munication [7]. The salient feature of one event-based
design is that a thread in a module never wanders into an-
other module. The first step of this process was to identify
the concerns that needed to be modularized in the broker.
Then, we implemented each concern with a better control
of its threads and made communication between them use
solely events. The following concerns had to be isolated
in MyGrid: scheduling, local grid machines provisioning
(the local GuMP), and the execution of replicas.

In our implementation of the event-based architecture,
we have noticed a pattern that was repeated in many appli-
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Figure 3. User Interface services offered via MyGrid

cation modules and that can probably be applied to other
projects. It can be summarized as follows: the services
provided by a module are offered through a Façade [14]
class. This façade can be accessed by remote objects,
by other façades, or by any element of the façade mod-
ule. Each façade operation is converted into an event to
a module, which is abstracted by the façade to its user.
There is a contract that allows only one event in a mod-
ule to be processed at a time, making the application
threads more controllable. These events are processed by
EventProcessors classes and they use specific man-
agers from each module, which are classes invoked by
the events when they are processed. The event process-
ing is performed using the Command design pattern [14]
to make theEventProcessor a general entity. The
basic elements of our pattern are therefore: the façade,
the event processor, the events and the managers. Its dy-
namics is explained next with a concrete example that is
illustrated by Figure 4.

In MyGrid, three modules were defined; all of them
implement the pattern described above:

• Scheduler

• Local Grid Machine Provider

• Replica Executor

By well isolating these modules, we have separated three
different aspects of the middleware: scheduling, local
gums provisioning, and management of replicas’ execu-
tion.

TheSchedulermodule is responsible for receiving the
requests for the execution of jobs and allocating replicas
of the tasks defined in these jobs for machines. The ma-
chines can be provided by the local GuMP (theLocal Grid
Machine Provider). After this allocation, the scheduler
invokes theReplica Executormodule to manage the exe-
cution of a chosen replica at a given machine. In order to

receive machines from the local GuMP, users must define
their grid machines and the way to access them. This is
performed by invoking theLocal Grid Machine Provider
module. We will consider this operation to demonstrate
the dynamics of the event-based pattern used in the My-
Grid implementation that has proved to ease the evolu-
tion of the software. To do this, we will present the dy-
namics of asetLocalGuMs call, which is a method
from theUIServices interface used to configure the
local grid machines of the user. In order to do that, the
implementer of this interface contacts a remote object,
a GuMManager. Figure 4 illustrates this interaction.
Every event to be processed by anEventProcessor
implements theActionEvent interface and therefore
presents aprocess() method. In the creation of
each event, such as theSetGuMsRequestEvent, il-
lustrated by Figure 4, there must be an argument passed
to the object that will actually perform the action rep-
resented by the event. In this figure, this object is the
RequestManager.

With the event-based architecture divided in modules
and following a pattern that was repeated in many places,
maintenance had become easier and threads management
too. There was a thread in eachEventProcessor of a
module and when other internal threads from each mod-
ule were needed, they only changed the internal state of
the module via the module façade (via an event). Besides
isolating concerns, we had therefore isolated the threads
and decreased the number of synchronized blocks (from
174 in version 2.1.3 to 110 in version 2.2). Another im-
portant observation is that many elements of the pattern
implementation can be automatically generated, such as
theEventProcessor and the basic structure of each
Event used on a module.

Although we have focused on the MyGrid part of the
OurGrid solution, the separation of concerns principle
was also applied in other parts of OurGrid, making the
system evolution possible and less stressing than in the
past. We could have avoided redesign and made the isola-
tion mostly using AspectJ, for example, with the code we
had in the past. However, with this solution, we would be
avoiding refactoring, which is necessary in several mo-
ments and cannot be replaced by AOP but aided by it.

Besides the redesign, another aspect that also made
the software evolution better was the stronger focus on
important XP practices that were not being followed dur-
ing our development process, as we have discussed in
Section 3.2.

6. Evaluation
In this section we evaluate the result of applying AOP

in the redesign of OurGrid. We first present a compari-
son between the original and the redesigned versions of
OurGrid. Then we present the lessons learned from the
redesign process, evaluating the benefits it brought to the

27



Ayla Dantas, Walfredo Cirne, Katia Saikoski Using AOP to Bring a Project Back in Shape:
The OurGrid Case

Figure 4. OurGrid event-based pattern dynamics

software and the team.

6.1. Comparative analysis
The first analysis we present is a comparison between

the structure of the OurGrid code before the redesign and
after separating thecrosscutting concerns.

The aspect that triggered the rework was the thread
management problem. Because the tasks of provision-
ing machines, scheduling and management of executions
were scattered across the code, it was difficult to control
threads related to each task. The implication was the com-
plexity in finding deadlocks and correcting them since
there were many synchronization blocks and different ob-
jects as locks for these blocks.

Before redesign, we can summarize the architecture
using Figure 5. As can be seen, Remote Objects (objects
that implement thejava.rmi.Remote interface) re-
ceived remote method invocations possibly from differ-
ent threads. The threads that came from method calls
to these objects could freely walk along the application
packages. For each thread execution, several synchro-
nized blocks were visited. In order to illustrate the com-
plexity in extending and debugging OurGrid, Figure 6
shows a sequence diagram representing some internal
method calls that were invoked when the user wanted
to add a new grid machine to his personal grid. In
this sequence of calls, many synchronization actions hap-
pened and different objects were used as locks. Ini-
tially, there is a synchronization action on the processors
list managed by theLocalGMProviderImpl class.
Then, there are calls togetInstance andisAlive
methods fromGuMStateOracle, which are synchro-
nized. Synchronized methods are also called on the Pro-
cessor class (getGridMachine and active). Be-
sides that, there is also anewProcessor call, from
theRequestResponder class, which is also synchro-
nized.

In order to understand the problem, we made several
drawings using different colors to identify threads behav-
ior. In Figure 7, we illustrate one of the drawings that
helped us understand all synchronized blocks (including
methods) of OurGrid and the objects that were used as
locks in these blocks. In order to isolate threads manage-
ment in the redesigned version, developers had to follow

an architecture based on the processing of events. Before
redesign, it was really hard to know why a deadlock was
happening. We have designed two aspects to help in iden-
tifying these problems. TheThreadSleeper aspect
and theRunningThreadsMonitor aspect helped us
improve the quality of our tests with multithreaded code.
However, correcting an identified deadlock was really
hard, because we had many synchronization blocks and
different objects as locks for these blocks.

As we can observe, a reengineering process was nec-
essary in order to better isolate OurGrid aspects. In AOP
methodology, the crosscutting concerns are modularized
by identifying a clear role for each one in the system,
implementing each role in its own module, and loosely
coupling each module to only a limited number of other
modules [22].

After redesign, we created a structure to be followed
by developers, clearly defining the application modules
and the way these modules should interact. In order
to better isolate thread management, which was spread
throughout the code using synchronized blocks, we have
reduced these blocks and we have used an event-based
architecture. For each module, every invocation per-
formed to a remote object by a different thread was
redirected to the correspondent module façade. The
façade then created an event, depending on the method
called on it, which would be processed later by the
EventProcessor of that module. The necessary
classes from the module would be invoked in a secure
way since only one event per module would be invoked
at a time, changing the module state in a consistent way.
Figure 8 summarizes the architecture after redesign con-
sidering threads execution in a general way. An instan-
tiation of a thread execution in the redesigned software
was shown in Figure 4. Although we could obtain a bet-
ter separation of concerns and a better management of
application threads, we had some impacts on some met-
rics, which were calculated using the Eclipse Metrics plu-
gin [1]. They are summarized in Table 1.

One of the measures considered was the number of
classes. It has grown from 277 to 427, representing an
increase of 54.15%. This happened because we needed a
class for each event to be processed in a module instead of
a single method used in the previous versions. However,
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Figure 5. OurGrid before redesign

Figure 6. Adding a grid machine before redesign
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Figure 7. Attempt to understand OurGrid threads before redesign

Figure 8. OurGrid after redesign
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OG 2.1.3 OG 2.2
Total Lines of Code 33156 34734
Number of classes 277 427
Afferent Coupling 21.577 20.721
Efferent coupling 9 8.581
Lack of cohesion of methods 0.339 0.249
Number of synchronized blocks174 110

Table 1. OurGrid 2.1.3 and 2.2 comparison

part of the code regarding events creation and process-
ing can be automatically generated2. Regarding the total
number of lines of code, they had only increased 4.75%.

The Afferent Coupling average, which is the number
of classes outside a package that depend on classes in-
side the package, had decreased 4% after redesign. The
Efferent Coupling average, which indicates the number
of classes inside a package that depend on classes outside
the package, had decreased 4.6%. These metrics are inter-
esting, but do not completely express the gains obtained
regarding less coupling between classes, as these metrics
are based on packages. The Lack of Cohesion of Meth-
ods(LCOM*) is a better metric as it considers methods
and attributes. It is a measure for the Cohesiveness of a
class calculated with the Henderson-Sellers method [19].
If m(A) is the number of methods accessing an attribute
A, this metric calculates the average of m(A) for all at-
tributes, subtract the number of methods m and divide the
result by (1-m). A low value indicates a cohesive class.
We obtained that the redesigned version LCOM* value is
26.54% lower than the previous one.

Besides these metrics, we have considered that the re-
duction of synchronized blocks was the better result for
us, which had made programming more secure regarding
the danger of including deadlocks. The number of syn-
chronized blocks was 36.78% smaller after redesign.

6.2. Lessons learned
We have learned some lessons while applying AOP

to a project that was in trouble due to the complexity in
threads management. Next we analyze them in a generic
form so that they can be applied to other projects in simi-
lar situation.

Use AOP to get a better control of multithreaded
code: We have lost the control of the multithreaded code.
Our first step was to find the easiest way to identify the
problems regarding threads execution. Our approach was
to provide a set of tools for testing that would make it
easy to identify bugs regarding certain threads execution
order and without directly changing the code. With such
approach we could deliver a better version of OurGrid to
final users, without many of the problems that existed. Af-
ter that, we have made the redesign to better isolate the ap-
plication concerns and specially its threads management,

2Code generation for event handling is expected for OurGrid 4.0

through an event-based architecture.

Avoid developers’ resistance of introducing a new
technology, such as AOP, during a critical phase of a
project by introducing it in a transparent way: If de-
velopers have a little time to finish up something and a
new technology is introduced, there might be some re-
sistance. We have avoided that resistance by introducing
Aspect-Oriented Programming use as a new call to the
Ant tool that would replaceant compile call and by
providing a class withThreads utilities that looked like
a normal Java class. Behind it, there was an aspect re-
sponsible for performing this class functionality due to
its power of knowing the application threads states. With
such approach, developers used AOP without compromis-
ing too much time in learning a new technology in a crit-
ical phase of the project.

Automatic tests are vital to get a software project
back in shape and AOP provides a good support in
the development of automatic tests: Developing tests
for grid computing solutions is hard, especially because
sometimes they impact in the implementation, since the
code needs to be changed. By using AOP, it is possi-
ble to have more testable applications without directly
changing them, improving test quality. For example, the
waitUntilWorkIsDone method that we have pro-
vided helped us to test multithreaded code.

Really follow the development process you have
adopted: We had serious problems in integration. In
2003, we had 6 different groups implementing new fea-
tures for OurGrid, each one with a different version of
the system. These versions started to be integrated at the
end of the year in a serial manner. Each integration pro-
cess was hard and the existing tests were of bad quality
and they took too much time to execute. The code being
integrated was not known by all the development team,
making maintenance very difficult. Sometimes, only one
person knew part of the code because pair programming
was not used during development. In fact, we were us-
ing an XP-based process, but we were not following most
of its practices. From the XP practices [5], the ones that
caused more damage for not being followed were:

• Continuous integration: New code is integrated
with the current system after no more than a few
hours. When integrating, the system is built from
scratch and all tests must pass [5].

• Testing: Programmers continually write unit tests,
which must run flawlessly for development to con-
tinue. Customers write tests demonstrating that fea-
tures are finished.

• Collective ownership: Anyone can change any code
anywhere in the system at any time.
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• Pair programming: All production code is written
with two programmers at one machine.

• Refactoring: Changes in the code to improve its de-
sign and that do not change its functionality.

As we gave a greater attention to these practices, we
could get control about our code again and improve de-
velopers’ confidence with it. Besides that, due to these
practices, the redesign process was faster than expected.

7. Related Work
Several aspects of AOP have been subject of research.

However, we are particularly interested in comparing our
work with those projects that have applied AOP as the
solution for reorganizing existing code.

Although general aspects of refactoring and AOP have
been addressed in several works (e.g., [6,38]), we needed
some real examples to be able to compare the results
of our efforts. Scenarios where real systems had to be
(re)organized vary from interface implementations [37],
reduction of middleware complexity [41], experiment
with AOP in large scale middleware [11], comparison of
the use or not of AOP in a component-based web crawling
system [26] and others ( [4,28,32]). None of them, how-
ever, deal with the reorganization of a system in a critical
phase of a project.

An interesting result was presented in Coady & Kicza-
les [10] where parts of the FreeBSD operating system
were refactored and the result was a software better or-
ganized and easier to evolve and maintain, similar to the
results we found.

Although there are methodologies for finding cross-
cutting aspects, we did not explore them since we had a
very specific initial need. In this area, proposals such as
concern graphs [29] and aspect browser [16] could help
us in the process of finding more crosscutting aspects in
addition to the specific issues we have selected based on
practical experiences.

Even though our selection of aspects was ad-hoc, we
addressed a very interesting issue in our AOP experi-
ence with OurGrid. This same issue was identified in
the literature. Schwanninger el al [31] have pointed out
that software often present one or more crosscutting con-
cerns, including optimization of resource management,
e.g. memory management or thread management. Gibbs
& Coady [15] present a case study where AOP has been
applied in a memory management system to help flex-
ibility in terms of evolution and adaptation. Walker et
al [39] present an experiment with the objective of identi-
fying if AOP could be used to help bug finding and fixing
in multithreaded code. More specifically, a methodology
for testing multithreaded programs was proposed in [13].
The method proposes reruns of existing tests in order to
detect synchronization faults. In our work, besides rerun-
ning the existing tests, we have introduced sleep calls in

several points of the execution that varied in time, increas-
ing the probability of different threads configurations for
each test run. The interesting point was to use aspects,
which made this implementation easier, modularized and
did not introduce complexities to the normal application
code.

Another work [23] proposes the use of aspects in the
testing process. The focus is on using aspects to avoid
changing the code just to make the implementation of a
test possible, especially considering the use of a technique
called Mock Objects for isolating application units during
tests. We have also explored aspects for tests in our work,
focusing in testing multithreaded code. We have also cre-
ated a general package for thread management that can be
used for testing, debugging and even in the normal execu-
tion of the application if such management is necessary.

Other works, such as [36], also present their cases of
grid middleware development. In our work, besides pre-
senting our history, and how we got into trouble during
the development, we also provided a useful technique for
separation of concerns in such systems that focused on
isolation of the user interface and on the use of an event-
based pattern in the implementation of each concern mod-
ule. Besides that, we have provided reusable aspects and
classes to aid testing and debugging.

Event-based communication is not new for large-scale
distributed applications [7]. As this style brings some
complexity to the code, we have tried to simplify the pro-
gramming model by providing Façades that have hidden
the use of events from the users of the modules.

8. Conclusions
We have concluded that aspect-oriented programming

has been a useful mechanism in the maintenance and
reengineering process of OurGrid. Besides helping in the
debugging process and improving the quality of tests for
multithreaded code, the focus on separation of concerns,
especially crosscutting ones, was very important for bet-
ter designing our software.

Modularized implementation of concerns results in
easier-to-understand and easier-to-maintain systems [22].
When new concerns emerge, refactorings may be done
to guarantee we keep the code simple and understand-
able. Besides that, changes occur all the time in a research
project, requiring good automatic tests. Aspects helped in
improving the testing of parallel and distribute applica-
tions. By using AspectJ, we have provided services for
controlling the state of application threads and for mak-
ing existing deadlocks of the code more prone to happen
during the execution of tests.

We have also observed that the isolation of the user
interface is really important in order to provide a software
evolution that does not harm so much the developer. Be-
sides that, we also believe that the pattern we have used
in each OurGrid module can be easily applied to other
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concerns that can come in the future for the project and
even for other projects based on multithreaded code. As a
future work, we want to apply the pattern for other parts
of the middleware being developed and formally describe
this pattern. We also plan to have automated support to it.

Another future work is to explore AOP in other as-
pects of grid computing. We believe AOP can improve
the implementation of some crosscutting concerns such as
grid monitoring, failure detection, accounting and adapt-
ability. The implementation of these concerns is difficult
to modularize using pure object-oriented techniques to-
day and if not well modularized, will lead to maintainabil-
ity problems when incorporated into the code. As there
are open issues in grid architecture, we believe AOP can
give an important contribution in this field.
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