A Lua-based AOP
| nfrastructure

Nélio Cacho, Thais Batista and Fabricio Fernandes

Departamento de Informética e Matematica Aplicada
Universidade Federd do Rio Grande do Norte
Campus Universitario - Lagoa Nova - 59.072-970 - Natal - RN
{ cacho - fabricio} @consiste.dimap.ufrn.br
thais@ufrnet.br

Abstract

In this paper we describe an aspect-oriented
infrastructure to handle dynamic AOP based on the Lua
language. This infrastructure is composed of AspectLua,
a Lua extension that allows the declaration of aspects,
and a meta-abject protocol, LuaMOP, that unifies the
introspective and refl ective mechanisms provided by Lua.
Aspects are defined in isolation using AspectLua and
then they are weaved through LuaMOP. An important
feature of AspectLuaisto allow the association of aspects
with undeclared elements of the application code
(anticipated join points). Furthermore, it combines a
range of features to make AOP easier and powerful.

Keywords: MOP, Reflection, AOP, Dynamic AOP,
Lua, Antecipated Join Points

1. INTRODUCTION

Aspect-oriented programming (AOP) has been
gaining attention due to its focus on the modularization of
crosscutting concerns. In general, aspect-oriented
approaches are static — aspect code and components (base
code) aremixed at compiletime(static weaving). Inthiscase,
aspecia compiler isneeded to combinethe aspect codewith
the base code. Although this strategy avoids type
mismatches, it imposes many restrictions on application

dynamic evolution. Morerecently some dynamic approaches
have been proposed to support weaving at runtime. Ingeneral
they are built on top of a scripting language such as Python
[13], Ruby [14], and Smalltalk [22]. These dynamicweaving
approaches dlow aspectsto be woven at runtime. However,
they present some limitations. An important limitation is to
restrict the specification of aspects join points to refer to
existing elements of the base code. In some situations it is
necessary to define the aspect code to application elements
that will be dynamically inserted. Thisdynamicinsertioncan
be done by the application or even by the aspect itself.

We address this problem by proposing the concept
of anticipated join points. Anticipated join points are
interception points for elements that have not yet been
declared and loaded in the application program. The use of
anticipated join points makes it possible to intercept an
invocation to an undeclared method and to apply to it a
specific action, such as, lazy loading acode. Anticipated join
points are introduced in Aspectlua[24] to avoid the need of
loading the application code that contains a given join point
before loading the aspect code regarding this join point. We
consider that thelack of support for anticipated join pointsis
an important limitation of most AOP approaches.

Another limitation of most AOP proposalsisthat they
do not combine a set of features to make AOP easier and
powerful: (1) insertion and removal of aspectsat runtime;

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

(2) the definition of precedence order among aspects; (3)
the possibility of using wildcards; (4) the possibility of
associating aspects with undeclared elements (anticipated
join points); (5) a dynamic weaving process via a meta-
object protocol.

In this work we present an aspect-oriented
infrastructure that handles agpect-oriented programming and
addresses the limitations described above. The infrastructure
is composed of: (1) AspectLua — an extension to the Lua
language [7] to dlow aspect definition; (2) LuaMOP [25] —a
meta-object protocol (MOP) that providesan abstraction over
the reflective features of Luaand allows application methods
and variables to be affected by the aspect definition. The
advantage of using a MOP as an underlying mechanism to
handledynamicweavingisthat it allowsnon-invasive changes
of theorigina application code. Aspectsaredefinedinisolation
using the Aspect class provided by Aspectlua and then they
areweaved through LuaM OP. AspectL uaoffersan abstraction
to hide the complexity of the weaving process. For instance,
the programmer can define an anticipated join point without
knowing that L uaM OPimplementsan underlying mechanism,
named Monitor, to support anticipated join points.

We have chosen the Lualanguageto support dynamic
AOP becauseit isdynamically typed and it providesfacilities
for extendingitsbehavior without modificationintheunderlying
interpreter. Such facilities are explored in the definition of
Aspectlua and LuaMOP. We argue that this introduces a
different style for aspect-oriented programming where
dynamismisakey issue, weaving isdone at runtime and both
components and aspects can be inserted into and removed
fromtheapplication at runtime. In addition, the L uaphilosophy
istobesmpleand small. Weaimto keep thisphilosophy inour
AOPinfrastructure.

Although some researchers do not associate the use
of AOP with scripting languages because, in general, such
languagesare not intended to writelarge and complex software
systems, we argue that the benefits of AOP target not only
largeand complex software systemshbut it a so hasanimportant
role in embedded systems where the problem of composition
is even harder. This type of system needs to maintain the
application code small. Thus, separation of concerns is
essential and AOPisagood technique to manage crosscutting
concernsin embedded systems[18].

In addition, as Lua is dso used in a CORBA-based
development application environment [25], the AspectLua
infrastructure presented in this paper is useful for applying
AOPtothedynamic adaptation of CORBA -based application.
It makes adaptation of component code possible as well
adaptation of agpect code and of the overal application.

This paper isorganized asfollows. Section 2 presents
the underlying concepts of this work: aspect-oriented

programming, computational reflection and the Lualanguage.
Section 3 presentsthe aspect-oriented infrastructure presented
inthiswork to handledynamic AOP: LuaM OP, AspectL uaand
the relationshi p between them. Section 4 presentsacase study
that applies the AOP infra-structure in the dynamic
customization of an AOP-based middleware. Section 5
discusses about related work. Finally, section 6 contains the
findl remarks.

2. Basc ConcerTs

2.1. AsPecT-ORIENTED PROGRAMMING

Aspect-Oriented Programming emphasizes the need
to decouple concerns related to components from those
related to aspectsthat crosscut componentsin an application.
Although there is no consensus about the terminology and
the elements of aspect-oriented programming, werefer inthis
work the terminology used in AspectJ [10] because it isthe
most used aspect-oriented language. The elements that
compose AOPare: aspects, join points, pointcuts and advice.
Aspects are the elements designed to encapsulate
crosscutting concerns and remove them from the application
base code (components). Join Points are the elements of the
component language semantics that aspect programs
coordinate with [9]. Join points can represent data flows of
the component program, runtime method invoceationsin the
component program, and others. Pointcuts are sets of join
points. The definition of pointcuts makes it possible to get
methods arguments values, attributes, exceptions, etc.
Pointcut designators pre-defined in the language itself are
used for this purpose. The main designators are call, get,
and set, which are related, respectively, to method call, and
variable reading and modification. Pointcuts can also be
defined by programmers on the basis of pre-defined
designators. An advice defines the action that must be taken
when ajoin point isreached. It acts on apointcut and can be
configured to act before (before advice), after (after advice),
around (around advice) the joint point, and others.

Theweaving process placestogether the code defined
in thejoin points and the advice. Weaving can be done either
at compiletime or at runtime. In Aspect and AspectC++ [3]
weaving isdone at compiletime. A current version of AspectJ
supportsweaving at load time. Since new |language constructs
to handle AOP were added to the language syntax, a specia
compiler playstheweaver rolein order to mix source codeand
aspects code. The outcome is a new verson of the system
including both codes. The other approach, which involves
aspectsweaving a runtime, will bedetailedinthenext sections.

2.2. AOP wiTH REFLECTION

Theintroduction of dynamic aspectsinaprogramming
language depends on its support for recognizing join points
and for dealing with advice insartion. The recognition and

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

introduction of new behaviors (advice) can be implemented
using computationa reflection.

Reflection[8] istheahility of asystemtoinspect andto
manipulate its interna implementation. The separation of
application functionality and the execution mechanisms
provides support for reflection. This separation alows the
existence of two levels to support reflection: base-level and
meta-level. The base-level contains the application concerns.
The metarleve contains the building blocks responsible for
supporting reflection. These levels are connected by a causal
connection to allow modifications at the meta-level to be
reflected into corresponding modifications at the base-level.
Thus, modifications a the application should be reflected at
themeta-level. Theelementsof thebase-level and of themeta:
level are respectively represented by base-level objects and
meta-level objects.

The access to the meta-level objects is provided by a
meta-object protocol (MOP), which defines an interface that
enables accessing the Sructure of aprogram (classes, methods,
fields, etc) and ingpecting the execution environment. Events
that can havethe semanticsmodified by themeta-objectsindude:
object crestion, sending and receiving messages, searching
methods, seiting and getting vaues in variables. Meta-objects
are ingtances of metarclasses that define fidlds and methods to
modify and to ingpect the execution environment.

The introgpection facilities provided by MOPs dlow
the recognition of join points. It also easily supports the
dynamic insertion of advice that represent the aspect code to
be combined with the gpplication code.

2.3. REFLECTION IN LuA

Luaisaninterpreted extension language devel oped at
PUC-Rio. Itisdynamicaly typed, which meansthat variables
are not bound to types. However each value has an associated
type. Luasyntax and control structures are Smilar to those of
Pascal. It a o offers some non-conventional features, such as
the following: (1) Functions are firg-class vaues and they
may return several vaues, diminating the need for passing
parameters by reference; (2) Lua tables are the main data
sructuring facility in Lua. Tablesimplement associativearrays,
are dynamically created objects, and can be indexed by any
vaue in the language (except nil). Lua ores dl ementsin
tables as key-value pairs. Tables may grow dynamically, as
needed, and are garbage collected.

Luaoffersreflective facilities such as: metatablesand
the _G environment variable. Metatables alow modification
of the behavior of atable. Thisis done via the definition of
functionsto beinvoked in specific points during the execution
of aL.uaprogram. Each function defined, named metamethod,
is associated with aspecific event. When an event occurs, the
function is invoked to handle such an event. The code of
Figure 1 illustrates the use of metatables.

1 commontable = {x=10, y=20}
2 local metatb = {77index = function (t, k)

print (k) end}
3 setmetatable (commontable, metatb)

Figure 1: Metatable definition

Inthecodeof Figurel, line1 definesthe commontable
tablewith x and y fields. Line 2 definesthe metatb metatable.
It will act uponthe“index” event by printing theindex of the
element. On line 3, metatb is applied, via the setmetatable
method, upon the commontable table. Thus, when
commontable is indexed, as in the print(commontable.x)
invocation, the metamethod will be invoked to print the
element used astheindex, in thiscase “x”.

Another reflective feature is the G environment
variable. It describes all global variables of an application,
including tables and functions. This varigble is a table that
can be manipulated as any other table of the environment. It
is possible to insert, to modify, and to remove variables and
functions of the execution environment. The codeillustrated
in Figure 2 shows an example of a variable declaration by
directly insertingitin_G

In the code of Figure 2, the declare method receives
the following parameters: the name and initial value of a
varigble. Then, itinvokesthe Luarawset method. Thismethod
insertsinthe_Gtable, anamefiedwith valueequdl toinitval.
It also alows the use of a metatable to control reading and
writing inglobal variables.

1 function declare (name, initval)
2 rawset (_G, name, initval or false)
3 end

Figure 2: Declare method

Despite these reflective facilities, Lua does not
provide a MOP that unifies and organizes the introspection
and reflection mechanisms required to make the
introduction of AOP easier. Therefore, in the following
sections, we will describe a MOP to the Lua language and
its support for AOP.

3. AsPECT-ORIENTED | NFRASTRUCTURE

Luasupport for AOPis provided by an aspect class
used to define aspects that are dynamically weaved by a
meta-object protocol named L uaM OP.

Figure 3 illustrates the blocks that compose the AOP
architecturethat wecall AspectLuaarchitecture. Thefirstlayer
iscomposed of the Lua language with its reflective facilities.
The second layer is composed of the LuaM OP facilities that
take advantage of the Lua reflective mechanisms. LuaMOP
provides a set of meta-classes that support the dynamic
introduction of aspects defined at the third layer. AspectLua
providesthe agpect classto the definition of AOPelements. A

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

programmer can take advantage of AspectlLua without
knowing either LuaMOP or the Lua reflective features.
Moreover, AspectLua does not violate the internal
mechanism of the Lualanguage, asit isbuilt uponthe Lua
reflective features.

AspectLua |

Meta-Classes

LuaMOP facilities

Lua Interpreter with basic reflective
facilities

Figure 3: AspectLua architecture

LuaMoP MetaCoroutine
- metaObjects :[] MetaObject
- monitors : [] Monitor
+ getlnstance () : MetaObject : ;?:Jn(i 0
+ getMetaObject () + status()
+ createMonitor () + setFunction ()
+ getMonitor ()
+ getAllMonitors ()
Monitor MetaTable
- fields :[] MetaField
- monitor : Monitor
+
[ey - onr
+ getAllFields ()
+ getAllEvents () .
+ delEvent () * setFlqu 0
+ setMonitor ()
+ getMonitor ()

3.1. LuaMOP

LuaMOP isameta-object protocol that supports
the creation of a meta-representation to each element
that composes the L uaruntime environment: variables,
functions, tables, userdata and so on. Each element is
represented by a meta-class that provides a set of
methods to query and to modify the behavior of each
element of the base class. They are organized in a
hierarchical way where MetaObject is the base meta-
class (Figure 4). Derived from this meta-class are
MetaVariables, MetaFunctions, MetaCoroutine,
MetaTable, and MetaUserData meta-class.
Furthermore, LuaM OP also provides a Monitor class
to monitor the occurrence of eventsin the Luaruntime
environment.

MetaObject

~+ getType () MetaFunction
+ getName ()
+ destroy ()
- - + getNameFunction ()
+ getSrcDefined ()
+ getlLineDefined ()
+ getTypeFunction ()
+ getNameWnhat ()
+ getFunction ()
MetaUserData + setFunction ()
+ addZMethod ()
+ getZMethods ()
MetaVariable + setZMethods ()
+ delZMethods ()
+ getValue ()
+ setValue ()
+ addXY ()
+ getXY ()
+ setXY ()
+ delXY ()
. + setAvalXY ()
MetaField

- value

: MetaObject

Figure 4: LuaMOP class diagram. X should be replaced by Pre and Pos, Y should be replaced by Get and
Set and Z should be replaced by Pre, Pos or Wrap

The meta-representation provided by LuaMOP is
created via the invocation of the getlnstance(instance)
method. This method returns the meta-object
corresponding to the object with name or reference
described by the instance parameter. This meta-object is
an instance of a meta-class described above. For each
meta-class there are methods that describe it and that
supports changing the behavior of a meta-object. Thus,
getType() and getName() methods can be invoked by all
meta-classes, since these methods are part of the
MetaObject meta-class. These methods return,
respectively, the meta-object type and name. The destroy()
method is used to disconnect the meta-object from the

10

base object and to destroy the meta-object. The
getlnstance method can a so beinvoked, using asan input
parameter a non-determined name. For instance:
getlnstance(* string.*”) returns a list (table) with meta-
objects that represent the functions of the string package.

The MetaVariable meta-class provides the
following methods: getValue and setValue. These two
methods are used to get and to modify the value of a
variable. The get and set events are two other functions
that can be intercepted by LuaMOP. The get event occurs
when avariable, table or function isreferenced, indexed or
invoked. The set event occurs when values are associated
with variables, table elements and functions.

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

The addPreGet, addPosGet, addPreSet, and
addPosSet methods insert a function to be executed
before (or after) variable reading or writing. Figure 5
shows an example of the use of these functions. On
the first line, the balance variable is set to 10. On the
next line, a meta-object is created to represent the
balance variable. The four following lines declare the
checkread function and associate this function with
the metavar meta-object, via the addPreGet method.
The main goal of these functions is to control the
access to the balance variable. Thus, if the function
inserted by the addPreGet method returns a value
different from nil, the reading process is interrupted.
The existence of other functions demands that all
functions return nil to allow reading the variable. This
LuaMOP standard behavior can be modified by the
setAval PreGet(funcaval) function. The funcaval
function receives as a parameter a table with all
outcomes provided by the functions inserted using
the addPreGet method. Based on thislist, the funcaval
function should return a non-nil value to interrupt the
reading.

Line 10 shows the use of addPosGet function
to associate the convert_to_dollar function with the
metavar meta-object. The convert_to_dollar function
is invoked after reading the variable and it receives
thereading value. It can return anew value. Online 8,
the balance variable value is divided by 2.65 and the
outcomeisreturned to the application. The addPreSet
method is used to modify the variable value. On line
15, this function is invoked to associate the
convert_to_real function with the metavar meta-
object.

The convert_to_real function is executed
before writing the new value provided by the
application. The convert_to_real function can return
nil or atable. If it returns nil, the writing process is
canceled and the original value of the writing process
ismaintained. The change of the original valueisonly
performed via the return of a table with size greater
than one (the case of line 12). The remainder of Figure
5 shows the use of addPosSet method that is invoked
to associate the writelog function with the metavar
meta-object. The writelog function is invoked after
the balance variable is given a new value. This new
value isrepresented by the value parameter. Similarly
to the setAvalPreGet function, setAvalPosGet,
setAvalPreSet, and setAvalPosSet functions can also
be invoked to modify the behavior of each function.
The getXY, setXY, and delXY functions are used to,
respectively, get all functions associated with Pre/Pos
and Get/Set, to determine a new function set, and to
remove an element (function) of the functions set.

11

balance 10
metavar LuaMOP:getInstance (“balance”)
function checkread ()

if (user ~= “admin”)then return 1 end
end
metavar:addPreGet (checkread)
function convert to_dolar (value)

return value / 2.65

WoOoJoauTd WN -

end
metavar:addPosGet (convert_to_dollar)
function convert to_real (value)
if (user == “admin”) then return
{value * 2.65}
else return nil end
end
metavar:addPreSet (convert_to_real)
function writelog(value)
print (*It was write the value:” ..
end
metavar:addPosSet (writelog)

value)

Figure 5: LuaMOP example with add methods

A MetaFunction class represents al functions of
al uaapplication. This meta-class provides the following
methods: getNameFunction, getFunction, and
setFunction. getNameFunction() method gets the
function name referenced by ameta-object. getFunction()
method getsthe function referenced by ameta-object, and
setFunction(newfunction) allows modification, at runtime,
of the function behavior. Some other functions that give
detail s about a meta-object are provided: getS cDefined()
returns the file that contains the function definition;
getLineDefined() returns the line that contains the
function declaration; getTypeFunction() identifies if a
functioniswrittenin Luaor in C; getNameWhat() identifies
if afunction isglobal or local.

function sum(a,b) return a + b end
function newsum(a,b) return a + b * 2 end
metafunction = LuaMOP:getInstance (sum)
print (metafunction:getNameFunction())
metafunction:setFunction (newsum)

print (metafunction:getNameFunction())

Uk whD NN

Figure 6: LuaMOP example with setFunction

The MetaFunction meta-class also offers the
addPreMethod, addPosMethod, and addWrapMethod
methods. These methods define the place where the
behavior is added: Pre(before), Pos(after), and wrap the
execution of a function. An example of the use of these
functionsisillustrated in Figure 7.

function reglog(self,value)
print (“Deposited Value:”,value)
end
metafun =

B W

LuaMOP:

getInstance (“Account.deposit”)
metafun:addPosMethod (reglog)

Account :deposit (10)

o U

Figure 7: LuaMOP example with addPosM ethod

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

The meta-object is obtained on line 4. On line 5, the
addPostMethod method isinvoked to add the reglog function
defined fromlines 1 to 3. When thedeposit method isexecuted
(line 6), the LuaM OP mechanisms automeatically invoke the
reglog method.

Tocontral thefunctionsassociated withagiven behavior,
MetaFunction provides the following methods getZMethods,
setZMethods, and delZMethods. The getPreMethods methaod,
for instance, returns a list of al methods added to the Pre
behavior. The list provided by the getPreMethods is ordered
and sent as a parameter to the setPreMethods method. This
|atter method modifiestheexecution order of themethods defined
tothePrebehavior. Theremova of amethod can bedoneusing
the delPreMethods method.

The MetaTable classrepresentsthe application tables
and providesthefollowing functions. getField, getAllFields,
and setField. The getField(name) method receives the field
name parameter and returns a MetaField that represents it.
The MetaField class inherits from the MetaVariable class
and, as a consequence, provides the same functiondities of
aMetavariable. For example: to add afunction to beinvoked
before reading the variable value. To get al MetaFidds of a
MetaTable, the getAllFieds() function can be used.

ThesatFidd(namefidd, value) methodisused to modify
atablefidd andtoinsert ateblefiddif it doesnot exist. InLua,
classes are represented by Table dements. Thus, the setField
method can be used to add both new attributesand new methods.

Despite the fact that the meta-object provides the
setField method, it does not exclude the use of another
mechanismtoinsert new fields. Theroleof themeta-objectis
to maintainthe causal connection and to updateits properties
according to the changesin the base objects. Figure 8 shows
an example of thisbehavior.

Account = {}
Account .balance = 0
metaAccount = LuaMOP:getInstance (“Account”)

Account .NameAccount = “Mary”
function logchangename (value)
print (*The new name is”, value)
end
metavar =

WOJaUTd WN P

metaAccount:
getField (“NameAccount”)
10 metavar:addPosSet (logchangename)

Figure 8: LuaMOP and causal connection

Onlines 1 and 2 the Account object isdefined with the
balance attribute. On the next line, ameta-object is created to
represent the Account object. At thismoment the metaAccount
meta-object hasonly balanceasaMetaField. Online5, anew
field, NameAccount, is defined to the Account object. This
action changes the base object and triggers an automatic
modification of the metaAccount meta-object that provides

12

the getField method to recover the MetaField with name
NameAccount. Such MetaField provides the same
functiondity of aMetavariable. Thisalowstheinvocation of
the addPosSet method to handle the modifications of the
NameAccount field.

LuaMOP functiondity goes beyond the provision of a
meta-representation. It isaso possible, viaMonitors, to capture
events from the runtime execution environment. A Monitor
providesthesamefunctionditiesof aMetatable. Thedifference
between themisthe possihility of defining aMonitor to handle
eventsrelated to e ementsthat have not yet been declared inthe
goplication. The Monitor acceptsthe same eventshandled by a
Metatable (add, sub, index, newindex, etc) and dso anew one:
noindex. This event is different from the index event because it
isinvoked only when the correspondent index is not found.

Figure 9 shows how a monitor can be used to load a
library only whenitisredly used. Thisfecility avoidsunnecessary
resourcedlocation. Thisexample definesthe dynamicloading of
LuaSocket library. Thus, methods of the socket object, such as
bind and connect, that are not yet available in the execution
environment, will be loaded. The fird line cregtes a monitor to
observe the events sent to the socket object. Line 9 adds the
loadmethod function to handle dl eventsto socket object thet do
not have an index. In the case of a noindex event, the function
recaives asaparameter the name of theinvoked function and the
origind parameters. Thus, the socket.bind(“*”, 0) method, thet
doesnot exig yet, ishandled by themonitor. Themonitor invokes
loadmethod toload theL uaSocket library. Then, it getsandinvokes
the socket.bind function through the metasocket meta-object.

monitor = LuaMOP:createMonitor (“socket.*x”)
function loadmethod(self, namefunc, arg)
dofile ('luasocket/lua.lua')
socket = require ("socket")
metasocket =
LuaMOP:getMetaObject (namefunc)
local func = metasocket:getFunction()
return func (unpack(arg))

Ul WN

end
monitor:addEvent (“*noindex”,

0 0 ~J o

loadmethod)

Figure 9: Using LuaMOP's Monitor

Thedeclaration of the socket object, onlines3and 4, is
followed by the automatic creation of ameta-object to represent
the socket object. This meta-object is also monitored by the
monitor defined on line 1. The monitor does not interferein a
second invocation, such asainvocation of the socket.connect()
method, since this method has dready been declared. The
monitor interferesin thefirst execution of the socket object. For
instance, when the bind method, that has not been previoudy
declared, isinvoked. Inthiscase, loadmethod functionisinvoked
to load the L uaSocket library and to execute socket.bind. Lines
5to7 show how afield (socket.bind) of theatomaticaly created
meta-object isobtained and the socket.bind functionisinvoked.

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

3.2. AseecTLua

Aspectlua defines an Aspect classthat handles dl the
aspect issues. Thus, Aspectl ua offers an abstraction layer
that hidesthecomplexitiesof meta-objects. Through Aspectlua
the user can define the AOP elements without knowing either
LuaMOPor theL uareflectivefacilities.

To use Aspectlua, it is necessary to create an instance
of the AspectLua class by invoking the new function. After
cresting a new instance, it is necessary to define a Luatable
containing the aspect el ements (name, pointcuts, and advice).
Figure 10 illugtrates an aspect definition:

e The first parameter of the aspect method is the
aspect name;

e The second parameter is a Lua table that defines
the pointcut elements: its name, its designator and
thefunctions or variablesthat must be intercepted.
The designator defines the pointcut type.
Aspectlua supports the following types: call for
function cdls; callone for those aspects that must
be executed only once; introduction for
introducing functions in tables (objects in Lua);
and get and set applied upon variables. The list
field defines functions or varigbles that will be
intercepted. It isnot necessary that the lementsto
be intercepted have been already declared. This
list can use wildcards. For instance, Bank.* means
that the aspect should be applied for all methods of
the Bank class,

 Findly, thethird parameterisaL uatablethat defines
the advice e ements: thetype (after, before, around,
and so on) and the action to betaken whenreaching
the pointcut. In Figure 10, logfunction acts as an
aspect to the deposit function. For each deposit
function invocation, logfunction isinvoked before
itin order to print the deposit vaue.

asp = Aspect:new()

id = asp:aspect({name = 'logaspect'},
{pointcutname = 'logdeposit',
designator='call', list= {'Bank.deposit'}},

{type = 'before', action = logfunction})
Bank = {balance = 0}

function Bank:deposit (amount)

self.balance = self.balance + amount
end

function logfunction (a)

print ('It was deposited: ' ..
end

a)

oldasp = asp:getAspect (id)
oldasp.advice.type = 'after'
asp:updateAspect (id, oldasp)

Figure 10: Example of aspect definition

13

The invocation of the aspect method defines a
pointcut for each aspect and returns an aspect identification
(id). Thus, to associate various poi ntcutswith asame aspect
it is necessary to invoke the aspect for each pointcut. To
manage the defined aspects, AspectLua provides the
following functions: getAspect(id), getAll(),
removeAspect(id), and updateAspect(id, newasp). The
getAspect and getAll methods can be used to get one or all
aspectsalready defined. After getting an aspect, itispossible
to modify or to update its elements by using the
updateAspect method. This method can modify pointcuts
and advice of an aspect already defined. Aspect removal
can be done by using the removeAspect method.

In Figure 10, the Bank object with the deposit
method is declared after the join point definition. In a
previous version of AspectLua, this definition was not
possible because each target method of ajoin point needed
to be previously declared. To address this limitation, the
current version of AspectL ua uses monitorsto implement
anticipated join point — ajoin point that does not have a
meta-object but that has a monitor associated with it.
Anticipated join point allows the programmer to define a
join point for elements that have not yet been declared in
the application program. In addition, it is possible to
intercept this join point even if it does not exist in the
application. This is the main difference between
anticipated join point and some solutions implemented
by other works [1,3,6,10]. These solutions support the
definition of join point for elementsthat have not yet been
declared but the interception of each join point happens
just when the element is already |oaded. Therefore, if the
element is not loaded, the join point isnot intercepted. In
AspectL uaitispossibleto intercept join point for elements
that is neither defined nor loaded.

An anticipated join point can be useful in many
situations. For instance, for adynamic resource allocation
in embedded systems, anticipated join points can be used
to support a lazy loading approach [12]. A simple lazy
loading scenario is illustrated in Figure 9 by using a
Monitor. AspectL ua can be used to abstract away the use
of Monitors. For instance, the following code implements
the same functionality of Figure 9: aspect({name =
‘lazyload'}, {pointcutname = ‘loadmethod’, designator
= ‘call’, list = {"socket.*'}}, {type = ‘before’, action =
loadmethod}). In this case, AspectLua automatically
defines the monitor to handle the anticipated join point
(socket.*).

To control the execution order of aspectsin agiven
pointcut, AspectLua offers getOrder and setOrder
functions. getOrder is used to get the list of aspects
associated with a variable or function. It receives as a
parameter the name of thevariable or thefunction. It returns
alist with the current aspect invocation order. setOrder is

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

used to modify this order. This function receives the
following parameters: variable or function name and the
new execution order. In Figure 11 the deposit method has
two aspects that will be executed before it. By default, the
execution order isthe order of aspect definition. Therefore,
logfunction will be executed before checkRights. To modify
this order, setOrder can be used with the following
parameters. deposit and atable defining adifferent order. In
order to get information about a variable or function,
getOrder isinvoked receiving its name as a parameter.

function checkRights() ... end
a:aspect ({name = 'secaspect'},
{pointcutname = 'verifyRights',

designator='call',list={'Bank.deposit'}},

{type ='before',action=checkRights })
local order= Aspect:getOrder ('Bank.deposit')
Aspect:setOrder ('Bank.deposit', {order[2],
order[1]})

Figure 11: Defining order to aspects invocations

AspectlLua also allows the introduction of new
methods in a class via the introduction designator. Figure 12
shows the introduction of the withdraw method in the Bank
class. This designator does not demand the advice type. The
last lineof Figure 12 showsthat after introducing anew method,
it can be used inthe sameway as previoudy existing methods.

3.3. INTEGRATION BETWEEN AspeEcTLuAa AND LuaMOP
AspectL uaexploitsthe power of LuaMOP and uses
it to the definition of aspects, pointcuts and advice. In
LuaMORP, aspects are defined at the meta-level via meta-
objects and application components are defined at the
base-level. The weaving process that combines the two
levels is achieved by LuaMOP. Due to the integration
between AspectLua and LuaMORP, it is unnecessary to
modify the Lua syntax to handle an aspect definition.

function withdraw() ... end

a:aspect ({name = 'insertMethod'},

{name = 'newMethod',designator='introduction',
list = {'Bank.withdraw'}}, {action = withdraw})

Bank:withdraw (5)

Figure 12: Use of introduction designator

Figure13illustratestheintegration between AspectL ua
and LuaMOR In this example, AspectLua is used in the
definition of the LogFunction advice that should be executed
a the join point Bank.deposit. In order to handle this issue,
Aspectl uaasks L uaM OPto create the MetaBank meta-object
as ameta representation of the Bank object and to insert the
behavior (LogFunction) at the MetaField deposit.
LogFunction should be executed before the deposit method.

14

The existence of ameta-object meansthat all messagesto the
Bank object will beintercepted by L uaM OP and forwarded to
the MetaBank meta-object. When the meta-object receives a
message, it ingpects its MetaFields to verify the need of
executing an extrabehavior. If not, themessageisforwarded to
thebase-object. In Figure 13, MetaBank executesLogFunction
and after that, the deposit function executes.

LogFugction
- Meta-level

Base-level
Message: deposit .ﬁ

Receiver: Bank
Arguments: 50

Join Point

Figure 13: Integration between AspectLua and LuaMOP

Aspectl uaa so uses monitor sto support the definition
of aspects associated with undeclared elements. Monitors act
on the interception of anticipated join points and on the
execution of its associated advice. Figure 14 shows the steps
involved in the definition and execution of an anticipated join
point that implementsthelazy loading of LuaSocket. Thereare
two grey boxes representing the Aspect configuration fileand
the application code. Both are defined by a programmer. The
definition of the anticipated join point is done in the Aspect
Configuration script by using the aspect method. In thiscase,
an aspect to the socket.* pointcut and an advice named
loadmethod. Using the aspect definition, AspectL ua verifies
the inexistence of the socket object.

After that, it creates amonitor to receive the eventsto
the socket object. The createMonitor method (provided by
LuaMOP) crestesatablewhose nameisthe same of thetarget
object, and inserts in this table a metatable to control the
access. When the application invokes socket.bind, as the
socket object does not yet exist, the monitor receives the
invocationsand forwardsit to loadmethod. Thismethod loads
the LuaSocket library. Then, the socket object is created.
Meanwhile, LuaM OP createsameta-object to the socket object
and associates it with the monitor. After that, the monitor is
only invoked to handle invocations regarding to methods not
implemented by the socket object.

3.4. PERFORMANCE EVALUATION

This section discusses performance issues regarding the
use of ametarrepresentation in the Lua execution environment.
Thetestscomparethe execution timewith and without the use of
ametaobject. Thisway, it is possible to verify theimpact of the
meta-object presence a theinvocation process by comparing the

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

execution time of functions X and Y. They were executed,
repectively, in59.72usand 3.91 pswith no meta-object associated

@ Aspects Configuration Script

function loadmethod() . .. end

asp = Aspect new()

N3

id = asp:aspect{ {name = 'lazyload'},
{pointcutname = 'loadmethod',
designator = 'call’, list = {'socket.™}},

{type = 'before', action = loadmethod})

N

1: aspect

AspectLua

monitor = LuaMOP: createhonitor("socket *)
monitor: addEvent("noindex", loadmethod)

withthem. Theevduation wasdonein aPC Duron 1.6MHz with

256MB of RAM, using Linux-Mandrake9.2.

Application Script

local server = socket bind("™", 0)
local hostname = socket. dns.gethostname()

5: loadmethod

socket
Monitor

socket = {}

setmetatable(socket | metathl)

LuaMOP

metathl = {__index = controlMonitor)}

3: create _|

Figure 14: Anticipated Join Point implementation

Table 1 shows the results of the performance tests.
Thefirst line showsacomparison between the execution time
of X and Y functions and the execution time of X function
associated with ameta-object that containsthe Y functionasa
PreMethod. Thedifferenceislow considering thetimethat the
meta-object takes to manage the messages. The second line
compares the access and execution time of a method that
belongsto an object (table), for example Bank X(), tothesame
object ated with a meta-object. The difference between
thesetwoinvocationswill begrester only when, inthefollowing
line, afunction () isassociated with the Bank meta-object to
be executed &fter the X function. In this case the difference
increases from 2.15pus (in the previous line) to 6.7us. This
differenceisrelated to theamount of timeinvolved in loading
the functions associated with the Metafield.

Table 1: Performance Evaluation. Time in ps.

Test Without With

Meta- Meta-
Object Object

Execution of X and Y 63.75 66.95

Functions

Execution of X 61.03 63.18

function, via an

object (table)

Execution of X and Y 64.34 71.04

functions, via an

object (table)

Reading a variable 0.94 2.86

Writing in a variable 1.19 3.09

Thetwo lagt lines of Table 1 compare thetimesto read
and to write in agloba varigble. The difference (lmost three
times) betweentheexecutiontimesismorerd ated totheexecution
time of reading and writing avariable, which islower than any

15

other inconsistency in the adgorithms used by the meta-object.
This means that reading and writing varigbles is a very quick
task (0.94usand 1.19us) and asaconsequence, theintroduction
of a new processing, such as a procedure that deals with
messagesto avariable, can increase the execution time.

4. Case Sruby

Inorder to illustrate the use of theAOPinfragtructurein
a large system we have implemented a case study that uses
AOPto customize a middleware plaform. The use of AOPto
customize amiddleware platform has been the subject of other
research[28, 29] that recognizethe benefitsof AOPinthe context
of middlewawre architecture to increase configurability and
adaptability.

The middleware system we used is LOpenOrb[15], a
Luaimplementation of the Open-ORB component model [17].
Figure 15 illustrates the elements that compose LOpenOrb
architecture. They are organized in a layered style where the
upper layers depend on the lower layers and each element
providesan API.

‘@Name Server ‘@Op. Binding ‘@Stream Binding H@Signal Binding ‘

Capsule |, Node Mng.
{7 Invoker |{E)Dispatcher |[@Marshaler | [Transport | | Thread |
Meta-Objects ®
’@ Encapsulation ‘ ‘@ Composition ‘
o.s.
@ Composite Components || AP
(@ Components |
|@ Interfaces and Local Bindings]

Figure 15: LOpenORB Architecture

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

The functionadity of some methods provided by the
LOpenOrbAF isillugtratedin Figure 16. Thisfigureillustrates
thegtepstoinvokethe depost methodimplementedinaremote
sarver. The two firgt lines load and start LOpenOrb. On the
next two lines local_bank and remote_bank interfaces are
defined. Interfaces are access points of components. Each
interface can export and/or import methods. Exported methods
correspond to the provided services. Imported methods are
required services. InFigure 16 thelocal_bank interfaceimports
the deposit method while the remote_bank interface uses the
local container (loca Capsulein Open-ORB terminology) to
get the remote reference of the bank interface. This reference
isstoredinthe bank_int.ref. file. After obtaining thereference,
alocal binding isdefined between thetwo interfaces. Therole
of thelocal bindingisto associate compatibleinterfaces. Findly,
the example illugtrates the remote invocation of the deposit
method. To support this invocation it is necessary to use the
following layersof theL OpenOrb middlewareimplementation:
1,2,3,4,6,7,9 and 10. The layers required depends on the
functionality used by the gpplication. In the case of amethod
invocation, which isin the a same container (Capsule) of the
local_bank interface, it is only necessary to use layer 1. As
LOpenOrb is a monalithic middleware, it loads dl layers at
garting time (init method invocation). This Smple example,
including local and remoteinvocation, illustratesaproblem of
ageneric middlewarethat includesavariety of services(object
repogitories, security services, QoS, and soon). Themiddleware
is usudly implemented as a black box with no support for
adapting its infrastructure! to offer only the services

iy

require "LOpenOrb"

LOpenOrb.init (arg)

3 local bank = LOpenOrb.IRef ({},
{},{"deposit"})

4 remote bank = LOpenOrb.localcapsule:

getRemoteInterfaceByFile ("./bank int.ref")

N

5 LOpenOrb.localBind({local bank},
{remote_ bank})
6 local bank:deposit (50)

Figure 16: Using LOpenOrb

Inorder to addressthislack of customizability support
we use AOP to makes it possible to customize L OpenOrb.
Thegoal isto avoid resourcewasting and toimprovedynamic
adaptation. This approach targets two common problems of
middlewareplatforms. Thefirst oneisrelated to thecomplexity

1 The concept of Interceptors present in some middleware plat-
forms are a simplified form of join points that are tightly coupled
with the middleware internal structure. So, interceptors do not
address separation of concerns. Furthermore, in this mechanism,
advice are inserted by registering callback functions and follow a
lot of constraints to avoid infinite recursions.

16

of providing customized middleware implementations by
separating basic code and croscutting concerns. The second
one is related to the dynamic evolution of middleware
platforms. The insertion of new functionalities must be
controlled in order to avoid tangled code.

Table 2: Dependence relationships between invocations types
and LOpenORB layers

Designator Dependence layer

1

LOpenORB. *IRef

LOpenORB. localBind* 1

1,2,3,4,6,7,9,

LOpenORB. localcapsule. 10

getRemoteInterfaceByFile

1,2,3,4,5,6,8,9,

LOpenORB. localcapsule. 10

serve

1,2,3,4

LOpenORB.encapsulation.*

The aspect-oriented middleware we propose, named
Aspect Open-ORB, alowsthe customization of themiddleware
according to the gpplication requirements. This infra-structure
is based on the idea that the middleware functionalities are
defined by the gpplication code. For instance, if the gpplication
code contains invocation to the getRemotel nterfaceByFile
function, which meansremoteaccesstoaserver, themiddleware
implementation must load the layers responsible for remote
invocations. To handle this issue, AspectlLua monitors the
invocation of each method, verifiesits dependencies and loads
the middlewarelayers needed to support theinvocation. Table 2
showsthe relationship between some methods provided by the
LOpenOrb APl and their corresponding layer dependencies.
Accordingtothistable, an aspectisdefinedtoeachline All join
points are associated to a same advice that loads the layers
needed to support the invocation of the join point.

Fgurel7illusratesthearchitectureof theAspect Open-
ORB infrastructure. LOpenOrb Aspect Dependenciesdefinethe
dependencies between layers and types of method invocation.
Each gpplication is composed by its base code (core) and its
agpects (Security, Fault Tolerance, tc). At runtime, AgpectLua
loads L OpenOrb dements according to the gpplication needs.
These dynamically loaded elements compose Agpect Open-
ORB. Thus, the Aspect Open-ORB interna architecture is
dynamically composed according to the gpplication needs.

The goal of Aspect Open-ORB is to support
middleware customization and the ability of dynamicinsartion
of new requirements beyond those provided by L OpenCOrb.
The middleware customization process requires the use of
two setsof aspects. Thefirst setisresponsiblefor intercepting
the invocation of the LOpenORB.init method. The second
one supports the elements defined in Table 2.

To illugrate this issue, Figure 18 shows the code that
implementsthe middleware customization. Lines3to 6 contain
thedefinition of themyinit function. Thisfunction, viatheaspect

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

defined online7, actson LOpenORB.init. All invocationstothe
init function are redirected to the mylnit function. This avoids
theloading of dl layers, whichisdoneby theinit method. Asthe
layersare not loaded, the API of the dementsisnot available.

Application 3 = pe
Application 2 [

LOpenOrb
Aspects
Dependences

LOpenOrb
Components

i Customize LOpenOrb -1
Customize LOpenOrb -2
Customize LOpenOrb -3

Figure 17: Aspect Open-ORB infrastructure

—— ———

Aspect OpenOrb
infrastructure

To maintaintheavailability of the LOpenOrb API it
is necessary to define a second set of aspects that acts as
anticipated join pointsto theinvocationsto the L OpenOrb
API. Table 2 shows the elements that are defined as

anticipated join points. This definition isillustrated from
lines9to 12, which contain the code that createsthelist of
layers - thifiles — indexed by the numbers presented in
Figure 18. The next lines insert in tblconf the elements
defined in Table 2. Thisinsertion includes two fields: the
Key field, which contains the aspect name, and the dep
field, which storesthe layers needed to invoke the method.
Lines 43 to 45 show the definition of each element in the
thlconf list asan aspect including an anticipated join point.
Each aspect invokes only once (callone) the loadfiles
method when the pointcut defined by tbiconf.Key is
reached. The goal of the loadfiles function is to load,
according to thefunction name obtainedin Line 25, aloop
that returns in the idxfile variable each layer needed to
support the invocation of the method. The dofile method
loads the code of each layer. To maintain the loaded
methods under control, the deletefile function is invoked
after loading a method. This function removes the layer
name from the tblfiles list. The contload variable is a
counter that i ndicatesthe number of layersalready |oaded.
This is important to avoid a double invocation of the
desired method in the case of the following pointcuts:
L OpenOrh.local capsule.getRemotelnterface and
L OpenOrb.localcapsule.*. LuaMOP is used to obtain the
desired method that, at this moment, is already defined.

1 asp = Aspect:new()
2
3 function myInit (arg)
4 LOpenOrb.hostname = arg[2]
5 LOpenOrb.port = arg([3]
6 end
7 asp:aspect ({name = 'skipInit'} , {name = 'skip', designator = 'call', list = {'LOpenOrb.init'}},
{type ='around', action = myInit})
8
9 tblfiles = {}
10 tblfiles[1] = "lopenorb_ interface and bidinglocal.lua"
11 tblfiles[2] = "lopenorb component.lua"
12 tblfiles[3] = "lopenorb_ composiste.lua”
3 ...
14
15 tblconf = {}
16 table.insert (tblconf, {key = "LOpenOrb.*IRef", dep = {1} }
17 table.insert (tblconf, {key = "LOpenOrb.localBind*", dep = {1} }
18 . ..
19 table.insert (tblconf, {key = "LOpenOrb.localcapsule.serve", dep = {1,2,3,4,5,6,8,9,10} }
20 table.insert (tblconf, {key = "LOpenOrb.localcapsule.getRemoteInterfaceByFile", dep=
{1,2,3,4,6,7,9,10} 1}
21 table.insert (tblconf, {key = "LOpenOrb.encapsulation.*", dep = {1,2,3,4} }
22
23
24 function loadfiles(...)
25 local funcname = table.remove (arg,table.getn(arg)
26 loca contload = 0
27 for k,idxfile in ipairs(searchKey (funcname)) do
28 local namefile = rawget (tblfiles,idxfile)
29 if (namefile ~= nil)then
30 dofile (namefile)
31 deletefile (idxfile)
32 contload = contload + 1
33 end
34 end
35
36 if contload > 0 then
37 metafunc = LuaMOP:getInstance (funcname)
38 func = metafunc:getFunction(
39 return func (unpack(arg))
40 end
41 end
42
43 for k,conf in ipairs(tblconf) do
44 asp:aspect ({name = 'ConfORB'} , {name = 'loadfiles', designator = 'callone', list =
{conf.key}}, {type ='around', action = loadfiles})
45 end

Figure 18: Middleware aspects configuration

17

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

Finally, the desired method is invoked on Line 39
and receives as parameter the arguments of the original
invocation (arg).

In order to use Aspect Open-ORB it is necessary
toload thefile described in Figure 18 and after that to load
the application code. Figure 16 showsasimple example of
an application code. At runtime the invocation of the
LOpenOrb.init method is replaced by the invocation of
the Myl nit method. This method defines the initialization
parameters but does not load the LOpenORB
implementation files. According to this situation, the next
invocationsin Figure 16 would return an error of missing
method. However, as we are using anticipated join points
to handle invocations to methods provided by the API,
invocationsto LOpenOrh.IRef or to any other method are
forwarded to the proper advice that loads the
implementation and invokes the target method.

5. RELATED WORK

Related work include some AOP languages built
on top of scripting languages. The most important are
three AOP extensions based on well-known scripting
languages: Python [13], Ruby [14] and Smalltalk [4]. AOPy
[2] isbuilt on top of Python. AOPy implements method-
interception by wrapping methods inside the advice.
Aspects definition uses the designator call and just one
join point can be defined in a pointcut. In contrast,
AspectL ua supports the definition of several join points.
AspectR [1] is built on top of Ruby. It implements AOP
by wrapping code around existing methods in classes
and supportswildcards. AspectS[6] isaSqueak/Smalltalk
extension to support AOP. It uses modules and meta-
level programming to handle AOP. It also supports
wildcards.

The fact of being scripting languages brings some
similarities among these AOP languages and AspectL ua:
they are built on top of a scripting language, no new
language constructs are needed and aspect weaving
occursat runtime. The main difference between AspectLua
and the other extensions is that none of them include all
features supported by AspectLua. AOPy is very simple
and supports only basic concepts. It does not support
wildcards. Neither AOPy nor AspectR use a MOP to
support AOP. AspectS has more similarities with
AspectL ua: both useaMOP, allow the definition of aspect
precedence order, support the use of wildcards. However,
none of these extensions allows the association of aspects
with undeclared elements (anticipated join points). [12]
provides asimilar mechanism that does not use the actual
idea of anticipated join points because this approach uses
a proxy to represent the join points and needs an
initialization method to identify the moment of loading an

18

element. This approach is different from the AspectLua
approach where it is not necessary any method to identify
when an element must be loaded.

LAC — LuaAspectual Component [5] —isalLua
extension whose main goal is to support the idea of
Aspectual Components (AC) [11]. LACisquitedifferent
from AspectL uabecauseits elements are defined in order
to support theidea of AC while AspectLuaelementsare
defined following the traditional AOP concepts. LAC
imposes a template where components and aspects are
defined by different styles of classes. In contrast,
AspectlL ua uses tables to represent aspects. The focus
of LAC isinamodel toimplement AC. After defining
thismodel, Luawas chosen to implement it. In contrast,
the focus of AspectLua is in using Lua as an AOP
language without introducing new commands or
structure.

PROSE [19] isadynamic AOPextension to the Java
language. As AspectLua, PROSE does not introduce a
new syntax for defining aspects. It usesthe Javalanguage
itself. Inthe same way, thereisno need of aspecial compiler.
It usesthe JavaVirtual Machine Debug I nterface (JVMDI)
and just-in-time (JIT) features to make it possible the
interception and execution of aspects. However, the main
difference from PROSE to AspectLua is that AspectLua
uses a pure interpreted approach.

JAC [27] and AspectWerkz [26] are AOP
approaches that implement load time weaving strategies.
They act at the class loader level. This means that the
codeismodified whenit isloaded into the Virtual Machine.
The main problem of these approaches is to violate the
Java security mechanism. Furthermore, in AspectWerkz
aspects definitions are done via a XML file or runtime
attributes. There are some differences of this work to our
work. First, it modifies the origina Java class loading in
order to handle the aspect weaving. Second, it can only
be used in Java or J2EE applications. AspectLua is
integrated with a CORBA environment [25] in which
applications can be written in any language that has a
binding to CORBA. Thus, our work isapplied in abroader
context than that of AspectWerkz.

The advantage of meta-object protocols is
recognized by anumber of worksthat propose aMOP for
some traditional programming languages. For instance,
OpenC++[20] and OpenJava[21] are MOPsfor C++ and
Java, respectively. In thiswork we presented a MOP for
Lua and also other tools combined with LuaMOP that
compose a Lua-based AOP infrastructure.

Asfar aswe are aware, the concept of anticipated
join point, that isacentral concept in our infrastructure, is
not provided by other AOP approaches

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

6. FINAL REMARKS

In this paper we have presented an AOP
infrastructure based on Lua. The infrastructure is
composed of LuaMOPand AspectL ua. Aspectsare defined
using AspectLua. LuaMOP supports dynamic weaving
by exploring the reflective features of Lua. We have
described in detail how the weaving process takes place.
Asaspectsaredefined using Luatables, it isnot necessary
to use different languages for the functional code and for
the aspect code. For both programs the Lua language is
used. Thisisaway of keeping the Luaphilosophy —simple
and small - in our AOP approach.

The infrastructure provides a range of features that
introducesagreat deal of flexibility to AOP: itispossibleto
define aspectsat runtime; it supportsthe definition of aspect
precedence order, wildcards, and the association of aspects
with undeclared elements. It is worth pointing out that the
concept of anticipated join points is very useful for
dynamicity because it allows the dynamic insertion of
aspects according to a new functionality of the component
program. It goes beyond current AOP approaches where
join points are linked to statically defined elements or, at
most, join points are associ ated with el ementsthat areloaded
dynamically but before the interception process.

The idea of a dynamic AOP language is not new.
However, the dynamic AOP approach presented in this
work combines a set of features that are not offered
together by other AOP language. We have chosen Lua
because it is small, easy to use and it provides reflective
mechanisms that allow extension of the language.

Asacase study we applied our AOP infrastructure
to customize a middleware platform. Middleware
functionalities are expressed as aspects because it can be
seen as an add-on functionality that supports method
invocations. Anticipated join points play animportant role
in this context by allowing the association of aspectswith
undeclared elements.

As a future work we intend to implement support
for remote aspect definition. We also intend to exploit
scripting facilitiesinside the aspect definition by allowing
the use of conditional statements to handle various
pointcuts inside a given aspect.

REFERENCES

[1] A.Bryant, R. Feldt. AspectR - Simple aspect-oriented
programming in Ruby. http://aspectr.sourceforge.net/
, 2002.

D. Dechow. Advanced Separation of Concerns for
Dynamic, Lightweight Languages. In 5th Generative
Programming and Component Engineering.

[2

19

(3

(4
(5

(6]

(7]

(8]

9

(10]

(1]

(12

(13

(14

(19

(16]

(17

A. Gal, W. Schroder-Preikschat, O. Spinczyk.
AspectC++: Language Proposal and Prototype
Implementation. OOPSLA 2001 Workshop on
Advanced Separation of Concerns in Object-
Oriented Systems, Tampa- Fl, October, 2001.

A. Goldberg, D. Robson. Smalltalk-80: The Language
and Its Implementation. Addison-\Wesley, 1983.

S. Herrmann, M. Mezini. Combining Composition
Styles in the Evolvable Language LAC. In: ASoC
Workshop in ICSE— International Conference on
Software Engineering, 2001.

R. Hirschfeld. AspectS — Aspect-Oriented
Programming with Squeak. In Revised Papers from
the International Conference NetObjectDays on
Objects, Components, Architectures, Services, and
Applications for a Networked World, LNCS 2591,
pp. 216-232, Springer-Verlag, London, 2002.

R. lerusalimsky, L. H. Figueiredo, W. Celes. Lua—an
extensible extension language. Software: Practice
and xperience, 26(6):635-652. 1996.

P. Maes. Concepts and Experimentsin Computational
Reflection. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
Orlando, Florida, pp. 147-155, 1987.

G Kiczales, J. Lamping, A. Mendhekar et al . Aspect-
oriented programming. In: ECOOP’ 97 — European
Conference on Object-Oriented Programming.
Springer-Verlag, Finland. 1997.

G Kiczales, E. Hilsdale, J. Huguninet a. An Overview
of Aspect]. In ECOOP’2001 — European
Conference on Object-Oriented Programming.
Budapest, Hungary. 2001.

K. Lierberherr, D. Lorenz, M. Mezini. Programming
with Aspectual Components. Technical Report NU-
CCS99-01, Notheastern University. 1999.

R. Miles. Lazy Loading with Aspects. ONJa-va.com,
http://www.onjava.com/pub/a/onjava/2004/03/1 7/
lazyAspects.html. 2004.

G. Rossum. Python Reference Manual, http://
www.python.org/doc/current/ref/ref.html. 2003.

D. Thomas, A. Hunt. Programming Ruby: A Pragmatic
Programmer’s Guide. http://www.rubycentral.com/
book/, 2004.

N. Cacho, T. Batista. Adaptacdo Dinémicano Open-
Orb: detalhes de implementacdo In 23th Brazlian
Symposium on Computer Networks (SBRC’ 2005),
SBC, Fortaleza, CE, May 2005, pp. 495-508.

A. Andersen, G S. Blair, F. Eliassen. A reflective
component-based middleware with quality of service
management. In PROMS 2000, Protocols for
Multimedia Systems. Cracow, Poland, 2000.

G S.Blair et a. Thedesign and implementation of Open
ORB v2. |EEE Didtributed Systems Online, 2(6), 2001.
http://www.cs.uit.no/aalabstracts/blair2001a.htm|1.

Nélio Cacho , Thais Batista
and Fabricio Fernandes

A Lua-based
AOP Infrastructure

[18]

[19]

[20]

[21]

[23]

[24)

[26]

[27]

[29]

J. Sztipanovits, G. Karsai. Generative Programming
for Embedded Systems. The ACM SIGPLAN/
SIGSOFT Conference on Generative Programming
and Component Engineering. Lecture Notes In
Computer Science(LNCS), Vol. 2487, pp. 32-49, 2002.
Nicoara, G. Alonso. Dynamic AOP with PROSE.
Department of Computer Science. Swiss Federal
Institute of Technology Zirich. ttp://
www.iks.inf.ethz.ch/publications/publications/files/
PROSE-ASMEAO05.pdf

Chiba, S. A Metaobject Protocol for C++. In Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Austin, Texas, October
1995, pp. 285-299.

Tatsubori, M. et al. OpenJava: A Class-based Macro
System for Java. In Reflection and Software
Engineering, LNCS 1826, Springer Verlag, 200, pp.
117-133.

D.H.H.Ingadls, T. Kaehler, J. Maloney et al. Back to
the Future: The Story of Squeak, A Practical Smalltalk
Written in Itself. In Proceedings of OOPSLA ‘97,
Atlanta, Georgia, October 5-9, 1997. SIGPLAN Notices
32(10).

A.D.Almeida, N. Cacho, T. Batista. LuaSpace Plus:
Um Ambiente Visual para Desenvolvimen-to de
Aplicagdes CORBA. In Proceeding of the 18th
Brazilian Symposium on Software
Engineering(SBES 2004), SBC, pp. 163-177, Brasilia,
DF, October 2004.

N. Cacho, F. Fernandes, T. Batista. Handling Dynamic
Aspects in Lua. Journal of Universal Computer
Science (J.UCS), 11(7):1177-1197, 2005.

F. Fernandes, T. Batista, N. Cacho. Exploring
reflection to dynamically aspectizing corba--based
applications. In Proceedings of the 3rd workshop
on Adaptive and reflective middleware, pp. 220225,
New York, USA.ACM Press. 2004.

J. Bonér. AspectWerkz - Dynamic AOP for Java. http://
codehaus.org/~jboner/papersan0sd2004_aspectwerkz.pdf.
2008

R. Pawlak, L. Duchien, G Florinet d. JAC: An Aspect-
Based Distributed Dynamic Framework http://
jac.objectweb.org/.2005.

C. Zhang, D. Gao, H. Jacobsen. Towards Just- in-time
Middleware Architectures. In Fourth International
Conference on Aspect-riented Software
Development, Chicago, USA, March 2005.

F. Hunleth, R. Cytron, C. Gill. Building Customizable
Middleware using Aspect Oriented Programming. In
OOPSLA 2001 Workshop on Advanced Separation
of Concernsin Object-Oriented Systems. 2001. Tampa,
Florida

20

