
A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

7

A Lua-based AOP
Infrastructure

Abstract
In this paper we describe an aspect-oriented

infrastructure to handle dynamic AOP based on the Lua
language. This infrastructure is composed of AspectLua,
a Lua extension that allows the declaration of aspects,
and a meta-object protocol, LuaMOP, that unifies the
introspective and reflective mechanisms provided by Lua.
Aspects are defined in isolation using AspectLua and
then they are weaved through LuaMOP. An important
feature of AspectLua is to allow the association of aspects
with undeclared elements of the application code
(anticipated join points). Furthermore, it combines a
range of features to make AOP easier and powerful.

Keywords: MOP, Reflection, AOP, Dynamic AOP,
Lua, Antecipated Join Points

1. INTRODUCTION

Aspect-oriented programming (AOP) has been
gaining attention due to its focus on the modularization of
crosscutting concerns. In general, aspect-oriented
approaches are static – aspect code and components (base
code) are mixed at compile time (static weaving). In this case,
a special compiler is needed to combine the aspect code with
the base code. Although this strategy avoids type
mismatches, it imposes many restrictions on application

dynamic evolution. More recently some dynamic approaches
have been proposed to support weaving at runtime. In general
they are built on top of a scripting language such as Python
[13], Ruby [14], and Smalltalk [22]. These dynamic weaving
approaches allow aspects to be woven at runtime. However,
they present some limitations. An important limitation is to
restrict the specification of aspects join points to refer to
existing elements of the base code. In some situations it is
necessary to define the aspect code to application elements
that will be dynamically inserted. This dynamic insertion can
be done by the application or even by the aspect itself.

We address this problem by proposing the concept
of anticipated join points. Anticipated join points are
interception points for elements that have not yet been
declared and loaded in the application program. The use of
anticipated join points makes it possible to intercept an
invocation to an undeclared method and to apply to it a
specific action, such as, lazy loading a code. Anticipated join
points are introduced in AspectLua [24] to avoid the need of
loading the application code that contains a given join point
before loading the aspect code regarding this join point. We
consider that the lack of support for anticipated join points is
an important limitation of most AOP approaches.

Another limitation of most AOP proposals is that they
do not combine a set of features to make AOP easier and
powerful: (1) insertion and removal of aspects at runtime;

Nélio Cacho, Thaís Batista and Fabrício Fernandes

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte

Campus Universitário - Lagoa Nova - 59.072-970 - Natal - RN
{cacho - fabricio}@consiste.dimap.ufrn.br

thais@ufrnet.br

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

8

(2) the definition of precedence order among aspects; (3)
the possibility of using wildcards; (4) the possibility of
associating aspects with undeclared elements (anticipated
join points); (5) a dynamic weaving process via a meta-
object protocol.

In this work we present an aspect-oriented
infrastructure that handles aspect-oriented programming and
addresses the limitations described above. The infrastructure
is composed of: (1) AspectLua – an extension to the Lua
language [7] to allow aspect definition; (2) LuaMOP [25] – a
meta-object protocol (MOP) that provides an abstraction over
the reflective features of Lua and allows application methods
and variables to be affected by the aspect definition. The
advantage of using a MOP as an underlying mechanism to
handle dynamic weaving is that it allows non-invasive changes
of the original application code. Aspects are defined in isolation
using the Aspect class provided by AspectLua and then they
are weaved through LuaMOP. AspectLua offers an abstraction
to hide the complexity of the weaving process. For instance,
the programmer can define an anticipated join point without
knowing that LuaMOP implements an underlying mechanism,
named Monitor, to support anticipated join points.

We have chosen the Lua language to support dynamic
AOP because it is dynamically typed and it provides facilities
for extending its behavior without modification in the underlying
interpreter. Such facilities are explored in the definition of
AspectLua and LuaMOP. We argue that this introduces a
different style for aspect-oriented programming where
dynamism is a key issue, weaving is done at runtime and both
components and aspects can be inserted into and removed
from the application at runtime. In addition, the Lua philosophy
is to be simple and small. We aim to keep this philosophy in our
AOP infrastructure.

Although some researchers do not associate the use
of AOP with scripting languages because, in general, such
languages are not intended to write large and complex software
systems, we argue that the benefits of AOP target not only
large and complex software systems but it also has an important
role in embedded systems where the problem of composition
is even harder. This type of system needs to maintain the
application code small. Thus, separation of concerns is
essential and AOP is a good technique to manage crosscutting
concerns in embedded systems [18].

In addition, as Lua is also used in a CORBA-based
development application environment [25], the AspectLua
infrastructure presented in this paper is useful for applying
AOP to the dynamic adaptation of CORBA-based application.
It makes adaptation of component code possible as well
adaptation of aspect code and of the overall application.

This paper is organized as follows. Section 2 presents
the underlying concepts of this work: aspect-oriented

programming, computational reflection and the Lua language.
Section 3 presents the aspect-oriented infrastructure presented
in this work to handle dynamic AOP: LuaMOP, AspectLua and
the relationship between them. Section 4 presents a case study
that applies the AOP infra-structure in the dynamic
customization of an AOP-based middleware. Section 5
discusses about related work. Finally, section 6 contains the
final remarks.

2. BASIC CONCEPTS

2.1. ASPECT-ORIENTED PROGRAMMING

Aspect-Oriented Programming emphasizes the need
to decouple concerns related to components from those
related to aspects that crosscut components in an application.
Although there is no consensus about the terminology and
the elements of aspect-oriented programming, we refer in this
work the terminology used in AspectJ [10] because it is the
most used aspect-oriented language. The elements that
compose AOP are: aspects, join points, pointcuts and advice.
Aspects are the elements designed to encapsulate
crosscutting concerns and remove them from the application
base code (components). Join Points are the elements of the
component language semantics that aspect programs
coordinate with [9]. Join points can represent data flows of
the component program, runtime method invocations in the
component program, and others. Pointcuts are sets of join
points. The definition of pointcuts makes it possible to get
methods arguments values, attributes, exceptions, etc.
Pointcut designators pre-defined in the language itself are
used for this purpose. The main designators are call, get,
and set, which are related, respectively, to method call, and
variable reading and modification. Pointcuts can also be
defined by programmers on the basis of pre-defined
designators. An advice defines the action that must be taken
when a join point is reached. It acts on a pointcut and can be
configured to act before (before advice), after (after advice),
around (around advice) the joint point, and others.

The weaving process places together the code defined
in the join points and the advice. Weaving can be done either
at compile time or at runtime. In AspectJ and AspectC++ [3]
weaving is done at compile time. A current version of AspectJ
supports weaving at load time. Since new language constructs
to handle AOP were added to the language syntax, a special
compiler plays the weaver role in order to mix source code and
aspects code. The outcome is a new version of the system
including both codes. The other approach, which involves
aspects weaving at runtime, will be detailed in the next sections.

2.2. AOP WITH REFLECTION

The introduction of dynamic aspects in a programming
language depends on its support for recognizing join points
and for dealing with advice insertion. The recognition and

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

9

introduction of new behaviors (advice) can be implemented
using computational reflection.

Reflection [8] is the ability of a system to inspect and to
manipulate its internal implementation. The separation of
application functionality and the execution mechanisms
provides support for reflection. This separation allows the
existence of two levels to support reflection: base-level and
meta-level. The base-level contains the application concerns.
The meta-level contains the building blocks responsible for
supporting reflection. These levels are connected by a causal
connection to allow modifications at the meta-level to be
reflected into corresponding modifications at the base-level.
Thus, modifications at the application should be reflected at
the meta-level. The elements of the base-level and of the meta-
level are respectively represented by base-level objects and
meta-level objects.

The access to the meta-level objects is provided by a
meta-object protocol (MOP), which defines an interface that
enables accessing the structure of a program (classes, methods,
fields, etc) and inspecting the execution environment. Events
that can have the semantics modified by the meta-objects include:
object creation, sending and receiving messages, searching
methods, setting and getting values in variables. Meta-objects
are instances of meta-classes that define fields and methods to
modify and to inspect the execution environment.

The introspection facilities provided by MOPs allow
the recognition of join points. It also easily supports the
dynamic insertion of advice that represent the aspect code to
be combined with the application code.

2.3. REFLECTION IN LUA

Lua is an interpreted extension language developed at
PUC-Rio. It is dynamically typed, which means that variables
are not bound to types. However each value has an associated
type. Lua syntax and control structures are similar to those of
Pascal. It also offers some non-conventional features, such as
the following: (1) Functions are first-class values and they
may return several values, eliminating the need for passing
parameters by reference; (2) Lua tables are the main data
structuring facility in Lua. Tables implement associative arrays,
are dynamically created objects, and can be indexed by any
value in the language (except nil). Lua stores all elements in
tables as key-value pairs. Tables may grow dynamically, as
needed, and are garbage collected.

Lua offers reflective facilities such as: metatables and
the _G environment variable. Metatables allow modification
of the behavior of a table. This is done via the definition of
functions to be invoked in specific points during the execution
of a Lua program. Each function defined, named metamethod,
is associated with a specific event. When an event occurs, the
function is invoked to handle such an event. The code of
Figure 1 illustrates the use of metatables.

Figure 1: Metatable definition

In the code of Figure 1, line 1 defines the commontable
table with x and y fields. Line 2 defines the metatb metatable.
It will act upon the “index” event by printing the index of the
element. On line 3, metatb is applied, via the setmetatable
method, upon the commontable table. Thus, when
commontable is indexed, as in the print(commontable.x)
invocation, the metamethod will be invoked to print the
element used as the index, in this case “x”.

Another reflective feature is the _G environment
variable. It describes all global variables of an application,
including tables and functions. This variable is a table that
can be manipulated as any other table of the environment. It
is possible to insert, to modify, and to remove variables and
functions of the execution environment. The code illustrated
in Figure 2 shows an example of a variable declaration by
directly inserting it in _G.

In the code of Figure 2, the declare method receives
the following parameters: the name and initial value of a
variable. Then, it invokes the Lua rawset method. This method
inserts in the _G table, a name field with value equal to initval.
It also allows the use of a metatable to control reading and
writing in global variables.

Figure 2: Declare method

Despite these reflective facilities, Lua does not
provide a MOP that unifies and organizes the introspection
and reflection mechanisms required to make the
introduction of AOP easier. Therefore, in the following
sections, we will describe a MOP to the Lua language and
its support for AOP.

3. ASPECT-ORIENTED INFRASTRUCTURE
Lua support for AOP is provided by an aspect class

used to define aspects that are dynamically weaved by a
meta-object protocol named LuaMOP.

Figure 3 illustrates the blocks that compose the AOP
architecture that we call AspectLua architecture. The first layer
is composed of the Lua language with its reflective facilities.
The second layer is composed of the LuaMOP facilities that
take advantage of the Lua reflective mechanisms. LuaMOP
provides a set of meta-classes that support the dynamic
introduction of aspects defined at the third layer. AspectLua
provides the aspect class to the definition of AOP elements. A

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

10

programmer can take advantage of AspectLua without
knowing either LuaMOP or the Lua reflective features.
Moreover, AspectLua does not violate the internal
mechanism of the Lua language, as it is built upon the Lua
reflective features.

Figure 3: AspectLua architecture

3.1. LUAMOP
LuaMOP is a meta-object protocol that supports

the creation of a meta-representation to each element
that composes the Lua runtime environment: variables,
functions, tables, userdata and so on. Each element is
represented by a meta-class that provides a set of
methods to query and to modify the behavior of each
element of the base class. They are organized in a
hierarchical way where MetaObject is the base meta-
class (Figure 4). Derived from this meta-class are
MetaVariables, MetaFunctions, MetaCoroutine,
MetaTable, and MetaUserData meta-class.
Furthermore, LuaMOP also provides a Monitor class
to monitor the occurrence of events in the Lua runtime
environment.

Figure 4: LuaMOP class diagram. X should be replaced by Pre and Pos, Y should be replaced by Get and
Set and Z should be replaced by Pre, Pos or Wrap

The meta-representation provided by LuaMOP is
created via the invocation of the getInstance(instance)
method. This method returns the meta-object
corresponding to the object with name or reference
described by the instance parameter. This meta-object is
an instance of a meta-class described above. For each
meta-class there are methods that describe it and that
supports changing the behavior of a meta-object. Thus,
getType() and getName() methods can be invoked by all
meta-classes, since these methods are part of the
MetaObject meta-class. These methods return,
respectively, the meta-object type and name. The destroy()
method is used to disconnect the meta-object from the

base object and to destroy the meta-object. The
getInstance method can also be invoked, using as an input
parameter a non-determined name. For instance:
getInstance(“string.*”) returns a list (table) with meta-
objects that represent the functions of the string package.

The MetaVariable meta-class provides the
following methods: getValue and setValue. These two
methods are used to get and to modify the value of a
variable. The get and set events are two other functions
that can be intercepted by LuaMOP. The get event occurs
when a variable, table or function is referenced, indexed or
invoked. The set event occurs when values are associated
with variables, table elements and functions.

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

11

The addPreGet, addPosGet, addPreSet, and
addPosSet methods insert a function to be executed
before (or after) variable reading or writing. Figure 5
shows an example of the use of these functions. On
the first line, the balance variable is set to 10. On the
next line, a meta-object is created to represent the
balance variable. The four following lines declare the
checkread function and associate this function with
the metavar meta-object, via the addPreGet method.
The main goal of these functions is to control the
access to the balance variable. Thus, if the function
inserted by the addPreGet method returns a value
different from nil, the reading process is interrupted.
The existence of other functions demands that all
functions return nil to allow reading the variable. This
LuaMOP standard behavior can be modified by the
setAvalPreGet(funcaval) function. The funcaval
function receives as a parameter a table with all
outcomes provided by the functions inserted using
the addPreGet method. Based on this list, the funcaval
function should return a non-nil value to interrupt the
reading.

Line 10 shows the use of addPosGet function
to associate the convert_to_dollar function with the
metavar meta-object. The convert_to_dollar function
is invoked after reading the variable and it receives
the reading value. It can return a new value. On line 8,
the balance variable value is divided by 2.65 and the
outcome is returned to the application. The addPreSet
method is used to modify the variable value. On line
15, this function is invoked to associate the
convert_to_real function with the metavar meta-
object.

The convert_to_real function is executed
before writ ing the new value provided by the
application. The convert_to_real function can return
nil or a table. If it returns nil, the writing process is
canceled and the original value of the writing process
is maintained. The change of the original value is only
performed via the return of a table with size greater
than one (the case of line 12). The remainder of Figure
5 shows the use of addPosSet method that is invoked
to associate the writelog function with the metavar
meta-object. The writelog function is invoked after
the balance variable is given a new value. This new
value is represented by the value parameter. Similarly
to the setAvalPreGet function, setAvalPosGet ,
setAvalPreSet, and setAvalPosSet functions can also
be invoked to modify the behavior of each function.
The getXY, setXY, and delXY functions are used to,
respectively, get all functions associated with Pre/Pos
and Get/Set, to determine a new function set, and to
remove an element (function) of the functions set.

Figure 5: LuaMOP example with add methods

A MetaFunction class represents all functions of
a Lua application. This meta-class provides the following
methods: getNameFunction, getFunction, and
setFunction. getNameFunction() method gets the
function name referenced by a meta-object. getFunction()
method gets the function referenced by a meta-object, and
setFunction(newfunction) allows modification, at runtime,
of the function behavior. Some other functions that give
details about a meta-object are provided: getSrcDefined()
returns the file that contains the function definition;
getLineDefined() returns the line that contains the
function declaration; getTypeFunction() identifies if a
function is written in Lua or in C; getNameWhat() identifies
if a function is global or local.

Figure 6: LuaMOP example with setFunction

The MetaFunction meta-class also offers the
addPreMethod, addPosMethod, and addWrapMethod
methods. These methods define the place where the
behavior is added: Pre(before), Pos(after), and wrap the
execution of a function. An example of the use of these
functions is illustrated in Figure 7.

Figure 7: LuaMOP example with addPosMethod

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

12

The meta-object is obtained on line 4. On line 5, the
addPostMethod method is invoked to add the reglog function
defined from lines 1 to 3. When the deposit method is executed
(line 6), the LuaMOP mechanisms automatically invoke the
reglog method.

To control the functions associated with a given behavior,
MetaFunction provides the following methods: getZMethods,
setZMethods, and delZMethods. The getPreMethods method,
for instance, returns a list of all methods added to the Pre
behavior. The list provided by the getPreMethods is ordered
and sent as a parameter to the setPreMethods method. This
latter method modifies the execution order of the methods defined
to the Pre behavior. The removal of a method can be done using
the delPreMethods method.

The MetaTable class represents the application tables
and provides the following functions: getField, getAllFields,
and setField. The getField(name) method receives the field
name parameter and returns a MetaField that represents it.
The MetaField class inherits from the MetaVariable class
and, as a consequence, provides the same functionalities of
a MetaVariable. For example: to add a function to be invoked
before reading the variable value. To get all MetaFields of a
MetaTable, the getAllFields() function can be used.

The setField(namefield, value) method is used to modify
a table field and to insert a table field if it does not exist. In Lua,
classes are represented by Table elements. Thus, the setField
method can be used to add both new attributes and new methods.

Despite the fact that the meta-object provides the
setField method, it does not exclude the use of another
mechanism to insert new fields. The role of the meta-object is
to maintain the causal connection and to update its properties
according to the changes in the base objects. Figure 8 shows
an example of this behavior.

Figure 8: LuaMOP and causal connection

On lines 1 and 2 the Account object is defined with the
balance attribute. On the next line, a meta-object is created to
represent the Account object. At this moment the metaAccount
meta-object has only balance as a MetaField. On line 5, a new
field, NameAccount, is defined to the Account object. This
action changes the base object and triggers an automatic
modification of the metaAccount meta-object that provides

the getField method to recover the MetaField with name
NameAccount. Such MetaField provides the same
functionality of a MetaVariable. This allows the invocation of
the addPosSet method to handle the modifications of the
NameAccount field.

LuaMOP functionality goes beyond the provision of a
meta-representation. It is also possible, via Monitors, to capture
events from the runtime execution environment. A Monitor
provides the same functionalities of a Metatable. The difference
between them is the possibility of defining a Monitor to handle
events related to elements that have not yet been declared in the
application. The Monitor accepts the same events handled by a
Metatable (add, sub, index, newindex, etc) and also a new one:
noindex. This event is different from the index event because it
is invoked only when the correspondent index is not found.

Figure 9 shows how a monitor can be used to load a
library only when it is really used. This facility avoids unnecessary
resource allocation. This example defines the dynamic loading of
LuaSocket library. Thus, methods of the socket object, such as
bind and connect, that are not yet available in the execution
environment, will be loaded. The first line creates a monitor to
observe the events sent to the socket object. Line 9 adds the
loadmethod function to handle all events to socket object that do
not have an index. In the case of a noindex event, the function
receives as a parameter the name of the invoked function and the
original parameters. Thus, the socket.bind(“*”, 0) method, that
does not exist yet, is handled by the monitor. The monitor invokes
loadmethod to load the LuaSocket library. Then, it gets and invokes
the socket.bind function through the metasocket meta-object.

Figure 9: Using LuaMOP’s Monitor

The declaration of the socket object, on lines 3 and 4, is
followed by the automatic creation of a meta-object to represent
the socket object. This meta-object is also monitored by the
monitor defined on line 1. The monitor does not interfere in a
second invocation, such as a invocation of the socket.connect()
method, since this method has already been declared. The
monitor interferes in the first execution of the socket object. For
instance, when the bind method, that has not been previously
declared, is invoked. In this case, loadmethod function is invoked
to load the LuaSocket library and to execute socket.bind. Lines
5 to 7 show how a field (socket.bind) of the automatically created
meta-object is obtained and the socket.bind function is invoked.

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

13

3.2. ASPECTLUA

AspectLua defines an Aspect class that handles all the
aspect issues. Thus, AspectLua offers an abstraction layer
that hides the complexities of meta-objects. Through AspectLua
the user can define the AOP elements without knowing either
LuaMOP or the Lua reflective facilities.

To use AspectLua, it is necessary to create an instance
of the AspectLua class by invoking the new function. After
creating a new instance, it is necessary to define a Lua table
containing the aspect elements (name, pointcuts, and advice).
Figure 10 illustrates an aspect definition:

• The first parameter of the aspect method is the
aspect name;

• The second parameter is a Lua table that defines
the pointcut elements: its name, its designator and
the functions or variables that must be intercepted.
The designator defines the pointcut type.
AspectLua supports the following types: call for
function calls; callone for those aspects that must
be executed only once; introduction for
introducing functions in tables (objects in Lua);
and get and set applied upon variables. The list
field defines functions or variables that will be
intercepted. It is not necessary that the elements to
be intercepted have been already declared. This
list can use wildcards. For instance, Bank.* means
that the aspect should be applied for all methods of
the Bank class;

• Finally, the third parameter is a Lua table that defines
the advice elements: the type (after, before, around,
and so on) and the action to be taken when reaching
the pointcut. In Figure 10, logfunction acts as an
aspect to the deposit function. For each deposit
function invocation, logfunction is invoked before
it in order to print the deposit value.

Figure 10: Example of aspect definition

The invocation of the aspect method defines a
pointcut for each aspect and returns an aspect identification
(id). Thus, to associate various pointcuts with a same aspect
it is necessary to invoke the aspect for each pointcut. To
manage the defined aspects, AspectLua provides the
following functions: getAspect(id), getAll(),
removeAspect(id), and updateAspect(id, newasp). The
getAspect and getAll methods can be used to get one or all
aspects already defined. After getting an aspect, it is possible
to modify or to update its elements by using the
updateAspect method. This method can modify pointcuts
and advice of an aspect already defined. Aspect removal
can be done by using the removeAspect method.

In Figure 10, the Bank object with the deposit
method is declared after the join point definition. In a
previous version of AspectLua, this definition was not
possible because each target method of a join point needed
to be previously declared. To address this limitation, the
current version of AspectLua uses monitors to implement
anticipated join point – a join point that does not have a
meta-object but that has a monitor associated with it.
Anticipated join point allows the programmer to define a
join point for elements that have not yet been declared in
the application program. In addition, it is possible to
intercept this join point even if it does not exist in the
application. This is the main difference between
anticipated join point and some solutions implemented
by other works [1,3,6,10]. These solutions support the
definition of join point for elements that have not yet been
declared but the interception of each join point happens
just when the element is already loaded. Therefore, if the
element is not loaded, the join point is not intercepted. In
AspectLua it is possible to intercept join point for elements
that is neither defined nor loaded.

An anticipated join point can be useful in many
situations. For instance, for a dynamic resource allocation
in embedded systems, anticipated join points can be used
to support a lazy loading approach [12]. A simple lazy
loading scenario is illustrated in Figure 9 by using a
Monitor. AspectLua can be used to abstract away the use
of Monitors. For instance, the following code implements
the same functionality of Figure 9: aspect({name =
‘lazyload’}, {pointcutname = ‘loadmethod’, designator
= ‘call’, list = {‘socket.*’}}, {type = ‘before’, action =
loadmethod}). In this case, AspectLua automatically
defines the monitor to handle the anticipated join point
(socket.*).

To control the execution order of aspects in a given
pointcut, AspectLua offers getOrder and setOrder
functions. getOrder is used to get the list of aspects
associated with a variable or function. It receives as a
parameter the name of the variable or the function. It returns
a list with the current aspect invocation order. setOrder is

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

14

used to modify this order. This function receives the
following parameters: variable or function name and the
new execution order. In Figure 11 the deposit method has
two aspects that will be executed before it. By default, the
execution order is the order of aspect definition. Therefore,
logfunction will be executed before checkRights. To modify
this order, setOrder can be used with the following
parameters: deposit and a table defining a different order. In
order to get information about a variable or function,
getOrder is invoked receiving its name as a parameter.

Figure 11: Defining order to aspects invocations

AspectLua also allows the introduction of new
methods in a class via the introduction designator. Figure 12
shows the introduction of the withdraw method in the Bank
class. This designator does not demand the advice type. The
last line of Figure 12 shows that after introducing a new method,
it can be used in the same way as previously existing methods.

3.3. INTEGRATION BETWEEN ASPECTLUA AND LUAMOP
AspectLua exploits the power of LuaMOP and uses

it to the definition of aspects, pointcuts and advice. In
LuaMOP, aspects are defined at the meta-level via meta-
objects and application components are defined at the
base-level. The weaving process that combines the two
levels is achieved by LuaMOP. Due to the integration
between AspectLua and LuaMOP, it is unnecessary to
modify the Lua syntax to handle an aspect definition.

Figure 12: Use of introduction designator

Figure 13 illustrates the integration between AspectLua
and LuaMOP. In this example, AspectLua is used in the
definition of the LogFunction advice that should be executed
at the join point Bank.deposit. In order to handle this issue,
AspectLua asks LuaMOP to create the MetaBank meta-object
as a meta representation of the Bank object and to insert the
behavior (LogFunction) at the MetaField deposit.
LogFunction should be executed before the deposit method.

The existence of a meta-object means that all messages to the
Bank object will be intercepted by LuaMOP and forwarded to
the MetaBank meta-object. When the meta-object receives a
message, it inspects its MetaFields to verify the need of
executing an extra behavior. If not, the message is forwarded to
the base-object. In Figure 13, MetaBank executes LogFunction
and after that, the deposit function executes.

Figure 13: Integration between AspectLua and LuaMOP

AspectLua also uses monitors to support the definition
of aspects associated with undeclared elements. Monitors act
on the interception of anticipated join points and on the
execution of its associated advice. Figure 14 shows the steps
involved in the definition and execution of an anticipated join
point that implements the lazy loading of LuaSocket. There are
two grey boxes representing the Aspect configuration file and
the application code. Both are defined by a programmer. The
definition of the anticipated join point is done in the Aspect
Configuration script by using the aspect method. In this case,
an aspect to the socket.* pointcut and an advice named
loadmethod. Using the aspect definition, AspectLua verifies
the inexistence of the socket object.

After that, it creates a monitor to receive the events to
the socket object. The createMonitor method (provided by
LuaMOP) creates a table whose name is the same of the target
object, and inserts in this table a metatable to control the
access. When the application invokes socket.bind, as the
socket object does not yet exist, the monitor receives the
invocations and forwards it to loadmethod. This method loads
the LuaSocket library. Then, the socket object is created.
Meanwhile, LuaMOP creates a meta-object to the socket object
and associates it with the monitor. After that, the monitor is
only invoked to handle invocations regarding to methods not
implemented by the socket object.

3.4. PERFORMANCE EVALUATION

This section discusses performance issues regarding the
use of a meta-representation in the Lua execution environment.
The tests compare the execution time with and without the use of
a meta-object. This way, it is possible to verify the impact of the
meta-object presence at the invocation process by comparing the

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

15

execution time of functions X and Y. They were executed,
respectively, in 59.72µs and 3.91 µs with no meta-object associated

with them. The evaluation was done in a PC Duron 1.6MHz with
256MB of RAM, using Linux-Mandrake 9.2.

Figure 14: Anticipated Join Point implementation

Table 1 shows the results of the performance tests.
The first line shows a comparison between the execution time
of X and Y functions and the execution time of X function
associated with a meta-object that contains the Y function as a
PreMethod. The difference is low considering the time that the
meta-object takes to manage the messages. The second line
compares the access and execution time of a method that
belongs to an object (table), for example Bank.X(), to the same
object associated with a meta-object. The difference between
these two invocations will be greater only when, in the following
line, a function (Y) is associated with the Bank meta-object to
be executed after the X function. In this case the difference
increases from 2.15µs (in the previous line) to 6.7µs. This
difference is related to the amount of time involved in loading
the functions associated with the Metafield.

Table 1: Performance Evaluation. Time in µs.

The two last lines of Table 1 compare the times to read
and to write in a global variable. The difference (almost three
times) between the execution times is more related to the execution
time of reading and writing a variable, which is lower than any

other inconsistency in the algorithms used by the meta-object.
This means that reading and writing variables is a very quick
task (0.94µs and 1.19µs) and as a consequence, the introduction
of a new processing, such as a procedure that deals with
messages to a variable, can increase the execution time.

4. CASE STUDY

In order to illustrate the use of the AOP infrastructure in
a large system we have implemented a case study that uses
AOP to customize a middleware platform. The use of AOP to
customize a middleware platform has been the subject of other
research [28, 29] that recognize the benefits of AOP in the context
of middlewawre architecture to increase configurability and
adaptability.

The middleware system we used is LOpenOrb[15], a
Lua implementation of the Open-ORB component model [17].
Figure 15 illustrates the elements that compose LOpenOrb
architecture. They are organized in a layered style where the
upper layers depend on the lower layers and each element
provides an API.

Figure 15: LOpenORB Architecture

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

16

The functionality of some methods provided by the
LOpenOrb API is illustrated in Figure 16. This figure illustrates
the steps to invoke the deposit method implemented in a remote
server. The two first lines load and start LOpenOrb. On the
next two lines local_bank and remote_bank interfaces are
defined. Interfaces are access points of components. Each
interface can export and/or import methods. Exported methods
correspond to the provided services. Imported methods are
required services. In Figure 16 the local_bank interface imports
the deposit method while the remote_bank interface uses the
local container (local Capsule in Open-ORB terminology) to
get the remote reference of the bank interface. This reference
is stored in the bank_int.ref. file. After obtaining the reference,
a local binding is defined between the two interfaces. The role
of the local binding is to associate compatible interfaces. Finally,
the example illustrates the remote invocation of the deposit
method. To support this invocation it is necessary to use the
following layers of the LOpenOrb middleware implementation:
1,2,3,4,6,7,9 and 10. The layers required depends on the
functionality used by the application. In the case of a method
invocation, which is in the a same container (Capsule) of the
local_bank interface, it is only necessary to use layer 1. As
LOpenOrb is a monolithic middleware, it loads all layers at
starting time (init method invocation). This simple example,
including local and remote invocation, illustrates a problem of
a generic middleware that includes a variety of services (object
repositories, security services, QoS, and so on). The middleware
is usually implemented as a black box with no support for
adapting its infrastructure1 to offer only the services

Figure 16: Using LOpenOrb

In order to address this lack of customizability support
we use AOP to makes it possible to customize LOpenOrb.
The goal is to avoid resource wasting and to improve dynamic
adaptation. This approach targets two common problems of
middleware platforms. The first one is related to the complexity

of providing customized middleware implementations by
separating basic code and croscutting concerns. The second
one is related to the dynamic evolution of middleware
platforms. The insertion of new functionalities must be
controlled in order to avoid tangled code.

Table 2: Dependence relationships between invocations types
and LOpenORB layers

The aspect-oriented middleware we propose, named
Aspect Open-ORB, allows the customization of the middleware
according to the application requirements. This infra-structure
is based on the idea that the middleware functionalities are
defined by the application code. For instance, if the application
code contains invocation to the getRemoteInterfaceByFile
function, which means remote access to a server, the middleware
implementation must load the layers responsible for remote
invocations. To handle this issue, AspectLua monitors the
invocation of each method, verifies its dependencies and loads
the middleware layers needed to support the invocation. Table 2
shows the relationship between some methods provided by the
LOpenOrb API and their corresponding layer dependencies.
According to this table, an aspect is defined to each line. All join
points are associated to a same advice that loads the layers
needed to support the invocation of the join point.

Figure 17 illustrates the architecture of the Aspect Open-
ORB infrastructure. LOpenOrb Aspect Dependencies define the
dependencies between layers and types of method invocation.
Each application is composed by its base code (core) and its
aspects (Security, Fault Tolerance, etc). At runtime, AspectLua
loads LOpenOrb elements according to the application needs.
These dynamically loaded elements compose Aspect Open-
ORB. Thus, the Aspect Open-ORB internal architecture is
dynamically composed according to the application needs.

The goal of Aspect Open-ORB is to support
middleware customization and the ability of dynamic insertion
of new requirements beyond those provided by LOpenOrb.
The middleware customization process requires the use of
two sets of aspects. The first set is responsible for intercepting
the invocation of the LOpenORB.init method. The second
one supports the elements defined in Table 2.

To illustrate this issue, Figure 18 shows the code that
implements the middleware customization. Lines 3 to 6 contain
the definition of the myInit function. This function, via the aspect

1 The concept of Interceptors present in some middleware plat-
forms are a simplified form of join points that are tightly coupled
with the middleware internal structure. So, interceptors do not
address separation of concerns. Furthermore, in this mechanism,
advice are inserted by registering callback functions and follow a
lot of constraints to avoid infinite recursions.

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

17

defined on line 7, acts on LOpenORB.init. All invocations to the
init function are redirected to the myInit function. This avoids
the loading of all layers, which is done by the init method. As the
layers are not loaded, the API of the elements is not available.

Figure 17: Aspect Open-ORB infrastructure

To maintain the availability of the LOpenOrb API it
is necessary to define a second set of aspects that acts as
anticipated join points to the invocations to the LOpenOrb
API. Table 2 shows the elements that are defined as

anticipated join points. This definition is illustrated from
lines 9 to 12, which contain the code that creates the list of
layers - tblfiles – indexed by the numbers presented in
Figure 18. The next lines insert in tblconf the elements
defined in Table 2. This insertion includes two fields: the
Key field, which contains the aspect name, and the dep
field, which stores the layers needed to invoke the method.
Lines 43 to 45 show the definition of each element in the
tblconf list as an aspect including an anticipated join point.
Each aspect invokes only once (callone) the loadfiles
method when the pointcut defined by tblconf.Key is
reached. The goal of the loadfiles function is to load,
according to the function name obtained in Line 25, a loop
that returns in the idxfile variable each layer needed to
support the invocation of the method. The dofile method
loads the code of each layer. To maintain the loaded
methods under control, the deletefile function is invoked
after loading a method. This function removes the layer
name from the tblfiles list. The contload variable is a
counter that indicates the number of layers already loaded.
This is important to avoid a double invocation of the
desired method in the case of the following pointcuts:
LOpenOrb.localcapsule.getRemoteInterface and
LOpenOrb.localcapsule.*. LuaMOP is used to obtain the
desired method that, at this moment, is already defined.

Figure 18: Middleware aspects configuration

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

18

Finally, the desired method is invoked on Line 39
and receives as parameter the arguments of the original
invocation (arg).

In order to use Aspect Open-ORB it is necessary
to load the file described in Figure 18 and after that to load
the application code. Figure 16 shows a simple example of
an application code. At runtime the invocation of the
LOpenOrb.init method is replaced by the invocation of
the MyInit method. This method defines the initialization
parameters but does not load the LOpenORB
implementation files. According to this situation, the next
invocations in Figure 16 would return an error of missing
method. However, as we are using anticipated join points
to handle invocations to methods provided by the API,
invocations to LOpenOrb.IRef or to any other method are
forwarded to the proper advice that loads the
implementation and invokes the target method.

5. RELATED WORK

Related work include some AOP languages built
on top of scripting languages. The most important are
three AOP extensions based on well-known scripting
languages: Python [13], Ruby [14] and Smalltalk [4]. AOPy
[2] is built on top of Python. AOPy implements method-
interception by wrapping methods inside the advice.
Aspects definition uses the designator call and just one
join point can be defined in a pointcut. In contrast,
AspectLua supports the definition of several join points.
AspectR [1] is built on top of Ruby. It implements AOP
by wrapping code around existing methods in classes
and supports wildcards. AspectS [6] is a Squeak/Smalltalk
extension to support AOP. It uses modules and meta-
level programming to handle AOP. It also supports
wildcards.

The fact of being scripting languages brings some
similarities among these AOP languages and AspectLua:
they are built on top of a scripting language, no new
language constructs are needed and aspect weaving
occurs at runtime. The main difference between AspectLua
and the other extensions is that none of them include all
features supported by AspectLua. AOPy is very simple
and supports only basic concepts. It does not support
wildcards. Neither AOPy nor AspectR use a MOP to
support AOP. AspectS has more similarities with
AspectLua: both use a MOP, allow the definition of aspect
precedence order, support the use of wildcards. However,
none of these extensions allows the association of aspects
with undeclared elements (anticipated join points). [12]
provides a similar mechanism that does not use the actual
idea of anticipated join points because this approach uses
a proxy to represent the join points and needs an
initialization method to identify the moment of loading an

element. This approach is different from the AspectLua
approach where it is not necessary any method to identify
when an element must be loaded.

LAC – Lua Aspectual Component [5] – is a Lua
extension whose main goal is to support the idea of
Aspectual Components (AC) [11]. LAC is quite different
from AspectLua because its elements are defined in order
to support the idea of AC while AspectLua elements are
defined following the traditional AOP concepts. LAC
imposes a template where components and aspects are
defined by different styles of classes. In contrast,
AspectLua uses tables to represent aspects. The focus
of LAC is in a model to implement AC. After defining
this model, Lua was chosen to implement it. In contrast,
the focus of AspectLua is in using Lua as an AOP
language without introducing new commands or
structure.

PROSE [19] is a dynamic AOP extension to the Java
language. As AspectLua, PROSE does not introduce a
new syntax for defining aspects. It uses the Java language
itself. In the same way, there is no need of a special compiler.
It uses the Java Virtual Machine Debug Interface (JVMDI)
and just-in-time (JIT) features to make it possible the
interception and execution of aspects. However, the main
difference from PROSE to AspectLua is that AspectLua
uses a pure interpreted approach.

JAC [27] and AspectWerkz [26] are AOP
approaches that implement load time weaving strategies.
They act at the class loader level. This means that the
code is modified when it is loaded into the Virtual Machine.
The main problem of these approaches is to violate the
Java security mechanism. Furthermore, in AspectWerkz
aspects definitions are done via a XML file or runtime
attributes. There are some differences of this work to our
work. First, it modifies the original Java class loading in
order to handle the aspect weaving. Second, it can only
be used in Java or J2EE applications. AspectLua is
integrated with a CORBA environment [25] in which
applications can be written in any language that has a
binding to CORBA. Thus, our work is applied in a broader
context than that of AspectWerkz.

The advantage of meta-object protocols is
recognized by a number of works that propose a MOP for
some traditional programming languages. For instance,
OpenC++ [20] and OpenJava [21] are MOPs for C++ and
Java, respectively. In this work we presented a MOP for
Lua and also other tools combined with LuaMOP that
compose a Lua-based AOP infrastructure.

As far as we are aware, the concept of anticipated
join point, that is a central concept in our infrastructure, is
not provided by other AOP approaches

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

19

6. FINAL REMARKS

In this paper we have presented an AOP
infrastructure based on Lua. The infrastructure is
composed of LuaMOP and AspectLua. Aspects are defined
using AspectLua. LuaMOP supports dynamic weaving
by exploring the reflective features of Lua. We have
described in detail how the weaving process takes place.
As aspects are defined using Lua tables, it is not necessary
to use different languages for the functional code and for
the aspect code. For both programs the Lua language is
used. This is a way of keeping the Lua philosophy – simple
and small - in our AOP approach.

The infrastructure provides a range of features that
introduces a great deal of flexibility to AOP: it is possible to
define aspects at runtime; it supports the definition of aspect
precedence order, wildcards, and the association of aspects
with undeclared elements. It is worth pointing out that the
concept of anticipated join points is very useful for
dynamicity because it allows the dynamic insertion of
aspects according to a new functionality of the component
program. It goes beyond current AOP approaches where
join points are linked to statically defined elements or, at
most, join points are associated with elements that are loaded
dynamically but before the interception process.

The idea of a dynamic AOP language is not new.
However, the dynamic AOP approach presented in this
work combines a set of features that are not offered
together by other AOP language. We have chosen Lua
because it is small, easy to use and it provides reflective
mechanisms that allow extension of the language.

As a case study we applied our AOP infrastructure
to customize a middleware platform. Middleware
functionalities are expressed as aspects because it can be
seen as an add-on functionality that supports method
invocations. Anticipated join points play an important role
in this context by allowing the association of aspects with
undeclared elements.

As a future work we intend to implement support
for remote aspect definition. We also intend to exploit
scripting facilities inside the aspect definition by allowing
the use of conditional statements to handle various
pointcuts inside a given aspect.

REFERENCES

[1] A. Bryant, R. Feldt. AspectR - Simple aspect-oriented
programming in Ruby. http://aspectr.sourceforge.net/
, 2002.

[2] D. Dechow. Advanced Separation of Concerns for
Dynamic, Lightweight Languages. In 5th Generative
Programming and Component Engineering.

[3] A. Gal, W. Schröder-Preikschat, O. Spinczyk.
AspectC++: Language Proposal and Prototype
Implementation. OOPSLA 2001 Workshop on
Advanced Separation of Concerns in Object-
Oriented Systems, Tampa - Fl, October, 2001.

[4] A. Goldberg, D. Robson. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley, 1983.

[5] S. Herrmann, M. Mezini. Combining Composition
Styles in the Evolvable Language LAC. In: ASoC
Workshop in ICSE— International Conference on
Software Engineering, 2001.

[6] R. Hirschfeld. AspectS – Aspect-Oriented
Programming with Squeak. In Revised Papers from
the International Conference NetObjectDays on
Objects, Components, Architectures, Services, and
Applications for a Networked World, LNCS 2591,
pp. 216-232, Springer-Verlag, London, 2002.

[7] R. Ierusalimsky, L. H. Figueiredo, W. Celes. Lua – an
extensible extension language. Software: Practice
and xperience, 26(6):635-652. 1996.

[8] P. Maes. Concepts and Experiments in Computational
Reflection. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
Orlando, Florida, pp. 147-155, 1987.

[9] G. Kiczales, J. Lamping, A. Mendhekar et al. Aspect-
oriented programming. In: ECOOP’97 — European
Conference on Object-Oriented Programming.
Springer-Verlag, Finland. 1997.

[10] G. Kiczales, E. Hilsdale, J. Hugunin et al. An Overview
of AspectJ. In ECOOP’2001 — European
Conference on Object-Oriented Programming.
Budapest, Hungary. 2001.

[11] K. Lierberherr, D. Lorenz, M. Mezini. Programming
with Aspectual Components. Technical Report NU-
CCS99 –01, Notheastern University. 1999.

[12] R. Miles. Lazy Loading with Aspects. ONJa-va.com,
http://www.onjava.com/pub/a/onjava/2004/03/1 7/
lazyAspects.html. 2004.

[13] G. Rossum. Python Reference Manual, http://
www.python.org/doc/current/ref/ref.html. 2003.

[14] D. Thomas, A. Hunt. Programming Ruby: A Pragmatic
Programmer’s Guide. http://www.rubycentral.com/
book/, 2004.

[15] N. Cacho, T. Batista. Adaptação Dinâmica no Open-
Orb: detalhes de implementação In 23th Brazilian
Symposium on Computer Networks (SBRC’2005),
SBC, Fortaleza, CE, May 2005, pp. 495-508.

[16] A. Andersen, G. S. Blair, F. Eliassen. A reflective
component-based middleware with quality of service
management. In PROMS 2000, Protocols for
Multimedia Systems. Cracow, Poland, 2000.

[17] G. S. Blair et al. The design and implementation of Open
ORB v2. IEEE Distributed Systems Online, 2(6), 2001.
http://www.cs.uit.no/aa/abstracts/blair2001a.htm l.

A Lua-based
AOP Infrastructure

Nélio Cacho , Thaís Batista
and Fabrício Fernandes

20

[18] J. Sztipanovits, G. Karsai. Generative Programming
for Embedded Systems. The ACM SIGPLAN/
SIGSOFT Conference on Generative Programming
and Component Engineering. Lecture Notes In
Computer Science (LNCS), Vol. 2487, pp. 32-49, 2002.

[19] Nicoara, G. Alonso. Dynamic AOP with PROSE.
Department of Computer Science. Swiss Federal
Institute of Technology Zürich. ttp://
www.iks.inf.ethz.ch/publications/publications/files/
PROSE-ASMEA05.pdf

[20] Chiba, S. A Metaobject Protocol for C++. In Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Austin, Texas, October
1995, pp. 285-299.

[21] Tatsubori, M. et al. OpenJava: A Class-based Macro
System for Java. In Reflection and Software
Engineering, LNCS 1826, Springer Verlag, 200, pp.
117-133.

[22] D. H. H. Ingalls, T. Kaehler, J. Maloney et al. Back to
the Future: The Story of Squeak, A Practical Smalltalk
Written in Itself. In Proceedings of OOPSLA ‘97,
Atlanta, Georgia, October 5-9, 1997. SIGPLAN Notices
32(10).

[23] A. D. Almeida, N. Cacho, T. Batista. LuaSpace Plus:
Um Ambiente Visual para Desenvolvimen-to de
Aplicações CORBA. In Proceeding of the 18th
Brazilian Symposium on Software
Engineering(SBES’2004), SBC, pp. 163-177, Brasília,
DF, October 2004.

[24] N. Cacho, F. Fernandes, T. Batista. Handling Dynamic
Aspects in Lua. Journal of Universal Computer
Science (J.UCS), 11(7):1177-1197, 2005.

[25] F. Fernandes, T. Batista, N. Cacho. Exploring
reflection to dynamically aspectizing corba--based
applications. In Proceedings of the 3rd workshop
on Adaptive and reflective middleware, pp. 220–225,
New York, USA. ACM Press. 2004.

[26] J. Bonér. AspectWerkz - Dynamic AOP for Java. http://
codehaus.org/~jboner/papers/aosd2004_aspectwerkz.pdf.
2003.

[27] R. Pawlak, L. Duchien, G. Florin et al. JAC: An Aspect-
Based Distributed Dynamic Framework http://
jac.objectweb.org/.2005.

[28] C. Zhang, D. Gao, H. Jacobsen. Towards Just- in-time
Middleware Architectures. In Fourth International
Conference on Aspect-riented Software
Development, Chicago, USA, March 2005.

[29] F. Hunleth, R. Cytron, C. Gill. Building Customizable
Middleware using Aspect Oriented Programming. In
OOPSLA 2001 Workshop on Advanced Separation
of Concerns in Object-Oriented Systems. 2001. Tampa,
Florida.

