
An Integrated Role-Based
Approach for Modeling, Designing

and Implementing Multi-Agent
Systems∗

Xiaoqin Zhang, Haiping Xu & Bhavesh Shrestha

Computer and Information Science Department
University of Massachusetts at Dartmouth

North Dartmouth, MA 02747 -U.S.A.
{x2zhang | hxu | gbshrestha }@umassd.edu

Abstract

To facilitate the development of multi-agent systems
and improve the reusability, robustness and feasibility of
these systems, we have developed a role-based agent de-
velopment framework (RADE). In this paper, we present
an integrated approach for modeling, designing and im-
plementing multi-agent systems using RADE. We describe
the design of agents and motivations within such frame-
work. We introduce a practical approach for modeling
agent’s motivation and specifying agent’s goals, where
a role-agent mapping mechanism is developed based on
this design. Dynamic task allocation is achieved through
the creation of role instances and the mapping from role
instances to agents. We also introduce the RTÆMS lan-
guage based on the extension of TÆMS to model the
plan tree for each goal. This representation enables
the reuse of general planning/scheduling and collabo-
ration/cooperation mechanisms developed in multi-agent
system research community. We have developed an auto-
matic agent generation interface and also implemented a
simple demo system in health care domain.

Keywords: Role-Based Agent Development, Multi-
Agent Systems, Agent Motivations, Role-Agent Mapping

∗ This material is based upon the research work supported by theCol-
lege of Engineering, UMass Dartmouth.

1. INTRODUCTION

Multi-Agent System (MAS) is a suitable program-
ming paradigm for distributed information systems and
applications, where resources, data, control and services
are widely distributed. However, the application of multi-
agent system has been limited by the difficulty to develop
such systems. Considerable amount of time and highly-
experienced programmers are required to develop a multi-
agent system. After such system is built, it is also difficult
to test and maintain the system because of its complexity.
The reusability of such system is low, it is unlikely to use
an existing system for another application domain with
little or minor change.

A number of approaches for defining and developing
autonomous agents and multi-agent system from different
directions have been studied by many researchers. Luck
and d’Inverno presents a formal definition of agent in-
cluding goal and motivation [11]. [21] describes a new
BDI agent framework - the SRI Procedural Agent Real-
ization Kit (SPARK) to develop agent systems that can
scale to real world applications. [25] presents how to use
a Java-based platform to implement BDI agents. Some
researchers use UML and its extension to model agents
and the interactions among agents. [13] presents an
intermediate language UML-AT for translation between
models in different language. [23] describes a meta-
encoding schemas for compiling non-monotonic logic
theories into Verilog Hardware Description Language de-
scriptions. [22] introduces MAS-ML for modeling multi-
agent systems. [6] proposes use of UML activity dia-

grams to model agent plans and actions. [10] demon-
strates that a variety of adaption of business process can
be handled through business protocol composition. [1]
proposes a process to specify an agent-oriented informa-
tion system with successive refinements using extended
UML and AUML diagrams and notation. [3] proposes
an ontology based on the language metamodel as a for-
mal specification of MAS design models. The group of
work most related to our work is the role-based method-
ology for developing of multi-agent systems. Typical ex-
amples of such efforts include the Gaia methodology [29]
, its extension [15] and Multi-agent Systems Engineering
(MaSE) methodology [9]. The Gaia methodology models
both the macro (social) aspect and the micro (agent inter-
nals) aspect of the multi-agent system. The methodology
covers the analysis phase and the design phase. Similarly,
the MaSE methodology is a specialization of more tra-
ditional software engineering methodologies. During the
analysis phase of the MaSE methodology, a set of roles
are produced, which describes entities that perform some
functions.

We have been working on a set of technologies and
mechanisms to ease and formalize the development of
MAS, and to increase its reliability and reusability too.
We aim to cover the analysis and modeling, design and
implementation phases. The first goal is toseparate
concerns. There are multiple issues in a multi-agent
system, such as problem-solving issue, coordination is-
sue, organization issue, communication issue, security is-
sue, etc. Some of them are application-dependent, others
are not. Some of them are platform-dependent and oth-
ers are not. We have proposed a three-layered develop-
ment process: the application independent, platform inde-
pendent model (AIPI), the application specific, platform
independent model (ASPI), and the application specific
and platform specific model (ASPS) are developed in the
three consecutive phases respectively [31]. Another ap-
proach for separating concern is to separate the domain
knowledge and the intelligent problem-solving capabili-
ties. We adapt a role-based modeling approach. In this
approach, conceptual roles are defined with the domain
related knowledge, such as goals, permissions, organiza-
tional relationship, and interaction protocols, etc; where
agent is a concrete entity equipped with motivations, re-
sources and problem-solving capabilities. However, our
role-based approach is different from other proposed role-
based approaches [17, 14, 5]. We introduce the con-
cept of role instance, which is a concrete implementa-
tion of a conceptual role, and this approach provides a
stronger support for system openness and dynamics. Our
approach supports the dynamic creation of role instances,
and agents can take a role instance and then create more
role instances according to the needs to fulfill its goal.

The second goal is toautomate the agent genera-

tion process, while utilizing the existing tools and mech-
anisms as much as possible. We propose to create agents
using a drag-and-drop mechanism where the user can se-
lect components to plug in the agent depending on the ap-
plication requirement. Rather than a practical reasoning
agent architecture such as BDI, we adopt a utility-driven
agent architecture with quantitative reasoning capabili-
ties. Our high-level design is based on roles, however,
the mapping from role instances to agents in our work
is different from other role assignment mechanisms [7] .
Besides the logical reasoning on the matching of motiva-
tions and the conflicts among different roles, we adapt a
quantitative model of motivation named MQ framework
[27]. Based on this MQ framework, the agent can per-
form a quantitative reasoning on how important a role in-
stance is given its preference, its utility function and its
current achievement. In the definition of a role, we intro-
duce a RTÆMS language (Role-Based Task Analyzing,
environment Modeling, and Simulation) to represent the
domain knowledge about how to achieve a goal. RTÆMS
language is an extension of TÆMS language [8] - a hi-
erarchical task network representation language with task
inter-relationships and quantitative descriptions of differ-
ent alternatives to achieve a goal. When an agent takes a
role instance, it has access to this RTÆMS representation
of the goal. As a result, the existing planning/scheduling
[28] and coordination [18] mechanisms based on TÆMS
language can easily be exploited by the agent.

The main contribution of this work include proposing
an integrated approach for modeling, designing and im-
plementing multi-agent systems, and the development of
a prototype system to support such approach. This ap-
proach bridges the formalized role-based MAS models
and the utility-driven agent architecture that are suitable
for dealing with complex tasks and sophisticated organi-
zational context. The uniqueness of this work includes
the following. First, role instance is used not only as a
design concept but also a real entity in the system run-
time. By dynamically creating, taking and releasing role
instances, dynamic task allocation is accomplished. Sec-
ond, agents are able to perform quantitative reasoning on
choosing role instances based on a quantitative modeling
of motivation. Third, the RTÆMS description of complex
tasks supports the easy plug-in reuse of existing domain-
independent planning/scheduling and coordination mech-
anisms.

The role-based design approach and the agent archi-
tecture are presented in [30]. In this paper we focus
on the definition and implementation of agents, the dy-
namic role-agent mapping mechanisms, the automatic
agent generation process and a case study of applying this
approach to a health care domain. This paper is organized
as the follows. We first present an overview of the RADE
approach in Section 2. The detailed description of agent

46

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

Figure 1. A generic model of role-based open multi-agent systems

is presented in Section 3. The definition and more de-
tails about role are described in Section 4. Section 5 de-
scribes operation details of multi-agent systems including
the role-agent mapping mechanisms, planning, schedul-
ing, collaboration and cooperation mechanisms among
agents. The automated agent generation process is pre-
sented in Section 6. The case study of a health care ap-
plication is described in Section 7. Lastly, the conclusion
and discussion of the future work is presented in Section
8. Related work are discussed in various places.

2. OVERVIEW OF RADE A PPROACH
The basic idea of the role-based agent development

environment (RADE) is illustrated in Figure 1. The top
level is therole organization, including the conceptual
roles and their relationships such as inheritance, aggrega-
tion, association and incompatibility. The second level is
the role space, which consists of multiple role instances,
each role instance is instantiated from a conceptual role
dynamically. The bottom level is theagent society, which
consists of multiple agent entities. Agent can take and re-
lease role dynamically, the mapping from role instances
to agents is calledR-A mapping.

In order to separate software architecture from appli-
cation domain and to separate application logic from the
underlying technologies to improve reusability and devel-
opment process, we have proposed a three-layered devel-
opment model in [31]. This development model is de-
fined in three steps. The first step is to define the Ap-
plication Independent Platform Independent Model (AIPI
model), which is a generic model that corresponds to the
role-based development methodology for open MAS. The
AIPI model includes the definition ofRole, Role Space,
Role Organization, AgentandAgent Society. The second
step is to define the Application Specific Platform Inde-
pendent Model (ASPI model) that is based on the AIPI
model. The ASPI model involves knowledge from the ap-

Agent

attributes: P Attribute
motivations: P Motivation
utilityFunction : MQState→ utility
sensor: Environment 7→ SensorData
reasoningMechanisms:
P SensorData× P Motivation→ P ↓ Role
P SensorData× P Motivation× P ↓ Role
→ P CurrentGoal
P SensorData× P Motivation× P CurrentGoal
→ P CurrentSchedule
executionMechanisms:
P SensorData× P CurrentPlan→ newEnvironment
rolesTaken: P ↓ Role

Figure 2. Definition of agent class

plication, including the definition of specific role classes,
role organization classes, agent classes, etc. In the third
step, based on the ASPI model, it defines the Application
Specific Platform Specific Model (ASPS model) that fur-
ther incorporates information on software platform, mid-
dleware and communication mechanisms.

In the actual software system, agent instances are au-
tomatically generated based on the definition of agent
classes. Each agent instance is a software entity that per-
forms specific functions and also coordinates and com-
municates with other agent instances. On the contrast,
role classes are defined to incorporate domain knowledge
and organizational relationship. Each role class is associ-
ated with specific goals and detailed descriptions of how
to achieve such goals. The relationships among different
role classes also depict the organizational relationships
among the real-world entities represented by these roles.
Such information is expected to be provided by domain
experts rather than software engineers. In the system run-
time, role instances are created dynamically either by a
human user or by agents to represent that there are cer-
tain goals needed to be realized. Those role instances are
mainly to carry domain knowledge and they do not actu-
ally perform any actions like agents. When a role instance
is taken by an agent, the agent will use the knowledge in-
corporated in this role instance to achieve the goals de-
fined in this role instances.

3. AGENT DEFINITION
Agent is an entity with attributes, motivations, sensors

and a set of reasoning mechanisms. Figure 2 shows the
formal definition of agent class in Object-Z [12] . Agent

47

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

attributes include agent names, user, identification and
other descriptive characteristics. The values of these at-
tributes are set when an agent instance is instantiated from
the agent class. Different agent instances have different
attribute values. According to [19],motivationis defined
as “any desire or preference that can lead to the generation
and adoption of goals and which affects the outcome of
the reasoning or behavioral task intended to satisfy those
goals”. Motivation is the key for agent to decide which
goals it should pursue and how to pursue a goal.
3.1. AGENT M OTIVATION

We adopt a quantitative view of motivation in our
practice. Motivation is defined as a set ofmotivation
quantities(MQs) [27] that the agent tracks and accumu-
lates. EachMQ is associated with a preference func-
tion1. Each MQ represents progresses towards an abstract
goal. An abstract goal is a long-term commitment to make
progress toward certain direction but not a concrete task
with a specified plan. For example, the designed pur-
pose of a personal assistant agent is to serve its owner.
With this purpose, the agent has motivation to manage the
owner’s address-book, organize daily appointment and
purchase items desired by the owner. Therefore, this
agent’s motivation is represented as a set of three types
of MQ:

Motivation of Personal Assistant

= {MQmanageAddressbook, MQorganizeActivities, MQpurchaseItems}
(1)

A concrete goal (task), e.g., schedule a meeting with
the family doctor, contributes to the abstract goalorga-
nize daily activity, which is represented by the generation
of a certain amount ofMQorganizeActivities. Agent is able to
determine which role it should take by analyzing the (con-
crete) goal of the role and to find if the goal generates a
certain type ofMQ that this agent is interested in.

EachMQi is associated with a preference functionUfi ,
which maps a specific amount ofMQi into some quan-
tity of utility Ui : Ui = Ufi (MQi), whereUi is the util-
ity associated withMQi and it is not inter-exchangeable
with other type of utility. The overall utility of the agent
Uagent depends on the accumulation of the different types
of MQs in its motivation: {MQi , MQj , MQk, ...}. The
function: Uagent = γ(Ui , Uj , Uk, ...) describes how differ-
ent types of utilities are contributed to the agent’s overall
utility.

3.2. EXTENDED MQ D EFINITION TO SUPPORT AU-
TOMATIC AGENT GENERATION AND DYNAMIC OR-

1The concept ofMQ is originated from the work on soft real-time agent
control by Wagner and Lesser. We extended the originalMQ framework
to make it more suitable for general agent design in RADE process.

GANIZATIONS

The original MQ framework is intended to support
agent control in soft real-time environment, where agents
are handling multiple tasks and each task has specified
temporal constrains. It is assumed that all MQ types are
designed by the user when the agent is created, and the
MQ types are fixed in the runtime of the system. This as-
sumption works fine for small-scale multi-agent systems
when all agents are created by hand and the organization
structure is fixed.

However, this original design does not fit the need to
automate the development of multi-agent system and sup-
port the dynamic organization structure. For example, it
would be nice to automatically create two personal as-
sistant agents for user A and user B, each agent has the
motivations to manage the owner’s address-book, orga-
nize daily appointment and purchase items desired by the
owner. If we use the original definition as described in
(1), confusion is unavoidable since the agents cannot dis-
tinguish their goals to serve different users. The confu-
sion can be resolved by designing different types ofMQs
with different names, such as:MQorganizeActivitiesForUserA

andMQorganizeActivitiesForUserB. However, this approach de-
viates from the intention to use an unified agent class
design for all personal assistant agents. So, we extend
the original MQ framework by introducing a parameter,
namelysubject, into the definition ofMQ: every unique
MQ type is defined by theMQ name and theMQ sub-
ject. The subject is the entity who is being served or
benefited from the achievement of thisMQ. For exam-
ple, MQorganizeActivities(A) represent the motivation to or-
ganize activities for user A (assume “A” is the identi-
fication for this unique user).MQorganizeActivities(A) and
MQorganizeActivities(B) are differentMQs and they are not
inter-exchangeable. In the design phase, a unique pattern
MQorganizeActivities(User) can be used for the personal assis-
tant agent class,User refers to the agent’s user, which is
one of the attributes of the agent. When the two personal
assistance agent instances are instantiated for user A and
B, they have different values for their attributes such as
name, user and identification.

The formal definition ofMQ type is:

MQ

name: String
subject: P entity

A brief representation is:MQname(MQsubject). The
subject of MQ is a set of entities, which can be defined
in one of the following ways or a combination of them:

1. List the identification of the entities that belongs to
this set,{id1, id2, ...idn}, idi is the identification of

48

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

entity or a function that returns an entity identifica-
tion, such asOwner(id).

2. Specify the conditions for an entity to belong to
this set, {x | condition(x)}. For example,{x |
x ∈ groupA} is a set of all members that belong to
groupA, which is another entity.

Such extension makes it possible to support dynamic
organization structure. For example, agentx has a moti-
vation MQserveGroup({G | x ∈ G}) to serve the groups it
belongs to. This motivation is created for the agent class
in the design phase, agentx is an instance of such agent
class. In the system runtime, agentx joins a groupA, it
also forms a group B with other agents. According to the
motivation to serve the groups it belongs to, agentx is
willing to work on goals that serve both group A and B.

Under this extended definition, we have the following
definition on the relationships of MQs.

Definition 3.1 Two MQ types MQi and MQj are identical
(inter-exchangeable) (MQi == MQj) if and only if:

1. name(MQi) == name(MQj) and

2. subject(MQi) ⊇ subject(MQj) and
subject(MQi) ⊆ subject(MQj).

Definition 3.2 MQ type MQi is a special caseof MQj if
and only if:

1. name(MQi) == name(MQj) and

2. subject(MQi) ⊆ subject(MQj).

Dynamic organization structure is very important for
multi-agent systems to function efficiently, as other re-
searchers also recognized. [24] propose a framework for
modeling agent organizations called OMNI, which allows
both the representation of the global organizational re-
quirements and the autonomy of individual agents. Our
framework has this same virtue, though we adopt a quite
different approach that combines role-based modeling
and quantatitive reasoning.

3.3. SENSOR DATA

Sensor data refers to the input for the agent. For robot
agents, the sensor data is collected by different sensors,
like camera, speedometer, etc. For software agents, sen-
sor data refers to the messages and information the agent
receives from the environment including other agents.

3.4. REASONING M ECHANISMS

Each agent is equipped with a set of reasoning mech-
anisms, which are used for the following purposes:

Figure 3. Agent’s reasoning mechanisms

1. Decide what roles the agent should take or release
at this moment, given the agent’s motivation, current
roles it is taking, the resource and time constraints.

2. Decide what goals the agent should pursue at this
moment. The agent may take multiple roles and each
role may have multiple goals, so the agent needs to
decide which goals it need to focus on at this moment
based on how the goals contribute to its motivations,
how each goal could be achieved given the resource
and time constraints.This issue is related to the next
issue.

3. Decide how to achieve a goal given the available
alternatives, resources and time constraints. Some
planning and scheduling mechanisms are needed for
this decision.

Given the formal definition of motivations, goals and
the detailed description of alternatives to achieve a goal,
it is possible to build some general, domain-independent
reasoning mechanisms/toolkits. The user can select ap-
propriate components from such toolkits and add them to
the agent, the user can also customize these general mech-
anisms/toolkits by setting some parameters. These gen-
eral mechanisms/toolkits are reusable for agents in differ-
ent application domains.

Figure 3 shows an agent’s reasoning mechanisms. In
general, agents decide what to do using the reasoning
mechanisms. The decisions are made at different lev-
els: selection of roles, selection of goals, and selection
of the approach to fulfill the goals. The first issue is re-
solved by role-agent mapping mechanisms, and the later

49

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

Role

attributes: P Attribute
goals: P Goal
plantrees: P RTMS PlanTree
actions: P Action
permissions: P Permission
protocols: P Protocol
beTaken: B

INIT

permissions= ∅

protocols= ∅

beTaken= false

setPermission
∆permissions
perm? : Permission

permissions′ = permissions∪ {perm?}

addProtocol
∆protocols
prot? : Protocol

procotols′ = protocols∪ {prot?}

Figure 4. Definition of role

two issues are inter-related, which are solved by planning-
scheduling mechanisms. More details of these two types
of reasoning mechanisms are described in Section 5 after
the detailed description of role is presented.

3.5. EXECUTION M ECHANISMS

Execution mechanisms are used to generate the out-
put, which changes the environment. For robot agents,
their actors such as their motors, are the execution mech-
anisms, which are used to execute some actions to change
the environment states. For software agents, the execu-
tion mechanisms are the primitive actions to change the
environment state. Some of these execution mechanisms
are domain-dependent. For example, the personal assis-
tant agent is built with execution mechanism to perform
an online purchase, which is not built in a mathemat-
ics theorem proven agent. Other execution mechanisms
are application-independent but platform-dependent, such
as sending a message. Some common execution mecha-
nisms can be built as toolkits and reused for different ap-
plications.

The major difference between the reasoning mecha-
nisms and execution mechanisms is: the reasoning mech-
anisms only change the agent’s internal state, and have no

Figure 5. Meeting coordinator role example

effect on the outside environment directly, while the ex-
ecution mechanisms change the outside environment di-
rectly.

4. ROLE DEFINITION

Figure 4 shows the definition of role class. Same as
agent, a role is defined with a set of attributes, such as role
name and identification. A role is also defined with a set
of goals, each goal is associated with a plan tree, which is
a hierarchal description of the alternatives to accomplish
a goal.

4.1. GOAL DEFINITION

The definition of a goal contains the name of the goal
and a MQ Production Set (MQPS):

MQPS= {(MQi , qi), (MQj , qj), (MQk, qk)...},
which represents the success accomplishment of this

goal will generateqi amount ofMQi , qj amount ofMQj ,
qk amount ofMQk, etc. TheMQPSdescribes how this
goal contribute quantitatively to some higher-level goals
(abstract goals), which are built in agents’ motivations.
For example, there is ameeting coordinatorrole, which
has a goal defined as:

goal name: schedule group meeting

MQPS: {(MQorganizeActivity(x|x∈meeting group), 3),

(MQserveGroup(meeting group), 5)}

This goal generates two types of MQs, meaning that
the achievement of this goal contributes to two abstract
goals: organize activity (for any member that belongs to
this meeting group) and serve this meeting group. The de-
grees of the contributions are represented by the units of
the MQs, 3 and 5 respectively in this example. It should
be noticed that themeeting groupis an abstract concept

50

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

Figure 6. Plan tree for goalProvide Curein RTÆMS representation

when this role is defined as a role class, this concept rep-
resents any group who needs to have meetings. When an
role instance is instantiated from this class, this abstract
concept is instantiated as a concrete group. Depending on
the context when themeeting coordinatorrole instance is
created, a specific group will replace this abstractmeet-
ing groupin the goal definition. Assume that twomeeting
coordinatorrole instancesCA andCB have been created,
as shown in Figure 5, one for groupA, and another for
groupB. Both of them have the goal of the same name
but not the sameMQPS. All agents who belong to group
A are motivated to take the roleCA, those agents who be-
long to groupB are motivated to take the roleCB, those
agents belong to both groups are motivated to take both
role instances.

4.2. PLAN TREE DEFINITION

For each goal associated with a role, there is a plan
tree to describe the possible alternatives to achieve this

goal. This plan tree is part of the domain knowledge
and needed to be defined by the user. To represent this
domain knowledge, we introduce RTÆMS (Role-Based
Task Analyzing, environment Modeling, and Simulation)
language based on the extension of the TÆMS language
[8]. TÆMS is a hierarchical task representation lan-
guage, which support the representation of the relation-
ships among goals and subgoals, the quantitative descrip-
tion of the atomic approaches and uncertainties, and re-
sources. We extend the TÆMS language by introducing a
role attribute for task nodes that represent goals and sub-
goals. The attributerole specifies what roles are needed
to carry this goal or subgoal.

For example, Figure 6 shows the plan tree for the goal
Provide Cure, which belongs to the rolePhysician. The
goalProvide Cureconsists of two subgoals:Examine Pa-
tient andProvide Treatment. Themin quality accumula-
tive function (qaf) associated with the goalProvide Cure
specifies the following relationship:

51

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

Quality(ProvideCure) = min(Quality(ExaminePatient),
Quality(ProvideTreatment))

In other words, themin quality function associated
with a goal describes that the success of this goal de-
pends on the success of all of its sub-goals. On the other
hand, the use ofmax quality function represents that there
are several alternatives to achieve the goal. For example,
to Provide Treatmentfor the patient, thePhysiciancan
choose eitherPrescribe Treatmentor Administer Treat-
ment. Other available quality accumulation functions in-
cludesumandseq sum,etc.

Each subgoal can further be decomposed into smaller
goals, i.e. Examine Patientincludes three subgoals:
(Read) Medical History Record, Clinical TestandTest In-
terpretation. For somenon-localgoals - the tasks need to
be performed by other roles, the specification of the other
role is included in the plan tree description. For example,
Clinical Testshould be performed by aClinical Medical
Assistant(MA Clinical), andSetup EquipmentandPro-
vide Careare goals belonging to theNurse Assistantrole.

The dash lines represent the interrelationship between
goals/sub-goals. For example,Clinical TestenablesTest
Interpretationdescribes the fact that the first goalClinical
Testneeds to be achieved successfully before it is possi-
ble to implement the second goalTest Interpretation. In
addition, (Read) Medical History Recordfacilitates the
Clinical Testprocess because it may provide some useful
information about the patient. Other types of interrela-
tionships defined in TÆMS includedisablesandhinders.

The primitive goal (lowest-level goal) in the RTÆMS
representation can be specified with more details in an-
other plan tree that is associated with another role. For
example, the plan tree for the subgoalProvide Careis de-
scribed in Figure 10, this information belongs to the role
Nurse Assistant.

The RTÆMS shows all possibilities to achieve a goal
and the interrelationship among goals/subgoals. It pro-
vides fundamental knowledge for agents to plan and
schedule its local activities, and it also supports the col-
laboration and cooperation among agents. More details
are presented in Section 5.

5. OPERATION OF THE M ULTI -AGENT

SYSTEMS
In this Section, we will discuss more details on how a

multi-agent system will be developed and operated based
on the RADE framework that we have presented in [30]
and earlier in this paper.

5.1. DYNAMIC M APPING PROCESS BETWEEN

ROLE I NSTANCES AND AGENTS

In RADE framework, agents can dynamically choose
the role instances, and role instances can be created dy-
namically too. In the development phases, roles and
agents are designed separately. In the implementing
phases, agents are created by users. In addition, there is a
role spacecomponent built in the system with the follow-
ing functionalities:

1. Keep record of all role instances that have been cre-
ated and their current status: whether this role in-
stance has been taken and the creator of this role in-
stance.

2. Reply messages from agents for querying the current
available role instances.

3. Create new role instances according to the requests
from agents or users.

4. Delete obsoleted role instances according to the re-
quests from agents or users.

5. Monitoring the role-agent mapping processes by ver-
ifying the qualification of agents and checking the
constraints on role interrelationships, to ensure the
new role instance is compatible with other role in-
stances that have already been taken by the same
agent.

When the system execution starts, one or more role
instances are created by a human user. Those agents who
are interested in taking a particular role instance send
messages to the role space. The role space then checks
the qualification of the agents. The verification process is
based on two criteria:

1. Whether the agent (A) has the capability to take
this role instance (R). The following conditions are
checked:
Actions(R) ⊆ ExecutionMechanism(A) or
Certification(R) ⊆ Qualification(A), where
Certification and Qualification are attributes that
belong to Role and Agent classes respectively.

2. Whether this role instance is consistent with other
role instances that the agent currently takes. This
condition is checked based on the incompatibility re-
lationships defined in the role organization.

After this process, a list of qualified agents is sent to
the creator of this role instance (in this case, the creator is
the human user, it can be an agent too). The creator then
selects one agent from this list to take the role instance.
This selection is totally based on the creator’s preference,
the user can define different criteria for the selection, such
as based on the profile of the candidate agent, or the ex-
perience of previous interaction with the candidate agent.

52

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

When an agent takes a role instance, it checks the
goals that belong to this role instance and decides if more
role instances need to be created to carry the subgoals or
to achieve some necessary preconditions. If this is the
case, more role instances will be created and posted in the
role spaces. The process described above is repeated until
no more role instances are created.

An agent decides whether it is interested in a role in-
stance by checking if there is a goal that belongs to the
role instance matches the agent’s motivation. A goalG
matches agentA’s motivation if and only if:
∃MQx ∈ MQPS(G),∃MQy ∈ Motivations(A),
MQx is aspecial caseof MQy.
According to the above definition, there may be multiple
role instances an agent is interested at the same time. How
much the agent is interested in a particular role instance
depends on the following:

• The type and number of units of MQ associated with
the goal that belongs to this role instance.

• The agent’s preference on differentMQs given its
current MQ accumulations.

• The agent’s resource and capability.

An heuristic search algorithm has been presented in
[27], which is used to select the most appropriated tasks
based on agent’s MQ preference, MQ states and resource
limitations. Similar mechanisms can be adopted here for
agent to select the appropriated role instances.

Since each goal defined in a role instance essentially
represents a task to be accomplished, so the role-agent
mapping process is a task allocation process. In this pro-
cess, the agent decides which task it would like to take
depending on the user-defined preference functions, its
previous experience on accomplishment of such tasks and
its resource limitation. On the other hand, which agent is
chosen to perform this task also depends on the qualifica-
tion requirement, the organizational rules (represented as
the incompatibility relationship) and other dynamic issues
such as the agent’s previous performance.

Kamboj and Decker has proposed an organizational
self-design approach in semi-dynamic environment [16].
It uses TÆMS language as the underlying representa-
tion for problems. Agents can be dynamically created or
merged together depending on the needs of the system at
runtime. It also uses role-assignment to assign a task to an
agent. However, in that work, a role is defined as a TÆMS
subtree rooted at a particular node, which is different from
our work, where a role is a position in an organization as-
sociated with organizational rules and interaction rules.
Additionally, our work proposes an integrated approach
for designing and implementing MAS. In our approach, a
lot of domain knowledge can be represented in the defi-
nition of roles. We also adapt a motivational quantitative

measure for agents to evaluate what tasks are interesting.
These make our work quite different from theirs.

5.2. PLANNING AND SCHEDULING

The planning and scheduling mechanisms are used to
generate a linear schedule of activities for the agent to
execute. The plan tree associated with each goal con-
sists of all possible alternatives to achieve a goal, it is
not a linear schedule. The agent needs to make deci-
sions on how to achieve a goal based on this plan tree
and the time/resource constraints. A general, domain-
independent planner/scheduler for TÆMS task structure
has been developed [28]. Such toolkits can be modi-
fied and used for RTÆMS plan trees. We propose to
build multiple planning/scheduling toolkits using differ-
ent technologies with varying complexities from heavy-
duty contingency planner to quick and easy one-step-
look-ahead planner. The agent builder can choose from
them and the agent also can choose which one to use
at that time if multiple planner/scheduler components are
build in.

5.3. COLLABORATION AND COOPERATION

In an open agent society with distributed information,
resources and tasks, agents need to collaborate and coop-
erate on their actions. Efficient collaboration and cooper-
ation mechanisms are important to the performance of the
system. Large amount of effort has been spend on the de-
velopment of collaboration and cooperation mechanisms
in multi-agent systems. Our intention is to develop a set
of domain-independent mechanisms for collaboration and
cooperation, so that they can be reused in different appli-
cations. This need is also recognized by other researchers
[4]. In ROPE project [2], cooperation process is build as
separated component from the concrete agents, the ROPE
engine provides the execution of the cooperation process,
which is described as a high-level petri-net class. How-
ever, the implementation of ROPE Engine is based on a
shared memory, which is not always feasible for agents
widely distributed on different machines. Additionally,
the cooperation process in ROPE project is based on token
and transition firing, which is not feasible to support more
proactive cooperation and collaboration, i.e. agents are
able to consider the cooperation and collaboration needs
when they are planning their own activities.

The RTÆMS language supports collaborations and
cooperation by specifying interrelationship among goals
and subgoals, so that agents know why they need col-
laboration and cooperation, when and with whom. A
set of domain-independent general collaboration mecha-
nisms (GPGP) based on TÆMS language has been de-
veloped [18]. we propose to develop (or reuse some of
GPGP) similar mechanisms in RADE framework based
on RTÆMS language. Agents collaborate and cooperate

53

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

Figure 7. An general agent architecture

with each other using this set of mechanisms and also ac-
cording to the protocols defined in the role, which specify
how the interaction between different roles should be pro-
ceeded.

6. AUTOMATIC AGENT GENERATION

PROCESS
The automatic agent generation process is based on a

component-based agent architecture. The user can select
which components to be included in this agent, and the
user can also specify a set of attributes of the agent.

Figure 7 shows a general agent architecture. Each
agent has a set of attributes. Its motivation is a set of
MQs it accumulates and tracks, which are mapped into
its overall utility through specific utility functions. An
agent also receives sensor data from outside environment
including events and messages. An agent has a set of
reasoning mechanisms including role/goal selection, and
planning/scheduling mechanisms. The designer of the
agent decides what reasoning tools should be built in for
this agent, the designer also selects the appropriate execu-
tion tools for this agent according to the designed purpose
of this agent. It is assumed there are a set of reasoning and
execution mechanisms available as toolkit, which can be
selected and plugged into the agent seamlessly.

Based on this general agent architecture, we devel-
oped a tool to support the automatic agent generation
process. This tool is created by extending the current
JAF framework [26] developed by MAS lab at UMass
Amherst. This tool includes a graphic user interface,
which can be used to create new agents, modify existing
agents, run agents and delete agents. A screen shot of the
graphicial user interface is shown in Figure 8.

Figure 8. Automatic agent generation interface

Agent class is defined by a set of attributes, motiva-
tions, utility function, and a set of reasoning mechanisms
and execution mechanisms. Individual users can create
their own agent classes through this interface. The user
can define a variety of attributes including name, quali-
fication, and other parameters for recording information
during the agent execution process such as log file name
and log level.Qualification is an attribute that describes a
particular capability this agent class owns, which is used
in the role-agent mapping process to decide whether an
agent is qualified for a particular role.

The user also defines the agent’s motivation by speci-
fying a set ofmotivational quantities(MQs) [27] that the
agent tracks and accumulates. The user also defines the
agent’s reasoning and execution mechanisms by selecting
a number of ready-to-plug-in components such as: plan-
ning, scheduling, communication, etc. Currently all avail-
able components are created in JAF project, new compo-
nents can be created and added to this selection list at any
time in the future.

After an agent class is defined, one or multiple agent
instances (the executable programs) can be created from
this class definition. Each agent instance is an indepen-
dent program and the agent is named after its class with a
unique number ID. For example, when the user creates an
agent classX and three agent instances of this class, the
three agents are named asX1, X2 andX3 respectively.

The user can run agents from this interface by clicking
the “RUN AGENT” menu box on the top, and selecting
a number of agents to run from a list of agents that have
already been created. Multiple agents can be created and
run on difference machines. The user can also choose

54

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

to delete existing agents by clicking on the “DELETE
AGENT” menu box.

7. CASE STUDY: H EALTH CARE APPLI -
CATION DOMAIN

We have implemented a prototype system including
a role-definition component and an agent definition and
creation component. Using this system, we implement a
simple health care application as an example to demon-
strate this integrated role-based approach for modeling,
designing and implementing multi-agent systems, includ-
ing the definition of role and agent classes, automatic
agent generation process and the dynamic mapping pro-
cess between agents and role instances. The purpose of
this health care application system is to assist health care
providers and patients to schedule and coordinate their ac-
tivities so as to provide feasible and efficient health care
services for patients.

7.1. DEFINE ROLES

One advantage of this role-based multi-agent system
approach is the support of theseparation of concerns
principle. We believe that a complicated information sys-
tem should be developed collectively by both the domain
experts and the software experts. For example, in this
health care application domain, there are a lot of domain
knowledge that is not familiar to the software engineers.
Health care domain experts are the best candidates to en-
gineer such knowledge in the system. Hence we devel-
oped a role-definition tool with graphical user interface
for the domain experts to represent those domain knowl-
edge through role definition.

In this demo example, we pretend ourselves to be do-
main experts by reading some books [20] and articles in
medical application domain. We created a simplified sys-
tem just to verify the feasibility of this approach. In this
process, we recognized the difficulty and inefficiency for
a software engineer to grasp the vast amount of domain
knowledge in a short period of time, which enhance our
belief of theseparation of concernsprinciple.

In this simplified system, we define the following role
classes:

1. Patient: who seeks for health care.

2. Physician: who determines whether diagnostics are
to be undertaken, provides prescriptions, performs
medical and surgical interventions, has the ability to
direct patient care and advance a patient to the next
step of care.

3. Medical Assistant: a health care professional who
performs a variety of clinical, clerical and adminis-
trative duties within a health care setting. There are

two roles defined as subclasses of this role class:

• Administrative Medical Assistant
(MA Admin): Medical assistant who per-
forms the administrative job.

• Clinical Medical Assistant (MA Clinical):
Medical assistant who performs the clinical
job.

4. Nurse: there are two roles defined as subclasses of
this role class:

• Nurse Assistanta nurse who assesses the pa-
tient’s medical problem, provides care and
helps setup laboratory specimen and medical
instruments.

• Nurse Practitioner: a registered nurse who has
completed an advanced training program in
primary health care delivery, and may provide
primary care for non-emergency patients, usu-
ally in an outpatient setting.

Figure 9 shows the RADE interface for user to
create role classes and define the interrelationships
among role classes. In this example, the interrelation-
ships includeinheritance, associationand incompatibil-
ity. An inheritance relationship describes the generaliza-
tion/specification relationship between two role class. For
example, bothMA Admin and MA Clinical inherit the
Medical Assistantrole class since they are specified med-
ical assistants. Association is a very common relationship
between role classes, it indicates an instance of one role
class may perform an action on an instance of another role
class. Association relationships exist betweenPhysician
andNurse, PhysicianandPatient, etc. Incompatibility re-
lationship describes the constraints that the role instances
of the two role classes cannot be taken by the same agent
for the same interaction scenario. For example, an agent
cannot take aPhysicianrole instance for treating aPa-
tient role instance if the agent is taking thisPatient role
instance right now, however the agent can take another
Physicianrole instance for treating anotherPatient role
instance that is not taken by this agent. The definition of
such relationships depends on the domain knowledge, so
we feel the domain experts are the best candidates to use
this interface to define the role classes and their interrela-
tionships.

Each role is defined with a goal, a plan tree, a motiva-
tional quantity production set (MQPS), a certificate and
other attributes. A goal is a task that this role needs to
accomplish, and the plan tree specifies the domain knowl-
edge of how to accomplish this goal in terms of decom-
posing it as sub-goals.

For example,Physicianrole is defined with a goal to
Provide Cure. Theplan tree shown in Figure 6 provides

55

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

Figure 9. RADE interface for creating roles
ROLE: Physician
GOAL: Provide Cure
MQPS: (MQprofessional P, p1), (MQmoral P, p2), (MQexperienceP, p3)

CERTIFICATE: MD (Doctor of Medicine)

domain knowledge of how to accomplish this goal. Detail
explanation of the plan tree is in Section 4.2. Figure 10
shows the plan trees for those goalsGet Cure, Assist Pa-
tient, Provide Cure, andProvide Care, which belongs the
rolePatient, Administrative Medical Assistant, Physician,
andNurse Assistantrespectively.

TheMQPS specifies the type and the number of units
of motivational quantities that can be collected by the
agent after it accomplishes the goal defined in the role.
For the agent who is taking thePhysicianrole, it collects
p1 units ofMQprofessionalP, p2 units ofMQmoral P andp3
units of MQexperienceP. The MQPS specification in the
role definition and the agent’s motivation are used by the
agent to determine whether it is interested in a role in-
stance, and how interested it is.

TheCertificate defined in the role describes the qual-
ification requirement for this role. This role can only be
taken by an agent who has this specified certificate. For
example,Physicianrole is defined with a certificate of
MD (Medical Doctor).

7.2. DEFINE AGENTS

Agents are the real programming entities running in
the system. In this example, each agent represents a
personal assistant for a human user in the real world.
The agent is responsible for scheduling the user’s daily
tasks according to the user’s preference and constraints.
The agent is also responsible for coordinating with other
agents when coordination is needed between its own user
and other users.

As Figure 8 shows, a user creates an assistant agent
named Adam. The user specifies his preference on choos-
ing tasks by defining the motivation2 of this agent as:

Motivation : {MQprofessionalP, 0, 0;
MQmoral P, 1, 1; MQexperienceP, 2, 2}

This specifies three long-term goals this user has: pro-
fessional achievement, moral achievement and experience
achievement, as a physician, which are represented by
three types of MQs shown in Table 1 . The function in-
dex specifies a utility function that maps a certain number
of units of MQ of this type into the agent’s local utility.
Since the function can be a non-linear function and is also
context sensitive, the initial amount of this type MQ is
also important. The user also provides this agent with his
qualification MD so that this agent can be qualified for a

2In this simple demo system we implemented, there is only one agent
instance created from each agent class, also there is no dynamic orga-
nization in this demo either. So in the following description, we ignore
MQsubjectand use only theMQnameto represent a specifiedMQ type.

56

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

Figure 10. Plan tree definitions for multiple goals

Table 1. Agent’s motivation - represent user’s objectives

MQ Type Function Index Initial Amount
MQprofessionalP 0 0

MQmoral P 1 1
MQexperienceP 2 2

Physicianrole.

7.3. RUNTIME SCENARIO

Next we present a runtime scenario to describe how
the system works including how the dynamic task allo-
cation is accomplished through the role-agent mapping
mechanism.

This system is modeling a hospital organization. A
special role space agent is created. This agent is not tak-
ing any active role in the system, rather, it is mainly re-
sponsible for maintaining and managing the role instances
in the system, as we described in Section 5.1. Due to
the limited implementation effort and time available, we
make the following simplifications in this implementa-
tion, compared to the process described in Section 5.1:

• The role space checks the plan tree of a role instance
when this role instance is taken by an agent and rec-
ognizes the needs to create new role instances, rather

than the agent sends a request to the role space to cre-
ate new role instances. This simplification is valid
when the goals and plan trees are simple and there is
no need for the agent to choose from different plans.

• The role space selects the appropriate agent for the
role instance after verifying the qualification and
consistency of the candidates, rather than sends a
short list to the creator of this role instance and let
the agent who creates this role instance to make se-
lection according to the criteria defined by its user.
This simplification is valid when there is only a few
candidates.

When the system is initialized, the system adminis-
trator creates severalPatientrole instances to express the
expected service requirements from patients. The num-
ber ofPatientrole instances depends on the capability of
this hospital. These patient role instances are posted on
the role space and are not active until they are taken by
agents. When a (real) patient Bryan enters in this hospital
for service, a personal assistant agent named Bryan is cre-
ated for this patient, and this agent takes onePatientrole
instance.

When agent Bryan takes thePatient role instance, it
has one goal to achieve:Get Cure. The plan tree of this
goal describes that two subgoalsAssist PatientandPro-

57

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

vide Curemust be achieved so that the goalGet Curecan
succeed. The goalAssist-Patientbelongs to aMA Admin
(Administrative Medical Assistant) role and the goalPro-
vide Curebelongs to aPhysicianrole. Based on this in-
formation, aPhysicianrole instance and aMA Adminrole
instance are created by the role space.

Three other agents, Adam, Cathy and David that rep-
resent three medical professionals have already been cre-
ated and are active in the system. They have been idle and
sent requests to the role space for available role instances.
When theMA Admin and Physicianrole instances are
created in the role space, all three agents who are in-
terested in taking any additional role instances receive a
message for this update.

After receiving this message, the agent looks at the
goal associated with this role instance, especially the
MQPS and to see if it matches its own motivation. If
the MQPS contains the same type of MQ the agent has
in its motivation, the agent is interested in taking this
role instance. For example, thisPhysicianrole instance
has MQPS as: (MQprofessionalP, p1), (MQmoral P, p2),
(MQexperienceP, p3) , all these three types MQs belong to
agent Adam’s motivation. So Adam is interested in this
role instance. How interested Adam is for this role in-
stances depends on the actual values of p1, p2 and p3, the
exact structures of the mapping functions with index 0,
1, and 2, and the current accumulation of these MQs for
agent Adam.

If there are multiple available role instances interested
to agent Adam, it will compare the degree of interest it
has towards these role instances and select the most inter-
ested ones, and send requests to the role space. It is also
possible that the role space would receive requests from
multiple agents for the same role instance. The role space
verifies the qualification of each agent by matching the
agent’s qualification to the certificate requirement defined
in the role class that this role instance belongs to. For
example, agent Adam is qualified for this role instance
because it has a MD qualification that matches the cer-
tificate requirement of thePhysicianrole class. The role
space also checks if this role instance is compatible with
other role instances the agent is taking right now. For in-
stance, suppose agent Bryan has a MD qualification and
is also interested in thisPhysicianrole instance; however,
according to the incompatibility between thePhysician
role and thePatientrole, agent Bryan cannot take this role
instance because it takes thePatientrole instance related
to thisPhysicianrole instance.

After verifying the qualification and checking the con-
sistency, the role space then selects an appropriate agent
(Agent Cathy) for theMA Admin role instance, whose
goal is to Assist-Patient. The plan tree for the goalAssist
Patient consists of four subgoals:Greet Patient, Sched-
ule Appointment, Admit Patient, andAnswer Telephone.

All of these subgoals can be performed by the same agent
who takes theMA Adminrole instance, so no new role in-
stance needs to be created. After assigning theMA Admin
role instance to an agent, the role space then assigns
the Physicianrole instance to another appropriate agent
(Agent Adam) based on its qualification. The goal of the
Physicianrole is toProvide Cure, the role space reads the
plan tree associated with the goal and finds that to accom-
plish this goal, three subgoalsClinical Test, Setup Equip-
mentand Provide Caremust be accomplished by other
roles. In response to this need, new role instancesNurse
Assistantand MA Clinical are created. The role space
then selects appropriate agents to take these roles. This
process will continue until no more new role instance is
needed and all role instances have been taken.

After a goal defined in a role instance is accomplished,
the agent will collect the MQs as defined in the MQPS
of this role instance. The agent will release this role in-
stance, and this role space will delete this role instance.
In the system runtime, new role instance is created ac-
cording to the need to accomplish a certain goal. Agent
is mapped to the role instance according to the matching
of the motivation, the qualification and the compatibil-
ity. Since each role instance is associated with a goal, the
mapping process is also a task allocation process. In this
process, the agent is reasoning on its local utility achieve-
ment, described as its motivation and MQ mapping func-
tions. The domain-related constrains such as qualification
and compatibility are defined in the role and monitored by
the role space. This implementation realizes thesepara-
tion of concernsprinciple.

8. CONCLUSION AND FUTURE WORK

In this paper we presented a prototype of automated
agent generation system in connection with a previously
developed role-based agent modeling and designing sys-
tem. This integrated framework supports the role-based
designing of multi-agent system and the implementation
of utility-driven agents utilizing a variety of existing agent
reasoning and coordination mechanisms. We also pre-
sented a case study of the development of a multi-agent
system for health care domain. We described how the
roles are defined, how agents are created, and how the
role instances are mapped to agents. We also described a
runtime scenario that shows the dynamic task allocation
is accomplished through the creating, taking and releasing
of role instances.

The future work includes further development of the
system from the current prototype. Especially we are
interested in implementing the quantitative description
in RTÆMS and incorporating the scheduling/planning
and coordination mechanisms in agents. We are also

58

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

interested in providing support for users to define in-
teraction protocols in role classes, and then integrat-
ing those domain-dependent protocols with the domain-
independent communication mechanisms in agents.

Acknowledgments.We thank Mr. Michael McGuire for
providing health care domain knowledge. We also thank
Prof. Lesser, Dr. Horling, Dr. Wagner and Prof. Decker
for a variety of software and mechanisms developed in
UMass Multi-Agent Systems lab, including JAF, TÆMS
, MQ and GPGP.

REFERENCES
[1] Ricardo Melo Bastos and Marcelo Blois Ribeiro.

MASUP: An Agent-Oriented Modeling Process for
Information Systems. In Ricardo Choren, Alessan-
dro Garcia, Carlos Lucena, and Alexander Ro-
manovsky, editors,Software Engineering for Multi-
Agent Systems III: Research Issues and Practical
Applications Series.2005.

[2] Michael Becht, T. Gurzki, Jurgen Klarmann, and
Matthias Muscholl. ROPE: Role oriented program-
ming environment for multiagent systems. InCon-
ference on Cooperative Information Systems, pages
325–333, 1999.

[3] Anarosa A. F. Brandao, Viviane Torres da Silva, and
Carlos J. P. de Lucena. A knowledge-based ap-
proach to the specification and verification of MAS
design. InAAMAS ’05: Proceedings of the fourth in-
ternational joint conference on Autonomous agents
and multiagent systems, pages 1373–1373, New
York, NY, USA, 2005. ACM Press.

[4] Giacomo Cabri, Luca Ferrari, and Letizia Leonardi.
Agent role-based collaboration and coordination: a
survey about existing approaches. InSMC (6), pages
5473–5478. IEEE, 2004.

[5] Sen Cao, Richard A. Volz, Thomas R. Ioerger, and
Yu Zhang. Role-based and agent-oriental teamwork
modeling. In Hamid R. Arabnia and Youngsong
Mun, editors,IC-AI, pages 1190–. CSREA Press,
2002.

[6] Viviane Torres da Silva, Ricardo Choren Noya, and
Carlos J. P. de Lucena. Using the UML 2.0 activity
diagram to model agent plans and actions. InAA-
MAS ’05: Proceedings of the fourth international
joint conference on Autonomous agents and multia-
gent systems, pages 594–600, New York, NY, USA,
2005. ACM Press.

[7] Mehdi Dastani, Virginia Dignum, and Frank
Dignum. Role-assignment in open agent societies.
In AAMAS ’03: Proceedings of the second interna-
tional joint conference on Autonomous agents and
multiagent systems, pages 489–496, New York, NY,
USA, 2003. ACM Press.

[8] Keith Decker. TAEMS: A Framework for Environ-
ment Centered Analysis & Design of Coordination
Mechanisms. InFoundations of Distributed Arti-
ficial Intelligence, Chapter 16, pages 429–448. G.
O’Hare and N. Jennings (eds.), Wiley Inter-Science,
January 1996.

[9] Scott A. DeLoach, Mark F. Wood, and Clint H.
Sparkman. Multiagent systems engineering.In-
ternational Journal of Software Engineering and
Knowledge Engineering, 11(3), 2001.

[10] Nirmit Desai, Amit K. Chopra, and Munindar P.
Singh. An overview of business process adaptations
via protocols. InAAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous
agents and multiagent systems, pages 1326–1328,
New York, NY, USA, 2006. ACM Press.

[11] Mark D’Inverno and Michael Luck.Understanding
Agent Systems. SpringerVerlag, 2004.

[12] R. Duke, G. Rose, and G. Smith. Object-Z: A spec-
ification language advocated for the description of
standards.Computer Standards & Interfaces, 17(5–
6):511–533, 1995.

[13] RubŐn Fuentes, Jorge J. G̊Umez-Sanz, and Juan
PavŮn. Integrating agent-oriented methodologies
with UML-AT. In AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous
agents and multiagent systems, pages 1303–1310,
New York, NY, USA, 2006. ACM Press.

[14] Vincent Hilaire, Abder Koukam, Pablo Gruer, and
Jean-Pierre Muller. Formal specification and proto-
typing of multi-agent systems. InESAW ’00: Pro-
ceedings of the First International Workshop on En-
gineering Societies in the Agent World, pages 114–
127, London, UK, 2000. Springer-Verlag.

[15] Thomas Juan, Adrian R. Pearce, and Leon Sterling.
ROADMAP: extending the Gaia methodology for
complex open systems. InAAMAS, pages 3–10.
ACM, 2002.

[16] Sachin Kamboj and Keith S. Decker. Organiza-
tional self-design in semi-dynamic environments. In
AAMAS ’06: Proceedings of the fifth international

59

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

joint conference on Autonomous agents and multia-
gent systems, pages 335–337, New York, NY, USA,
2006. ACM Press.

[17] Elizabeth A. Kendall. Role modeling for agent
system analysis, design, and implementation. In
ASA/MA, pages 204–218. IEEE Computer Society,
1999.

[18] V. Lesser, K. Decker, T. Wagner, N. Carver,
A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. NagendraPrasad, A. Raja, R. Vincent,
P. Xuan, and X.Q. Zhang. Evolution of t he
GPGP/TAEMS Domain-Independent Coordination
Framework. Autonomous Agents and Multi-Agent
Systems, 9(1):87–143, July 2004.

[19] Michael Luck and Mark d’Inverno. A formal frame-
work for agency and autonomy. In Victor Lesser
and Les Gasser, editors,Proceedings of the First
International Conference on Multi-Agent Systems
(ICMAS-95), pages 254–260, San Francisco, CA,
USA, 1995. AAAI Press.

[20] Michael R. McGuire.Steps Toward a Universal Pa-
tient Medical Record - A Project Plan to Develop
One. Universal Publishers, 2004.

[21] David Morley and Karen Myers. The SPARK
Agent Framework. InAAMAS ’04: Proceedings
of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages
714–721, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[22] Viviane Torres Da Silva and Carlos J. P. De Lu-
cena. From a conceptual framework for agents and
objects to a multi-agent system modeling language.
Autonomous Agents and Multi-Agent Systems, 9(1-
2):145–189, 2004.

[23] Insu Song and Guido Governatori. Designing agent
chips. InAAMAS ’06: Proceedings of the fifth inter-
national joint conference on Autonomous agents and
multiagent systems, pages 1311–1313, New York,
NY, USA, 2006. ACM Press.

[24] Javier Vázquez-Salceda, Virginia Dignum, and
Frank Dignum. Organizing multiagent sys-
tems.Autonomous Agents and Multi-Agent Systems,
11(3):307–360, 2005.

[25] R. Vieira, ç. F. Moreira, R. H. Bordini, and
J. H§bner. BDI agent programming in agentspeak
using Jason. InProceedings of the Sixth Interna-
tional Workshop on Computational Logic in Multi-
Agent Systems (CLIMA VI), pages 143–164, 2005.

[26] Regis Vincent, Bryan Horling, and Victor Lesser.
An Agent Infrastructure to Build and Evaluate
Multi-Agent Systems: The Java Agent Framework
and Multi-Agent System Simulator.Lecture Notes
in Artificial Intelligence: Infrastructure for Agents,
Multi-Agent Systems, and Scalable Multi-Agent Sys-
tems., 1887, January 2001.

[27] Thomas Wagner and Victor Lesser. Evolving real-
time local agent control for large-scale mas. In J.J.
Meyer and M. Tambe, editors,Intelligent Agents
VIII (Proceedings of ATAL-01), Lecture Notes in Ar-
tificial Intelligence. Springer-Verlag, Berlin, 2002.

[28] Thomas A. Wagner, Alan J. Garvey, and Victor R.
Lesser. Criteria Directed Task Scheduling.Jour-
nal for Approximate Reasoning (Special Scheduling
Issue); a version is also available as UMass Com-
puter Science Technical Report 1997-59, 19:91–
118, January 1998.

[29] Michael Wooldridge, Nicholas R. Jennings, and
David Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design.Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, 2000.

[30] Haiping Xu and Xiaoqin Zhang. A methodology for
role-based modeling of open multi-agent software
systems. In Chin-Sheng Chen, Joaquim Filipe, Is-
abel Seruca, and José Cordeiro, editors,ICEIS (3),
pages 246–253, 2005.

[31] Haiping Xu, Xiaoqin Zhang, and Rinkesh J. Pa-
tel. Developing role-based open multi-agent soft-
ware systems.International Journal
of Computational Intelligence Theory and Practice
(IJCITP), 2(1): 39-56, June 2007.

60

Xiaoqin Zhang, Haiping Xu An Integrated Role-Based Approach for Modeling,
and Bhavesh Shrestha Designing and Implementing Multi-Agent Systems

