On the Homotopy Type of the Clique Graph*

F. Larrión^{a,1} V. Neumann-Lara^{a,1} M. A. Pizaña^b

^aInstituto de Matemáticas, U.N.A.M. Circuito Exterior, C.U. México 04510 D.F. MÉXICO. {paco, neumann}@matem.unam.mx

bUniversidad Autónoma Metropolitana, Depto. de Ingeniería Eléctrica. Av. Michoacán y Purísima s/n México 09340 D.F. MÉXICO. map@xanum.uam.mx, http://xamanek.uam.mx/map

Abstract

If G is a graph, its clique graph K(G) is the intersection graph of all its (maximal) cliques. The complex G^{\uparrow} of a graph G is the simplicial complex whose simplexes are the vertex sets of the complete subgraphs of G.

Here we study a sufficient condition for G^{\uparrow} and $K(G)^{\uparrow}$ to be homotopic. Applying this result to Whitney triangulations of surfaces, we construct an infinite family of examples which solve in the affirmative Prisner's open problem 1 in *Graph Dynamics* (Longman, Harlow, 1995): Are there finite connected graphs G that are periodic under K and where the second modulo 2 Betti number is greater than 0?

Keywords: clique graphs, clique convergence, Whitney triangulations, clean triangulations, simplicial complexes, modulo 2 Betti numbers.

1 Introduction and terminology

All our graphs are simple. If G is a graph, a complete of G is a complete subgraph of G and a clique is a maximal complete of G. The clique number $\omega(G)$ is the maximum order of a clique of G. We shall often identify induced subgraphs with their vertex sets. In particular, we shall often write $x \in G$ instead of $x \in V(G)$.

We say that G is locally H if the subgraph $N_G(x)$ induced in G by the (open) neighbourhood of any vertex $x \in G$ is isomorphic to H. We say

that G is locally $\mathcal{H} = \{H_1, H_2, \ldots\}$ if for every $x \in G$, $N_G(x) \cong H_i$ for some $H_i \in \mathcal{H}$. C_n and P_n are, respectively, the cyclic and path graphs on n vertices. We say that G is locally cyclic if it is locally $\{C_n : n \geq 3\}$.

The clique graph K(G) of G has all cliques of G as vertices, two of them being adjacent iff they (are different and) share some vertex of G. We call K the clique operator. Iterated clique graphs are inductively defined by $K^0(G) = G$ and $K^{n+1}(G) = K(K^n(G))$. G is K-periodic if $G \cong K^n(G)$ for some $n \geq 1$. Extensive bibliography on clique graphs can be found in [14].

A graph G is clique-Helly if whenever $X = \{q_1, \ldots, q_n\} \subseteq V(K(G))$ is a family of pairwise intersecting cliques, then $\bigcap X \neq \emptyset$. We say that $Q = \{q_1, \ldots, q_n\} \in V(K^2(G))$ is a *star* of G if $\bigcap Q \neq \emptyset$, otherwise it is a *necktie* of G. Obviously, a graph is clique-Helly iff it has no necktie.

If G is a graph, G^{\uparrow} is the simplicial complex whose simplexes are the completes of G. We say that two simplicial complexes are homotopic ($\mathbb{K} \simeq \mathbb{L}$) when their geometric realizations are homotopic ($|\mathbb{K}| \simeq |\mathbb{L}|$). The behaviour of topological invariants of G^{\uparrow} under several graph operators (including the clique operator) has been studied in [9, 10, 11]. In particular, Prisner proved in [10] that if G is clique-Helly, $G^{\uparrow} \simeq K(G)^{\uparrow}$. Our main result (Theorem 2.4) states that this is also true for many non-clique-Helly graphs. As an application of this, we will show (Theorem 2.5) that if G is free of tetrahedra and induced octahedra, then $G^{\uparrow} \simeq K(G)^{\uparrow}$.

An interesting particular case is when the realization $|\mathbb{K}|$ is a compact surface (with or without border), i.e. \mathbb{K} is a triangulation of a compact surface. If G is the underlying graph (or 1-

^{*}Dedicated to Prof. J. L. Szwarcfiter in his 60^{th} Anniversary.

 $^{^{1}\}mathrm{Partially}$ supported by CONACyT, Grant 400333-5-27968E.

skeleton) of a surface triangulation K, every face of \mathbb{K} is a triangle of G but the converse may not be true. We shall be interested in surface triangulations where every triangle of G is a face of K: such a triangulation is a Whitney triangulation [17]. Thus, if \mathbb{K} is Whitney it is determined by G, and we tend to identify G with \mathbb{K} , and sometimes even with $|\mathbb{K}|$. If \mathbb{K} is Whitney, (except for the tetrahedron K_4) the cliques of G are precisely the faces of the triangulation. Whitney triangulations have other names and have been studied before [2, 5, 8, 16, 17]. In particular, the description of the dynamical behaviour under the clique operator of the regular Whitney triangulations has been completed in [8]. As a corollary to our Theorem 2.5, we will have that the only Whitney triangulation of a compact surface which is not homotopic to its clique graph is the octahedron. We shall use the following two theorems:

Theorem 1.1 [8] G is the underlying graph of a Whitney triangulation of a closed surface (resp. compact surface) if and only if G is locally cyclic (resp. G is locally $\{C_n, P_m : n \geq 3, m \geq 2\}$). \square

Theorem 1.2 [8] For every Whitney triangulation G of a closed surface with minimum degree at least 7 we have $K(G) \cong K^3(G)$. \square

We refer to [1], [10] and [13] for undefined concepts.

2 Homotopy

If \mathcal{H} is a hypergraph, \mathcal{H}^* denotes its dual hypergraph, and \mathcal{H}^{\downarrow} is the smallest simplicial complex containing the hyperedges of \mathcal{H} as simplexes. The following reformulation is due to Prisner [9, 10]:

Theorem 2.1 (Dowker, [3]) For every hypergraph \mathcal{H} , \mathcal{H}^{\downarrow} and $\mathcal{H}^{*\downarrow}$ are homotopic. \Box

If G is a graph, $\mathcal{K}(G)$ is its clique hypergraph: $\mathcal{K}(G)$ has the same vertex set as G and its hyperedges are the cliques of G. It follows immediately from the definitions that $G^{\uparrow} = \mathcal{K}(G)^{\downarrow}$.

The star hypergraph S(G) of G has the same vertex set as K(G) and the hyperedges are the cliques $Q = \{q_1, q_2, \ldots, q_r\}$ of K(G) satisfying $\bigcap Q \neq \emptyset$. It follows that $K(G)^{*\downarrow} = S(G)^{\downarrow}$ and that $S(G)^{\downarrow} \subseteq K(G)^{\uparrow}$. The equality $S(G)^{\downarrow} = K(G)^{\uparrow}$ holds precisely when G is clique-Helly.

Then, as pointed out by Prisner [10, Proposition 2.2], it follows from Dowker's theorem that G^{\uparrow} and $K(G)^{\uparrow}$ are homotopic for every clique-Helly graph G. A reformulation of this result will be useful to us:

Theorem 2.2 (Prisner, [10]) For every graph G, we have $G^{\uparrow} = \mathcal{K}(G)^{\downarrow} \simeq \mathcal{K}(G)^{*\downarrow} = \mathcal{S}(G)^{\downarrow} \subseteq K(G)^{\uparrow}$. In particular, if G is clique-Helly, then $G^{\uparrow} \simeq K(G)^{\uparrow}$. \square

Prisner provided examples of graphs G (namely the n-dimensional octahedra, for $n \geq 3$) such that G^{\uparrow} and $K(G)^{\uparrow}$ are not homotopic. As we shall see shortly, this property of the octahedra is tightly connected to the fact that octahedra contain neckties without a center.

Definition 2.3 If X is a complete of K(G) satisfying $\bigcap X = \emptyset$, then $q_0 \in K(G)$ is called a center of X if:

$$Y \subseteq X$$
 and $\bigcap Y \neq \emptyset$ imply $\bigcap (Y \cup \{q_0\}) \neq \emptyset$.

Note that $X \cup \{q_0\}$ is always a complete of K(G). Also, when such an X is a clique of K(G), X must contain all its centers.

Figure 1: Two neckties of the octahedron, with center (above) and without center (below).

Many non-Helly graphs G satisfy $G^{\uparrow} \simeq K(G)^{\uparrow}$, Indeed we shall show that for many non-Helly graphs G, $S(G)^{\downarrow}$ is a strong deformation retract of $K(G)^{\uparrow}$.

Let's rename $\mathbb{S} = \mathcal{S}(G)^{\downarrow}$ and $\mathbb{K} = K(G)^{\uparrow}$. We know that $\mathbb{S} \subseteq \mathbb{K}$. Note that the 0-simplexes of \mathbb{S} and \mathbb{K} are the same. In order to easily define the required mappings, we take the barycentric subdivision \mathbb{K}' of \mathbb{K} relative to \mathbb{S} as used in [12, page 19].

Equivalently, we define the complex \mathbb{K}' whose vertices are those of \mathbb{K} (denoted by q_i) plus a (formal) barycenter b(s) for each $s \in \mathbb{K} - \mathbb{S}$, and whose simplexes are of the form $\{q_1, \ldots, q_n, b(s_1), \ldots, b(s_m)\}$ and satisfy:

- 1. $\{q_1,\ldots,q_n\}\in\mathbb{S}$.
- 2. $s_i \in \mathbb{K} \mathbb{S}$ for all j.
- 3. $q_i \in s_1$ for all i.
- 4. $s_j \subseteq s_{j+1}$ for all j.

and then we may prove that this is indeed a subdivision of \mathbb{K} using Theorem 3.3.4 in [13]. Of course, we still have $\mathbb{S} \subseteq \mathbb{K}'$.

The idea behind this is to grab the offending simplexes (those in $\mathbb{K} - \mathbb{S}$) by its barycenters and retract them into \mathbb{S} . Now we can prove our main result:

Theorem 2.4 Let G be a graph. Assume that any complete X of K(G) with $\bigcap X = \emptyset$ has a center which belongs to every necktic containing X. Then $S(G)^{\downarrow}$ is a strong deformation retract of $K(G)^{\uparrow}$. In particular, $G^{\uparrow} \simeq K(G)^{\uparrow}$.

Proof. For every simplex s in $\mathbb{K} - \mathbb{S}$ select, using the hypothesis, a fixed center q(s) of s belonging to every maximal simplex (i.e. necktie) that contains s. Also, for each $s \in \mathbb{K} - \mathbb{S}$, define

$$\widehat{s} = \bigcap \{Q \in K^2(G) : s \subseteq Q\}.$$

Note: $s \subseteq \hat{s} \in \mathbb{K} - \mathbb{S}$, and $s \subseteq s'$ implies $q(\hat{s}) \in \hat{s} \subseteq \hat{s'}$.

Now define the map $\varphi_1: \mathbb{K}' \to \mathbb{K}$ by $\varphi_1(q_i) = q_i$ and $\varphi_1(b(s_j)) = q(\widehat{s_j})$. Then for any simplex of \mathbb{K}' we have that $\varphi_1(\{q_1, \ldots, q_n, b(s_1), \ldots, b(s_m)\}) = \{q_1, \ldots, q_n, q(\widehat{s_1}), \ldots, q(\widehat{s_m})\}$. This is a simplex of \mathbb{K} because there is a clique Q of K(G) such that $q_i \in Q$ and $s_j \subseteq Q$ for all $i = 1, \ldots, n$ and $j = 1, \ldots, m$ (take a Q with $s_m \subseteq Q$). Therefore $q_i, q(\widehat{s_j}) \in Q$ for all i and j. It follows that $\varphi_1: \mathbb{K}' \to \mathbb{K}$ is a simplicial map, so $|\varphi_1|: |\mathbb{K}'| \to |\mathbb{K}|$ is continuous.

We claim now that $\operatorname{Im}(\varphi_1) = \mathbb{S}$: As $q_1 \cap \cdots \cap q_n \neq \emptyset$ and $\{q_1, \cdots, q_n\} \subseteq s_1 \subseteq \widehat{s_1}$, we obtain that $q_1 \cap \cdots \cap q_n \cap q(\widehat{s_1}) \neq \emptyset$. Using that $\widehat{s_1} \subseteq \widehat{s_2} \subseteq \cdots \subseteq \widehat{s_m}$ and $q(\widehat{s_j}) \in \widehat{s_j}$ for all j, it follows by induction that $\{q_1, \ldots, q_n, q(\widehat{s_1}), \ldots, q(\widehat{s_m})\}$ is a simplex of \mathbb{S} . Now we know that $\operatorname{Im}(|\varphi_1|) = |\mathbb{S}|$ and that the restriction of $|\varphi_1|$ to $|\mathbb{S}|$ is the identity in $|\mathbb{S}|$.

On the other hand, consider the canonical homeomorphism $\varphi_0: |\mathbb{K}| \to |\mathbb{K}'|$. Let $\varphi = |\varphi_1| \circ \varphi_0$. Note that for all $x \in |\mathbb{K}|$ there is a simplex $s \in \mathbb{K}$ such that $x, \varphi(x) \in |s|$ (any maximal simplex $s \in \mathbb{K}$ satisfying $x \in |s|$ will do). Then it follows that $\varphi \simeq 1_{|\mathbb{K}|}$ via the homotopy $H(x,t) = tx + (1-t)\varphi(x)$ (see, for example [6, Prop. 1.7.5]). Since $\varphi|_{|\mathbb{S}|} = 1_{|\mathbb{S}|}$, we have that H(x,t) = x for all $x \in |\mathbb{S}|$. Therefore $|\mathbb{S}|$ is a strong deformation retract of $|\mathbb{K}|$. \square

An interesting consequence is the following:

Theorem 2.5 If G is a graph free of induced octahedra and $\omega(G) \leq 3$, then $G^{\uparrow} \simeq K(G)^{\uparrow}$

Proof. Without loss of generality we assume G to be connected and non-trivial. Then we observe that every clique of G is a triangle or an edge.

Let X be a complete of K(G) satisfying $\bigcap X = \emptyset$, and let $Z = \{q_1, \dots, q_r\}$ be a minimal subset of X also satisfying $\bigcap Z = \emptyset$.

Since Z is minimal and necessarily $r \geq 3$, we may take $x_{23} \in \bigcap (Z - \{q_1\})$, $x_{13} \in \bigcap (Z - \{q_2\})$ and $x_{12} \in \bigcap (Z - \{q_3\})$. Hence, $q_0 = \{x_{12}, x_{13}, x_{23}\}$ is a clique of G. This very construction was used by J. L. Szwarcfiter in his celebrated characterization of clique-Helly graphs [15].

It follows that $q_1 = \{x_{12}, x_{13}, a\}, q_2 = \{x_{12}, x_{23}, b\}$ and $q_3 = \{x_{13}, x_{23}, c\}$ for some three (different) vertices $a, b, c \in G$. Since $q_1 \cap q_2 \cap q_3 = \emptyset$ it follows that $Z = \{q_1, q_2, q_3\}$.

Let $Q \in K^2(G)$ be a necktie containing Z, and let $q \in Q$. If $q \cap q_0 = \varnothing$, then $q = \{a, b, c\}$ and the set of vertices $\{x_{12}, x_{13}, x_{23}, a, b, c\}$ induces an octahedron in G, contradicting our hypotheses. If $|q \cap q_0| = 1$, say $q \cap q_0 = \{x_{12}\}$, then $q \cap q_3 = \{c\}$ and $\{x_{12}, x_{13}, x_{23}, c\}$ would contradict $\omega(G) \leq 3$. Therefore $|q \cap q_0| \geq 2$ for every $q \in Q$.

Since the set $\{q \in K(G) : |q \cap q_0| \geq 2\}$ is a complete of K(G) it follows that $Q = \{q \in K(G) : |q \cap q_0| \geq 2\}$. Now the condition on the clique number implies that q_0 is a center of Q. Then Q is the unique necktic containing Z, so it is also unique containing X. Therefore q_0 is a center of X which belongs to every necktic containing X, and we apply the previous theorem. \square

The following result is an immediate consequence:

Corollary 2.6 The only Whitney triangulation of a compact surface (with or without border) which is not homotopic to its clique graph is the octahedron. \Box

Now let's denote the *i*-th modulo 2 Betti number of a complex \mathbb{K} by $\hat{\beta}_i(\mathbb{K})$. Take any locally $\{C_t: t \geq 7\}$ graph H. By Theorem 1.1 H is a Whitney triangulation of a closed surface, so we have $\hat{\beta}_2(H^{\uparrow}) = 1$. Since $H^{\uparrow} \simeq K(H)^{\uparrow}$, we have $\hat{\beta}_2(K(H)^{\uparrow}) = 1$. Then Theorem 1.2 tells us that G := K(H) is K-periodic, thus solving Prisner's open problem 1 in [11].

As a concrete example, it is shown in [8] that $I \times K_3$ is a locally C_{10} graph (here I is the icosahedron and $\{(a,b),(a',b')\} \in E(A \times B)$ iff $\{a,a'\} \in E(A)$ and $\{b,b'\} \in E(B)$). In fact, Brown and Connelly [2] proved that for every t there is at least one finite locally C_t graph. Next, we shall construct an explicit infinite family of locally C_7 graphs.

3 Whitney triangulations

Let's start with an infinite graph $T: V(T) = \mathbb{Z} \oplus \mathbb{Z}$ and put $N = \{\pm(1,0), \pm(0,1), \pm(1,-1)\}$, then define $\{x,y\} \in E(T)$ if and only if $y-x \in N$.

Each vector $u \in \mathbb{Z} \oplus \mathbb{Z}$ gives rise to a translation $x \mapsto u + x$ which is an automorphism of T. Every finite locally C_6 graph triangulating the torus is a quotient T/Γ where Γ is the translation group generated by the translations given by two linearly independent vectors $u, v \in \mathbb{Z} \oplus \mathbb{Z}$. The group Γ must satisfy the following admissibility condition: for every $\gamma \in \Gamma$ and $v \in V(T)$, the distance in T from v to $\gamma(v)$ is at least 4 (otherwise, the resulting triangulation is not Whitney, see [7]).

Let u = (4,1), fix $r \geq 2$, and let $v_r = (2r,4r)$. Let Γ_r be the translation group defined by u and v_r , and let \mathcal{P}_r be the parallelogram defined by these two vectors. The locally C_6 graph $G_r = T/\Gamma_r$ defines a Whitney triangulation of the torus with 14r vertices: G_r is obtained by identifying the parallel edges of \mathcal{P}_r .

Now consider the 2r vertices $w_1, w_2, ..., w_{2r}$ of G_r which correspond to the vertices (2,1), (3,3), ..., (2r+1,4r-1) in \mathcal{P}_r , i.e. $w_i = (i+1,2i-1)$. The vertices of G_r are the disjoint union of the closed neighbourhoods $N[w_i]$ of these vertices, and removing these vertices from G_r we obtain a locally P_5 graph G'_r of order

Figure 2: The parallelogram \mathcal{P}_r , for r=2.

12r. Let us call \mathcal{S}_r the surface triangulated by G'_r , which is a torus with 2r open disks removed. All the vertices of G'_r lie in the border of \mathcal{S}_r . The connected components of the border of \mathcal{S}_r are the hexagons $H_1, H_2, ..., H_{2r}$ which were the open neighbourhoods of the removed vertices $w_1, w_2, ..., w_{2r}$ of G_r .

Consider the locally P_4 graph C_{12}^2 in figure 3. This graph gives us a Whitney triangulation of a cylinder, all the vertices lie in the border whose connected components B_1 and B_2 are induced hexagons of C_{12}^2 .

Figure 3: The graph C_{12}^2

Now, take the surface S_r (with its Whitney triangulation given by the graph G'_r) and r different copies of the cylinder (with the Whitney triangulation given by C_{12}^2). For the first copy, identify B_1 with H_1 and B_2 with H_{r+1} in an orientable manner, so a handle is glued to S_r . For the second copy, identify B_1 with H_2 and B_2 with H_{r+2} , so a second handle is glued to S_r . Continuing in this way, we obtain at the end a closed surface S'_r which is a sphere with r+1 handles. The graph \overline{G}_r obtained from G'_r and the r copies of C_{12}^2 by the above method has 12r vertices and is the 1-skeleton of a triangulation of our surface S'_r .

As we want \overline{G}_r to be locally C_7 we have to take care so that the triangles in \overline{G}_r are exactly the triangles already present (16r in G'_r and 12 in each copy of C_{12}^2). This fails when two vertices $x \in H_i$ and $y \in H_{i+r}$ with d(x,y) < 3 in G'_r are identified with adjacent vertices in the *i*-th copy of C_{12}^2 . Since $d(H_i, H_{r+i}) = r$, there is no problem for $r \geq 3$.

In case r=2, there is an essentially unique way to glue the 2 copies of C_{12}^2 in such a way that no new triangles are created, and this produces a triangulation of the orientable closed surface of genus 3 (the "triple torus"). We verified this by computer using GAP [4]. It can be shown that the double torus does not admit a locally C_7 triangulation.

Notice that for $r \geq 3$ the construction allows more freedom at the time of gluing (so in principle more than one example may have been constructed at each genus g > 3) and that even non-orientable surfaces are obtained gluing one handle in a non-orientable manner. So we have proved:

Theorem 3.1 Every orientable surface of genus at least 3, and every non-orientable surface with even Euler characteristic $\chi \leq -6$ admits a locally C_7 triangulation G. For any such G, K(G) is a positive answer to Prisner's open problem 1 in [11]. \square

References

- [1] Claude Berge. *Hypergraphs*. North-Holland Publishing Co., Amsterdam, 1989. Combinatorics of finite sets, Translated from the French.
- [2] Morton Brown and Robert Connelly. On graphs with a constant link. In New directions in the theory of graphs (Proc. Third

- Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971), pages 19–51. Academic Press, New York, 1973.
- [3] C. H. Dowker. Homology groups of relations. *Ann. of Math.* (2), 56:84–95, 1952.
- [4] The GAP Group, Aachen, St Andrews. GAP Groups, Algorithms, and Programming, Version 4.2, 2000. (http://www-gap-system.org).
- [5] Nora Hartsfield and Gerhard Ringel. Clean triangulations. Combinatorica, 11(2):145– 155, 1991.
- [6] P. J. Hilton and S. Wylie. Homology theory: An introduction to algebraic topology. Cambridge University Press, New York, 1960.
- [7] F. Larrión and V. Neumann-Lara. Locally C_6 graphs are clique divergent. Discrete Math., $215(1-3):159-170,\ 2000.$
- [8] F. Larrión, V. Neumann-Lara, and M. A. Pizaña. Whitney triangulations, local girth and iterated clique graphs. Discrete Math., 258(1-3):123-135, 2002.
- [9] Erich Prisner. Homology of the line graph and of related graph-valued functions. *Arch. Math.*, 56(4):400–404, 1991.
- [10] Erich Prisner. Convergence of iterated clique graphs. Discrete Math., 103(2):199–207, 1992.
- [11] Erich Prisner. *Graph dynamics*. Longman, Harlow, 1995.
- [12] C. P. Rourke and B. J. Sanderson. Introduction to piecewise-linear topology. Springer-Verlag, Berlin, 1982. Reprint.
- [13] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York, 1981. Corrected reprint.
- [14] Jayme L. Szwarcfiter. A survey on clique graphs. In Recent Advances in Algorithms and Combinatorics. C. Linhares and B. Reed, eds., Springer-Verlag. To appear.
- [15] Jayme L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combin., 45:29–32, 1997.
- [16] W. T. Tutte. A census of plane triangulations. Canad. J. Math., (14):21–28, 1962.
- [17] H. Whitney. A theorem on graphs. Ann. Math., 32(2):378–390, 1931.