On the Homotopy Type of the Clique Graph*

F. Larrién®! V. Neumann-Lara® M. A. Pizana®

*Instituto de Matematicas, U.N.A.M.

Circuito Exterior, C.U. México 04510 D.F. MEXICO.
{paco, neumann }@matem.unam.mx

bUniversidad Auténoma Metropolitana, Depto. de Ingenieria Eléctrica.

Av. Michoacan y Purisima s/n México 09340 D.F. MEXICO.
map@xanum.uam.mx, http://xamanek.uam.mx/map

Abstract

If G is a graph, its clique graph K (&) is the in-
tersection graph of all its (maximal) cliques. The
complex GT of a graph G is the simplicial com-
plex whose simplexes are the vertex sets of the
complete subgraphs of G.

Here we study a sufficient condition for G and
K(G)! to be homotopic. Applying this result to
Whitney triangulations of surfaces, we construct
an infinite family of examples which solve in the
affirmative Prisner’s open problem 1 in Graph Dy-
namics (Longman, Harlow, 1995): Are there fi-
nite connected graphs G that are periodic under
K and where the second modulo 2 Betti number
is greater than 07
Keywords: clique graphs, clique convergence,
Whitney triangulations, clean triangulations, sim-
plicial complexes, modulo 2 Betti numbers.

1 Introduction and terminology

All our graphs are simple. If G is a graph, a
complete of G is a complete subgraph of G and
a clique is a maximal complete of G. The clique
number w(G) is the maximum order of a clique
of G. We shall often identify induced subgraphs
with their vertex sets. In particular, we shall often
write € G instead of z € V(G).

We say that G is locally H if the subgraph
N¢(z) induced in G by the (open) neighbourhood
of any vertex x € G is isomorphic to H. We say

*Dedicated to Prof. J. L. Szwarcfiter in his 60*"* An-
niversary.

1Partially supported by CONACyT, Grant 400333-5-
27968E.

that G is locally H = {Hy, Ha,...} if for every
x € G, Ng(z) = H; for some H; € H. Cy, and P,
are, respectively, the cyclic and path graphs on n
vertices. We say that G is locally cyclic if it is
locally {C,, : n > 3}.

The clique graph K(G) of G has all cliques
of G as vertices, two of them being adjacent iff
they (are different and) share some vertex of G.
We call K the clique operator. Iterated clique
graphs are inductively defined by K(G) = G
and K""(G) = K(K™(Q)). G is K-periodic if
G = K"(G) for some n > 1. Extensive bibliogra-
phy on clique graphs can be found in [14].

A graph G is clique-Helly if whenever X =
{1, qn} € V(K(G)) is a family of pairwise
intersecting cliques, then (X # @. We say that
Q= {q,-..,q.} € V(K%(G)) is a star of G if
NQ # @, otherwise it is a necktie of G. Obvi-
ously, a graph is clique-Helly iff it has no necktie.

If G is a graph, G is the simplicial complex
whose simplexes are the completes of G. We
say that two simplicial complexes are homotopic
(K ~ L) when their geometric realizations are ho-
motopic (|K| ~ |L|). The behaviour of topologi-
cal invariants of GT under several graph operators
(including the clique operator) has been studied
in [9, 10, 11]. In particular, Prisner proved in [10]
that if G is clique-Helly, GT ~ K(G)!. Our main
result (Theorem 2.4) states that this is also true
for many non-clique-Helly graphs. As an applica-
tion of this, we will show (Theorem 2.5) that if G
is free of tetrahedra and induced octahedra, then
G~ K(G)'.

An interesting particular case is when the re-
alization |K| is a compact surface (with or with-
out border), i.e. K is a triangulation of a com-
pact surface. If G is the underlying graph (or 1-
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skeleton) of a surface triangulation K, every face
of K is a triangle of G but the converse may not
be true. We shall be interested in surface trian-
gulations where every triangle of G is a face of
K: such a triangulation is a Whitney triangulation
[17]. Thus, if K is Whitney it is determined by G,
and we tend to identify G with K, and sometimes
even with |K|. If K is Whitney, (except for the
tetrahedron K) the cliques of G are precisely the
faces of the triangulation. Whitney triangulations
have other names and have been studied before
[2, 5, 8, 16, 17]. In particular, the description of
the dynamical behaviour under the clique opera-
tor of the regular Whitney triangulations has been
completed in [8]. As a corollary to our Theorem
2.5, we will have that the only Whitney triangula-
tion of a compact surface which is not homotopic
to its clique graph is the octahedron. We shall use
the following two theorems:

Theorem 1.1 [8] G is the underlying graph of a
Whitney triangulation of a closed surface (resp.
compact surface) if and only if G is locally cyclic
(resp. G is locally {Cyp, Pp, :n > 3,m > 2}). O

Theorem 1.2 [8] For every Whitney triangula-
tion G of a closed surface with minimum degree
at least 7 we have K (G) = K3(G). O

We refer to [1], [10] and [13] for undefined con-
cepts.

2 Homotopy

If H is a hypergraph, H* denotes its dual hyper-
graph, and H! is the smallest simplicial complex
containing the hyperedges of H as simplexes. The
following reformulation is due to Prisner [9, 10]:

Theorem 2.1 (Dowker, [3]) For every hyper-
graph H, H' and H*' are homotopic. O

If G is a graph, K(Q) is its clique hypergraph:
K(G) has the same vertex set as G and its hyper-
edges are the cliques of G. It follows immediately
from the definitions that GT = K(G)*.

The star hypergraph S(G) of G has the same
vertex set as K(G) and the hyperedges are the
cliques Q@ = {q1,q2,...,q-} of K(G) satisfying
NQ # 2. It follows that K£(G)*! = S(G)! and
that S(G)! € K(G)!. The equality S(G)' =
K(G)" holds precisely when G is clique-Helly.
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Then, as pointed out by Prisner [10, Proposition
2.2], it follows from Dowker’s theorem that GT and
K(G)! are homotopic for every clique-Helly graph
G. A reformulation of this result will be useful to
us:

Theorem 2.2 (Prisner, [10]) For every graph G,
we have G1 = K(G)! ~ K(G)* = S(G)! C
K(G)'. In particular, if G is clique-Helly, then
G'~KG)'. O

Prisner provided examples of graphs G' (namely
the n-dimensional octahedra, for n > 3) such that
G' and K(G)! are not homotopic. As we shall see
shortly, this property of the octahedra is tightly
connected to the fact that octahedra contain neck-
ties without a center.

Definition 2.3 If X is a complete of K(G) satis-
fying X = @, then qo € K(Q) is called a center
of X if:

Y C X and [|Y # @ imply [ (Y U{q}) # 2.
Note that X U {go} is always a complete of

K(G). Also, when such an X is a clique of K(G),
X must contain all its centers.

Figure 1: Two neckties of the octahedron, with
center (above) and without center (below).
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Many non-Helly graphs G satisfy G1 ~ K(G)T,
Indeed we shall show that for many non-Helly
graphs G, S(G)! is a strong deformation retract
of K(G)'.

Let’s rename S = S(G)! and K = K(G)!. We
know that S C K. Note that the 0-simplexes of
S and K are the same. In order to easily define
the required mappings, we take the barycentric
subdivision K’ of K relative to S as used in [12,
page 19].

Equivalently, we define the complex K’ whose
vertices are those of K (denoted by g¢;) plus
a (formal) barycenter b(s) for each s €
K — S, and whose simplexes are of the form
{q1:-- -1 qn,b(s1),...,b(sm)} and satisfy:

. {ql,...,qn}eS.
2. s; € K-S for all j.

—_

3. q; € s1 for all i.
4. s; C 554 for all 5.

and then we may prove that this is indeed a subdi-
vision of K using Theorem 3.3.4 in [13]. Of course,
we still have S C K.

The idea behind this is to grab the offending
simplexes (those in K — S) by its barycenters and
retract them into S. Now we can prove our main
result:

Theorem 2.4 Let G be a graph. Assume that
any complete X of K(G) with X = & has a
center which belongs to every necktie containing
X. Then S(G)' is a strong deformation retract of
K(G)!. In particular, G ~ K(G)T.

Proof. For every simplex s in K—S select, using
the hypothesis, a fixed center ¢(s) of s belonging to
every maximal simplex (i.e. necktie) that contains
s. Also, for each s € K — S, define

s=({QeK*(G):sCQ}.

Note: s Cse€ K—S§, and s C s implies ¢(3) €
5CH.

Now define the map ¢ : K — K by ¢1(¢;) = ¢;
and ¢1(b(s;)) = ¢(5;). Then for any simplex of K’
we have that ©1({q1,...,qn,b(s1),...,b(sm)}) =
{q1,--,qn,q(51),-..,q(5m)}. This is a simplex
of K because there is a clique @ of K(G) such
that ¢ € Q and s; C @ for all i = 1,...,n
and j = 1,...,m (take a @ with s,, C Q).
Therefore ¢;,q(5;) € Q for all ¢ and j. It fol-
lows that ¢ : K — K is a simplicial map, so
lo1] - |K'| — |K]| is continuous.

We claim now that Im(¢1) =S: As g N---N
Gn # @ and {q1, - ,q.} € s1 C §1, we obtain
that g1 N ---Ng, Ng(s1) # . Using that 55 C
§5 C --- C &, and ¢(5;) € §; for all j, it follows
by induction that {q1,...,qn,q(51),...,q(5m)} is
a simplex of S. Now we know that Im(|¢1]) = [S]
and that the restriction of |p1| to |S| is the identity
in |S|.

On the other hand, consider the canonical
homeomorphism ¢y : |[K| — |K'|. Let ¢ =
[o1| © wo. Note that for all € |K| there is a
simplex s € K such that z,p(z) € |s| (any max-
imal simplex s € K satisfying € |s| will do).
Then it follows that ¢ ~ 1 via the homotopy
H(x,t) = te + (1 — t)p(x) (see, for example [6,
Prop. 1.7.5]). Since <p||g| = ljg|, we have that
H(x,t) = x for all x € |S|. Therefore [S| is a
strong deformation retract of |K|. O

An interesting consequence is the following:

Theorem 2.5 If G is a graph free of induced oc-
tahedra and w(G) < 3, then G ~ K(G)!

Proof. Without loss of generality we assume G
to be connected and non-trivial. Then we observe
that every clique of G is a triangle or an edge.

Let X be a complete of K(G) satisfying (| X =
@, and let Z = {q1,...,q-} be a minimal subset
of X also satisfying (| Z = @.

Since Z is minimal and necessarily r > 3, we
may take To3 € n(Z — {ql}), r13 € m(Z —
{¢2}) and z12 € N(Z — {g3}). Hence, ¢o =
{12, 213, 23} is a clique of G. This very construc-
tion was used by J. L. Szwarcfiter in his celebrated
characterization of clique-Helly graphs [15].

It follows that ¢ = {z12,213,a}, ¢ =
{z12,223,b} and g3 = {x13,x23, c} for some three
(different) vertices a, b, c € G. Since ¢ Nga Ngs =
@ it follows that Z = {q1,q2,q3}-

Let Q € K*(G) be a necktie containing Z, and
let g € Q. If ¢gNgy = @, then ¢ = {a,b,c} and
the set of vertices {12,213, Z23, a, b, ¢} induces an
octahedron in G, contradicting our hypotheses. If
lgNqo|l =1, say ¢ N go = {w12}, then ¢ N g3 = {c}
and {x12, 213, 23, ¢} would contradict w(G) < 3.
Therefore |q N qo| > 2 for every ¢ € Q.

Since the set {¢ € K(G) : |[¢Nqo|] > 2} is a
complete of K (G) it follows that Q@ = {¢ € K(G) :
g N qo] > 2}. Now the condition on the clique
number implies that qg is a center of ). Then @
is the unique necktie containing Z, so it is also
unique containing X. Therefore ¢y is a center of
X which belongs to every necktie containing X,
and we apply the previous theorem. O
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The following result is an immediate conse-
quence:

Corollary 2.6 The only Whitney triangulation
of a compact surface (with or without border)
which is not homotopic to its clique graph is the
octahedron. O

Now let’s denote the i-th modulo 2 Betti num-
ber of a complex K by 3 (K). Take any locally
{Cy : t > 7} graph H. By Theorem 1.1 H is a
Whitney triangulation of a closed surface, so we
have (o(H') = 1. Since H' ~ K(H)', we have
Bo(K(H)') = 1. Then Theorem 1.2 tells us that
G = K(H) is K-periodic, thus solving Prisner’s
open problem 1 in [11].

As a concrete example, it is shown in [8] that I x
K3 isalocally Cyg graph (here [ is the icosahedron
and {(a,b),(a’,0')} € E(A x B) iff {a,d’'} € E(A)
and {b,b'} € E(B) ). In fact, Brown and Connelly
[2] proved that for every ¢ there is at least one
finite locally C} graph. Next, we shall construct
an explicit infinite family of locally C7 graphs.

3 Whitney triangulations

Let’s start with an infinite graph T: V(T) =
Z®Z and put N = {£(1,0),£(0,1),+(1,—1)},
then define {z,y} € E(T) if and only if y—z € N.

Each vector u € Z®Z gives rise to a translation
2 — u+x which is an automorphism of 7. Every
finite locally Cg graph triangulating the torus is
a quotient T'/T" where T' is the translation group
generated by the translations given by two linearly
independent vectors u,v € Z & Z. The group T’
must satisfy the following admissibility condition:
for every v € T and v € V(T'), the distance in T
from v to (v) is at least 4 (otherwise, the resulting
triangulation is not Whitney, see [7]).

Let u = (4,1), fix r > 2, and let v, = (2r, 4r).
Let ', be the translation group defined by w and
v, and let P, be the parallelogram defined by
these two vectors. The locally Cs graph G, =
T/T,. defines a Whitney triangulation of the torus
with 14r vertices: G, is obtained by identifying
the parallel edges of P,..

Now consider the 2r wvertices wi,ws, ..., ws,
of G, which correspond to the vertices
(2,1),(3,3),....,(2r + 1,4r — 1) in P, ie
w; = (i +1,2¢ — 1). The vertices of G, are the
disjoint union of the closed neighbourhoods N [w;]
of these vertices, and removing these vertices
from G, we obtain a locally P5 graph G’. of order
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7, 4r

(4,

Figure 2: The parallelogram P,., for r = 2.

12r. Let us call S, the surface triangulated by
G!, which is a torus with 2r open disks removed.
All the vertices of G lie in the border of S,.
The connected components of the border of S,
are the hexagons Hy, Hs, ..., Ho,. which were the
open neighbourhoods of the removed vertices
W1, W2, ..., Wy of GT.

Consider the locally P, graph C%, in figure 3.
This graph gives us a Whitney triangulation of a
cylinder, all the vertices lie in the border whose
connected components By and By are induced
hexagons of C%,.

¥

Figure 3: The graph C%,
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Now, take the surface S, (with its Whitney tri-
angulation given by the graph G.) and r different
copies of the cylinder (with the Whitney triangu-
lation given by C%,). For the first copy, identify
By with H; and B with H,;; in an orientable
manner, so a handle is glued to S,. For the sec-
ond copy, identify By with Hy and By with H, 4o,
so a second handle is glued to S,.. Continuing in
this way, we obtain at the end a closed surface S/,
which is a sphere with » + 1 handles. The graph
G, obtained from G’ and the r copies of CZ, by
the above method has 127 vertices and is the 1-
skeleton of a triangulation of our surface S;.

As we want G, to be locally C; we have to take
care so that the triangles in G, are exactly the tri-
angles already present (167 in G and 12 in each
copy of C%,). This fails when two vertices x € H,;
and y € H,y, with d(z,y) < 3 in G.. are identi-
fied with adjacent vertices in the i-th copy of C%,.
Since d(H;, H,4+;) = r, there is no problem for
r>3.

In case r = 2, there is an essentially unique way
to glue the 2 copies of C%, in such a way that
no new triangles are created, and this produces
a triangulation of the orientable closed surface of
genus 3 (the “triple torus”). We verified this by
computer using GAP [4]. Tt can be shown that
the double torus does not admit a locally C7 tri-
angulation.

Notice that for r > 3 the construction allows
more freedom at the time of gluing (so in princi-
ple more than one example may have been con-
structed at each genus g > 3) and that even non-
orientable surfaces are obtained gluing one handle
in a non-orientable manner. So we have proved:

Theorem 3.1 FEwvery orientable surface of genus
at least 3, and every non-orientable surface with
even Euler characteristic x < —6 admits a locally
Cy triangulation G. For any such G, K(G) is
a positive answer to Prisner’s open problem 1 in
[11]. O
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