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Abstract

This paper considers a problem of coupled task
scheduling on one processor, where all processing
times are equal to 1, the gap has exact length h,
precedence constraints are strict and the criterion
is to minimise the schedule length. This problem is
introduced e.g. in systems controlling radar opera-

tions. We show that the general problem is NP-hard.
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hardness.

1 Introduction

A scheduling problem is, in general, a problem
answering a question of how to allocate some re-
sources over time in order to perform a given set of
tasks [1]. In practical applications resources are pro-
cessors, money, manpower, tools, etc. Tasks can be
described by a wide range of parameters, like ready
times, due dates, relative urgency factors, prece-
dence constraints and many more. Different criteria
can be applied to measure the quality of a schedule.
The general formulation of scheduling problems and
the commonly used notation can be found in books
such as [5], [16], [2], [15], [3] and [4]. A survey of the
most important results is given in [11].

One branch of scheduling theory is concerned with
scheduling of coupled tasks. A task is called coupled
if it contains two operations where the second has
to be processed some time after a completion of the
first one. This problem, described in [17] and [18],
often appears in radar-like devices, where the first
operation is the transmission of an electromagnetic
pulse and the second is the reception of its echo.
Several algorithms designed to solve the problem of
radar pulse scheduling can be found in [9] and [12].
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The complexity of various scheduling problems
with coupled tasks has been studied in [13]. Al-
though most of the cases are NP-hard [13], some
polynomial algorithms were found in [14].

A coupled task scheduling problem with variable
length gap is surveyed in [10] and [7]. NP-hardness
of this case is proved in [19], where some interesting
connections between coupled tasks and flow shops
are also given.

In this note, we complement the above results by
presenting the NP-completeness proof for the prob-
lem of scheduling coupled tasks on a single pro-
cessor, with all processing times equal to 1, exact,
integer gap length, general strict precedence con-
straints and the optimisation criteria of minimising
the schedule length.

An organisation of the paper is as follows. The
problem is formulated in Section 2. The NP-
hardness proof is presented in Section 3. We con-
clude in Section 4.

2 Problem formulation

We consider the problem of scheduling n coupled
tasks on a single machine, where each coupled task
T; consists of two operations T;; and T;o and a gap
between them. During the gap, another task can
be processed. Let p;; and p;2 denote the processing
times of operations T;; and Tjo, respectively.

The gap is exact when operation T;5 has to start
exactly h; units of time after the end of operation
T;1, where h; denotes a length of the gap. In this
paper, the only cases considered are those where all
h; are equal, i.e. h; =h,i=1,2,...,n.

Precedence constraints of coupled tasks can be
strict or weak. T; < T; means that T, <
T;1 if precedence constraints are strict, and
T < le N Tio < Tjg if they are weak.

The special case of a coupled task problem in-
volves identical tasks. Commonly, such tasks are
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denoted by (p1, h,p2), where p1 = pi1, p2 = pi2, h =
h; forall 1 <i<n.

Adapting the commonly accepted notation for
scheduling problems [8], the scheduling prob-
lem considered in this paper can be denoted by
1|(1, h, 1) — coupled, strict prec, exact gap|Cmaz,
which means:

e There is one processor in a system.

e Tasks are coupled and identical, with process-
ing times p;1 = pi2 = 1, Vi<i<n

e Gaps are exact and have uniform length h.
e Precedence constrains are strict.

e The optimisation criterion is to minimise the
schedule length Ci,qp = max{t;o}, where t;o is
a completion time of Tj (its second operation).

3 NP-hardness of the general case

In case where precedence constraints are general
the problem of scheduling coupled tasks on a single
processor is NP-hard even for unit processing times.
We will prove this by a series of lemmae showing
NP-hardness of some intermediate problems.

Lemma 1 Problem of Balanced Colouring of
Graphs with Partially Ordered Vertices is NP-hard.

Proof: The problem of Balanced Colouring of
Graphs with Partially Ordered Vertices (BCGPOV
for short) can be stated as follows:
Instance: A directed, acyclic graph G = (V, E)
where V| = ¢. (It is clear that the arcs define a
partial order in set V.)
Question: Can the vertices of G be coloured with [
colours such that no pair of adjacent vertices shares
the same colour and exactly ¢/l vertices are coloured
with the same colour. (We will call such a colouring
the balanced colouring.) Without loss of generality
we can assume that ¢/l € ZT.

Firstly, we prove that BOCGPOYV belongs to class
NP. To verify a solution of BCGPOYV is enough to
verify that

No pair of adjacent vertices is monochromatic. Be-
cause each vertex has no more than (¢ — 1) adjacent
vertices the complexity of this step is O(¢?).

Exactly ¢/l vertices are coloured with each colour.
Complexity of this step is O(q).

24

A solution of BCGPOYV can be verified in polyno-
mial time, which means that the problem BCGPOV
belongs to class NP.

In order to prove NP-completeness of the prob-
lem BCGPOV we will use the 3-Partition problem,
which is NP-complete in the strong sense according
to [6]. The 3-Partition problem is defined as follows:
Instance: A collection A of 3r items, bound B € Z™,
and size s(a;) € Z", V4, e such that B/4 < s(a;) <
B/2 and such that ZajeA s(aj) =rB.

Question: Can A be partitioned into r disjoint sets
Aq,..., A, such that for 1 < < r, ZajeAi s(a;) =
B (note that each A; must contain exactly three
elements from A)?

The transformation: For any instance of the 3-
Partition problem let us define the corresponding
instance of the BCGPOYV problem as follows:

e g=3r+rB
o l=r

e For each item a; € A, 1 < j < 3r let us con-
struct graph G in the following way:

1. Construct complete graph K7 on r ver-
tices. Denote one vertex of K by v;.

2. Construct set Dg (ay) of s(a;) independent
vertices.

3. Create all possible edges (v,,v,) such that

v, € KI, v, #v; and v, € Di(aj).
It is clear that edges of graph G; can be directed
to define a partial order in the set of vertices of
Gj.

An example of such a graph is shown in Fig 1.
e G= Ufll G

It is clear that G; can be coloured with r colours
only in the following way: each vertex from K7 has
a different colour and all vertices from D’ (ay) AT€
coloured with the same colour as vertex v;.

No two vertices of any subgraph K/, 1 < j < 3r
can share the same colour, so after colouring of all
K1, exactly 3r vertices are coloured with the same
colour. All vertices of D’ () A€ connected with
all but v; vertices of K7, so all vertices of DZ (aj)
have to be coloured with the same colour as vertex
v;. So, the set of vertices of any Djs(aj) has to be
monochromatic.

Let Ay,...,A; be a solution for the
given instance of 3-Partition problem and
let AZ = {ai(l), a;(2), ai(g)}. Let us denote
Si = Gy U Gi2) U Gyzy. G can be coloured such
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Figure 1: An example of graph G;, where g =4,
s(aj) = 3.

that sets D; and D; share the same colour if and
only if both D; and D; arc in the same ;. It means
that for all i exactly s(a;1)) +s(ai2)) +5(ai3)) = B
vertices of sets D, so exactly 3r + B vertices of
graph G, are coloured with each colour.

On the other hand, let Sy,S5,...,5, be a dis-
joint sets of vertices of graph G, such that V(G) =
2;1 S;, each vertex in S; is coloured with i-th
colour and V; |S;| = 3r + B. Let SP be a sub-
set of S; that contains only vertices belonging to
Djs(aj) subgraphs. S; has to contain 3r vertices
belonging to K}, so |SP| = B for each i. For
each feasible colouring each Dg (a;) is monochro-

aj

matic, so Vi<j<sr Ji<i<r Di(aj) € S;. Because
Vi<j<sr B/4 < s(a;) < B/2 each S; has to contain
(3
5((‘]Uf)i(j))7
denote A; = {ai(j) 1] = 1,2,3}, 1=1,2,...,r and
this is the solution of the 3-Partition problem.

The complexity of this transformation is O(r? +
r B). Let us note that this is a pseudopolynomial
transformation. On the other hand, 3-Partition is
NP-complete, thus, we have the desired result.

exactly 3 subgraphs D j=1,2,3. So, we can

Now, we will show that problem BCGPOV poly-
nomially transforms to our scheduling problem.

Lemma 2 The problem of Balanced Colouring of
Graphs with Partially Ordered Vertices polynomi-
ally transforms to 1|(1,h, 1) — coupled, strict prec,
exact gap|Crmaz-

Proof: Let G = (V, E) be an instance of problem
BCGPOV. Let it contain all transitive arcs. Let
us define a corresponding instance of 1[(1,h,1) —
coupled, strict prec, exact gap|Cy,q. problem in the
following way:

en=gq
e h=gq/l—1

e For each vertex v; of graph G define the coupled
task T;.

e For each arc (v;,v;) of graph G define an
arc T; < T} of precedence constraints in the
scheduling problem.

o y=Char = 2n.

Let us assume that a balanced colouring of G
exists. Let S1,S59,...,5; be subsets of V(G) such
that Ué:1 S; = V(G), and all vertices that be-
long to S; are coloured with the i-th colour and
Vi<i<i |Si] = ¢/l. Sets S; are partially ordered be-
cause vertices of G are partially ordered and G con-
tains all transitive arcs. Schedule sets S; in accor-
dance to the partial order using the following algo-
rithm:

Algorithm 1

begin
s:=0
repeat
Get a task 1 € 5;.

Let s be the starting time of the task 7j.

Si = Sl\T]
s:=s+1
until S; # ()
end;

The schedule generated in such way is shown in
Fig. 2.

Ta1| To1] Te1] Ta1 Tei| Taz Too Teo| Tao Ten

Figure 2: Schedule of set S; = {T,,, Ty, Te, Ta, Te}
where h = 4.

This procedure guarantees that no precedence
constraint will be violated. The schedule contains
no idle intervals, so its length is y.

On the other hand, let us assume that a sched-
ule of length y for the given instance of the cou-
pled tasks problem exists. The schedule does not
contain idle intervals, so it has to be a sequence of
segments as shown in Fig. 2. Each segment contains
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h+1 independent tasks, which means that the corre-
sponding vertices in G are also independent. So, the
vertices from one segment can be coloured with the
same colour, which means G can be coloured with
n/(h + 1) colours such that exactly h + 1 vertices
shares the same colour.

O
Now we can conclude.

Theorem 1 Problem 1/(1,h, 1) -

coupled,strict prec, exact gap|Cpaz is NP-hard.

Proof: Follows immediately Lemmae 1 and 2.

d

4 Conclusions

In the paper, scheduling of coupled tasks has been
considered. General precedence constraints resulted
in a strong NP-hardness of the problem, even for
unit processing times and equal gap lengths for all
the tasks. The other cases, especially where prece-
dence constraints are chain-like or tree-shaped are
still open.

References

[1] K. Baker, Introduction to Sequencing and
Scheduling, J. Wiley, New York, 1974

[2] J. Blazewicz, W. Cellary, R. Slowinski and
J. Weglarz, Scheduling under Resource Con-
straints: Deterministic Models, J. C. Baltzer,
Basel, 1986.

[3] J. Blazewicz, K. H. Ecker, E. Pesch, G.
Schmidt and J. Weglarz, Scheduling Com-
puter and Manufacturing Processes (2nd edi-
tion), Springer, Berlin, New York, 2001.

[4] J. Blazewicz, K. H. Ecker, B. Plateu, D. Trys-
tam, Handbook of Parallel and Distributed Pro-
cessing, Springer, Berlin, New York, 2000.

[5] R. W. Conway, W. L. Maxwell and L. W.
Miller, Theory of Scheduling, Addison-Wesley,
Reading, Mass. 1967.

[6] M. R. Garey, D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman, San Francisco,
1979.

26

[7] J. N. D. Gupta Single facility scheduling with
two operations per job and time-lags, preprint,
1994.

[8] L. R. Graham, E. L. Lawler, J. K. Lenstra,
A. H. G. Rinnooy Kan, Optimization and ap-
proximation in deterministic sequencing and

scheduling theory: a survey, Ann. Discrete
Math. 5, 1979, 287-326.

[9] A. Farina, P. Neri, Multitarget interleaved
tracking for phased radar array, IEE Proceed-
ings 27, 1980, 312-318.

[10] W. Kern, W. M. Nawijn, Scheduling multi-
operations jobs with time lags on a single ma-
chine, preprint, 1991.

[11] E. L. Lawler, J. K. Lenstra, A. H. G. Rin-
noy Kan, D. B. Shmoys, Sequencing and
scheduling: algorithms and complexity, in
S. C. Graves et al, Handbooks in Operations
Research and Management Science 4, North-
Holland, Amsterdam, 1993

[12] D. J. Milojevic, B. M. Popovic, Improved algo-
rithm for the interleaving of radar pulses, IFE
Proceedings F'139, 1992, 98-104..

[13] A. J. Orman, C. N. Potts, On the complexity
of coupled tasks scheduling, Discrete Applied
Mathematics 72, 1997, 141-154.

[14] A. J. Orman, C. N. Potts, A. K. Shahani,
A. R. Moore, Scheduling for the control of a
multifunctional radar system, Furopean Jour-
nal of Operational Research 90, 1996, 13-25.

[15] M. Pinedo, Scheduling: Theory, Algorithms
and Systems, Prentice Hall, Englewood Cliffs,
N. J., 1995.

[16] A. H. G. Rinnooy Kan, Machine Schedul-
ing Problems: Classification, Complexity and
Computations, Martinus Nijhoff, The Hague,
1976.

[17] R. D. Shapiro, Scheduling coupled tasks,
Naval. Res. Logist. Quart. 27, 1980, 477-481.

[18] A. J. Orman, A. K. Shahani and A. R. Moore,
Modelling for the control of a complex radar
system, Computers Ops Res. 25, 1998, 239-
249.

[19] W. Yu, The Two-machine Flow Shop Problem
with Delays and the One-machine Total Tardi-
ness Problem, Ph. D. Thesis, Technische Uni-
versiteit Eindhoven, 1996.



