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eal-time testing (or test of real-time syste e spe-
Abstract Real-time test test of real-t temsth

Test synthesis (or test generation) can be described as ~ Cification of thelUT containsorder as well asti-
follows: from a formal specification of an implementa- mingconstraints of the interactions between &
tion under testlUT), and from a test purpose describing and its environment. This is the case for example
behaviors to be tested, the aim is to synthesize test cases Of many safety-critical applications, such as patient
to be executed in order to check whether tbd con- monitoring systems a}nd air traffic control systems.
forms to its formal specification, while trying to control Several real-time testing methods have been develo-

thelUT so that it satisfies the test purpose. In this paper, ~ Pedinthelastyears[2,3,4,5,6,7,8,9, 10, 11, 12].

we study the synth(_esis of test cases for symb_o_lic r_eal'tim%ymbolic testing (or test of symbolic systejnghe spe-
systems. Bgymbolic we mean that the specification of cification of thelUT contains variables and parame-
thelUT contains variables and parameters. Andrbgl- ters. This is the case for example of most indus-
t!m?' We mean that the specification 9f ther contalns. trial softwares. A few symbolic testing methods have
timing constraints. Our method combines and generalizes oo developed [13, 14, 15]. These methods aim at
two testing methods pre_s_ented in previous work, namel_y: avoiding the synthesis of test cases where all varia-
1) amethod for synthesizing test cases for (non-symbolic) - pjes are instantiated. Note that symbolic techniques
real-time systems, and 2) a method for synthesizing test e aiso been developed in other areas than testing,

cases for (non-real-time) symbolic systems. e.g., model-checking [16] and diagnosis [17].
Keywords. Test cases synthesis, real-time test, sym-

bolic test,timed input output symbolic automata,test ar-This paper is motivated by the fact that each of the above
chitecture. two types of testing is unsatisfactory when théT is
both real-time and symbolic. And our objective is indeed
to propose a test synthesis method which combines the
1. INTRODUCTION two types of testing. That is, the method to be developed

Testing is an essential step in the design of software“aN be gsed to. synthesi;e te_st cases for r(_eal-time systems
systems, andonformance testingd] is one of the most ri- W|t_hout mstannatmg their variables (_|.e., without enexm
gorous testing techniques. The objective of Conformancé,atlng all the pos§|ble \(alues of varlables)._ We first de-
testing is to determine whether theT respectsa for- fine the model ot|med input output symbolic automata
mal specification of the desired behavior of thd . The _(Tiosa)('j that a(;df t;]me to t.r]l.EOS.TS rr;ogg_:_ 0(/\[/13] and
notion ofconformance relatioiis used in order to define 'S US€d 1 moh el the spr)]eg.mauon of theT. We use a
rigorously what we mean by “respects”. In the sequel,tWO'Step synthesis method:

the terr_nt_e_stlngme_ansconformgqce testing Th_e main Step 1: we express the test problem into a non-real-time

test activities consist ofsynthesizingor generating) test form, by transforming &T;... into an automaton

cases from the specification, argecutingthem on the called Set-ExgOSA (SF; lo)sa SetHzp denotes the
108a/*

IUT. We study both activities by proposing: a synthesis transformation, andetExzp(A) is the SE;os. obtai-
method, as well as an architecture for the executionofthe 4 by applyingSetEzp to aTige A.

synthesized test cases. Among existing work on testing,
we are essentially interested by the following two com- Step 2: we adapt the non-real-time symbolic test method
plementary works: of [13].
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An advantage of our method is its simplicity, due to A Variable Assignment (VA) is a (possibly empty) set
the fact that the main treatment of the real-time aspect of assignments := FE, wherev € V andE is an
is concentrated into the first step. A short and incom- expression depending dd. Let Ap be the set of
plete version of this paper has been published in [18]. In VAs.

Sect. 7 we will indicate the contributions of the present
paper w.r.t. [18].

The rest of the paper is structured as follows. Sect. 2D'
describes thf';,s, model used to describe the specifica-
tion of the lUT . In Sect. 3, we define formally the test 2-3: SYNTAX OF Tiosa
problem to be solved. Sect. 4 introduces fig,.. mo- A Tiosa is defined by(L, 1o, H, D, Z, %, T), where:L
del and the transformationSétEzp : Tiosa — SEiosa’- is gfmlte set of locationgg is the. |n|t|§1I _Iocann,H is a
In Sect. 5, we propose a test architecture. Sect. 6 presenfilité set of clockspP = VUCUP is a finite set of datar
a method based ofietEzp that solves the test problem. 1S @ boolean expression dependingfl C called initial
In Sect. 7, we conclude the paper. And finally, follows an condition,: is a finite set of actions, arifl is a transition

appendix containing proofs of all lemmas and propositi- rela_ltion. There are three kinds of actions: the reception of
ons. an input, the sending of an output, and the occurrence of
an internal action. In the sequel, these three kinds of acti-
ons will be abbreviated by “input”, “output” and “internal
action”, respectively. To each input or outpute ¥ is
2. TIMED IOSA (Tiosa) associated a (possibly empty) tugja , - - -, px) of para-
In this section, we present timed input output symbo-meters denoted,. Signature of: is denotedSig(a) and
lic automata T;.s.) Used to model th8JT and its speci-  defined as follows:
fication. T, is @ combination of timed automata of [11] o o
and input output symbolic transition systeni®$TS) Sig(a) = { éjr;y&?(ﬁj&e Type(pr)) 'fifZ - mfeurtn(;: ggfi%ﬂt
of [13].

Let also Type(z) denote the domain of definition af €

We will use the following notation for actions: an in-
put: containing a tuplé; is written ?i(6;), an outpub

2.1. CLOCKS AND RELATED CONCEPTS taini tUDld.. | ttenlo(0 danint |
Aclock c¢; is a real-valued variable that can be reset (to c0™MaiNiNg atupi@, 1S wri tenlo(¢, ), and an internal ac-
tion a (without tuple) is writtere,,. 8; andf, are omitted

0) when an action occurs and such that, between two h v, Inout d outout blewh
resets, its derivative (w.r.t. time) is equal to 1. Let when emply. Inputs and outputs ervablewnereas

internal actions aranobservable
= e be a set of clocks. n " . )
H={en - end A transition of Ti, is defined by Tr =
A Clock Guard (CG) is a conjunction of formula(s) in (47303005 CG; Z5; DG; VA), where: ¢ and r are
the form “c; ~ k”, wherec; € H, ~€ {<,>,<,> origin and destination locationss is an action in the
,=}, andk is a nonnegative integer. A CG can be form 7, lo or ¢,; 6, is the (possibly empty) tuple of
the constantlrue (empty conjunction). Leb;, be  Parameters associateddtp CG: andZ, are a clock guard
the set of CGs using clocks &f. and a clock reset; an@G and VA are a data guard and
a variable assignment defined¥hu C U 6,.1 The index
A clock reset is a (possibly empty) subset &f, and2” o in Z, means that the clock reset of a transition depends

is the set of clock resets. only on its action, that is, all transitions with the same
event will also have the same clock reset. This restriction
2 2 DATA AND RELATED CONCEPTS guarantees determinizability @fs, [11].
A variable is a data whose value can be set when an ac-  Fi9- 1 illustrates the definition oo, through an
tion occurs. Led’ be a set of variables. example. Locations are represented by nodes, and a tran-

sition Tr = {gq;r;0;0,; CG; Z,; DG; VA) is represented
A constant is a data whose value is set once at initial by an arrow linking; to  and labeled in 3 lines byt (6, ),
time. LetC be a set of constants. (CG; Z,)and(DG; VA). TheCG andDG True and the
absence o, or VA are indicated by “-"., p, m are in-
A communication parameter (or more briefly, gpara-  tegersY = {¢,«a, 3, p}, H = {c1},V = {z}, C = {p},
mete) is a data which is transmitted as a parameterand? = {m}. ¢ cannot be an internal action because it
of an action. LefP be a set of parameters. contains parameten, and the other actions can be of any

type.
A Data Guard (DG) is a boolean expression using data .
_ Note that DG and VA of a transiton Tr =
of D = V.UC U P. LetT'p be the set of data guards (gi 7 0: 60: CC: 70 DC: VA) are defined inV U C U 0y and
(we consider thaflrue € T'p). notin the wholeD = vV U C U P
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Figure 1. Example of'jog,

2.4. EEMANTICS OF Tjosa

Attime 7o = 0, the Tiosa A = (L, 00, H, D, Z,%,T)
is at location/y with all clocks equal td), and variables
and constants taking values such thatvaluates tdlrue.
A transition Tr <q;r;0;0,; CG; Zy; DG; VA) of A is
enabledwheng is the current location and botfiG and
DG evaluate toTrue; otherwise, Tr isdisabled From
this locationg, the actions (containing parameters 6f,)
can be executed only when Tr is enaBBteand after the
execution ofo: locationr is reached, the clocks i,
(if any) are reset, and the assignmentd/ (if any) are
applied.

For the example of Fig. 1, let, ., be the delay
between actions andv:

e The T, is initially in locationly. At the occur-
rence ofe(m), locationi; is reached and variable
is assigned with the value of.

e Froml,, theT;,s. reaches, at the occurrence af.

e Froml,, theT;.s. reacheds orl, at the occurrence
of 3. I3 is reached only ib,, g < 3 andx > p, and
l4 is reached only ib, g > 2 andx < p.

We see that there is a nondeterminism wierc
da,p < 3andz = p.
z is incremented wheh is reached.

e Fromls, theT;.s. executes nothing.

e Fromliy, theT;.s, reachesg; at the occurrence of.
We haved,, , > 3.

The semantics of &5, A can also be defined by
the set of timed traces accepted Hy Here are a few
necessary definitions:

A timed action is a pair(e, 7) wheree is an action and
7 is the instant of time when occurs. Where is
an input (resp. output, internal) action, thenr) is
calledtimed input(resp. timed outputtimed inter-
nal) action

ZBut when Tr is enableds is not necessarily executed.
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Atimed sequenceis a (finite or infinite) sequence
of timed actions (ej,m)---(e;,7)---", where
<< o<y <o

A timed trace is obtained from a timed sequence by re-
moving all its timed internal actions.

Acceptance of a timed sequence\’ =
(61,7’1)(62,7’2)"', for e1,€ea, -+ € . Let
n be the length ofA! (n can be infinite), and
Ay, = (e1,71) - (e;, ;) be the prefix of \!
of lengthi, for 0 < i < n (i is finite). A is
accepted byA iff \! is the empty sequenci’y
or A has a sequence of lengih of consecutive
transitions Tr; Try - - - starting atl, and such that
Vi = 1,2,---,n: the action ofTr; is e; and, after
the execution of\*;_;, Tr; is enabled at time;.
Intuitively, A* corresponds to an execution.af

Acceptance of a timed trace: Let put =
(e1,71)(ea,2) -+ be a timed trace. p' is ac-
cepted byA iff u' is obtained by removing all the
timed internal actions of a timed sequence accepted
by A. Intuitively, u* corresponds to the observation
of an execution ofd.

We can now introduce the notion of timed observable
language of &joga:

Definition 2.1 TheTimed observable language ofa,,
A (TOL}‘M) is the set of timed traces accepted Ay
That is, TOL),>** models the observable behaviorof

The class ofT';,s, that we will consider obeys to the
following hypothesis:

Hypothesis 2.1 Infinite timed sequences accepted by a
Tiosa A are non-zengi.e., an infinite number of actions
cannot be executed into a finite time interval.

Remark 2.1 Unlike [19], with our model, consecutive
actions cannot occur at the same time. We think that this
is not a restriction, because we consider that if an action
e is followed an actiory, thene and f are notsimultane-
ous.

3. TEST PROBLEM TO BE SOLVED

In order to clarify the test problem to be solved, we
need to define formally a conformance relation between
Tiosa @nd the notion of test purpose. A test hypothesis is
also necessary.
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3.1. CONFORMANCE RELATION BETWEEN Tusa

Let I and.S denote twaoT,s,S over the same alpha-
bet 3. We define the following conformance relation
I confr, S, where) is a timed trace, stands for
concatenatiory is an output action of andr is its oc-
currence time:

Definition 3.1 I confry, S is read “I conforms toS”
and meansy\ € TOLg**,
(A-(0,7) € TOL}***) = (A-(0,7) € TOLg"™).

The intuition of “/ confr,__, S”is that after an execution
of thelUT (modeled byr), thelUT can generate an out-
puto at timer only if S accepts attimer.

In order to give a simpler definition afonfr, _ , we
will first define theinput-completiorof T,s,. Let 3 be
the set of inputs of the alphabEt and Univ be the “uni-
versal” T.s. acceptingall the timed traces ovex. That
is, TOL7>: contains every timed trace ovEr The fol-
lowing definition is inspired from [20, 21].

Definition 3.2 The input-completion of a
Tiosa A (ﬁ,lo,H,D,I,Z,T) is a Tiosa
InpComp(A) that contains all the timed traces of
A, as well as all the timed traces that diverge from the
timed traces ofA by executing inputs not accepted Ay
Formally, InpComp(A) is a Tiosa SuUch that:

Tiosa Tiosa
TOLanComp(A) TOLA
w-a-x).

wETOLL*% 4y wag TOL} 9% z€ TOL 0%

A is saidinput-complete iffA = InpComp(A). Intuiti-
vely, an input-complet@&,s, accepts every input at any
time.

U

(

Lemma3.13
I confry, _ InpComp(S).

I confr, S

Lemma 3.2 #If S is input-complete then! confr, , S
& TOL7 > C TOLg"™.

Lemma 3.1 implies that we can replac&'gs, S by
its input-completion before checking if &;.s, I con-
forms to it, w.r.t. confr, . Lemma 3.2 means that if
S is input-complete, thenonfr, _, is simplified into an
inclusion of timed observable languagesiyf,,. Based

on these two lemmas, an interesting approach would be t%
e

check! confr, , InpComp(S) instead off confr, _, S.
However, Def. 3.2 is not constructive and we do not know
how to computdnpComp(S)) from aTies, S in the ge-
neral case. Hence, we will use the following hypothesis:

iosa

Hypothesis 3.11In “ I confr,_ _, S”, we assumeS input-
complete.

3Proof in Section A.1
4Proof in Section A.2
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Note that Lemma 3.1 and Hyp. 3.1 are inspired from
their non-real-time and non-symbolic (i.e., without cleck
and data) version in [20].

Remark 3.1 In the simple case whet& has no internal
action and is deterministic, its input-completion can be
simply computed as follows:
1. Atrap TL is added toS; by trap we mean a loca-
tion such that for every action, TL has a self-loop
transition (TL; TL; 0;0,; True; 0; True; (). That
is, when a trap is reached, then it is never left and
every action is executable from it at any time.
. For every locationl and every input of S, a non-
specified transition
(I; TL;i; 0;; CG; 0; DG; 0y is added toS; by non-
specifiedwe mean that the guardSG and DG de-
fine the domain in whichis notenabled in of S.

Therefore, Hyp. 3.1 is not restrictive when we are in the
case of Remark 3.1. There exist many real examples in
this case. But we agree that there are also many real exam-
ples containing internal actions. For these examples, we
can try to input-complete the specification manually by
using our intuition, but we have no guarantee of success.
This issue is being studied presently.

3.2. TEST PURPOSE AND TEST HYPOTHESIS
In order to defingest purposglet us first define the
notion ofcompleteness

Definition 3.3 ATosa A = (L, 10, H,D,Z,%,T) is said

to becomplete iff Vi € £ andVe € X, e is enabled inf

for every possible clock value and data value. Intuitively,
a completerl’;s, accepts every (input, output or internal)
action at any time.

Definition 3.4 Atest purposé aT;.s, TP used to select
the behaviors to be tested. By analogy with [22, 13, 11],
TP is complete, deterministic, and equipped with two sets
of trap® locations A and R (for Acceptand Refusg. Ti-

med Sequences to be considered in testing activity are
those terminating in and not traversing a locatidnwhe-
reas timed sequences to be ignored are those terminating
in or traversing a locationR.

In the above Def. 3.4, bgomplete we mean that

st Purp accepts every (input, output, and internal) ac-
tion at any time. A test purpose should be simple because
the objective of its use is to select a relatively small part
of the specification in order to concentrate only in certain
aspects (e.g., scenarios, properties) of the specification
Ideally, a test purpose should correspond exactly to what
the user has in mind to test. Generally, this intention is de-
fined by scenarios (i.e., executions) or by properties (i.e.

5The notion oftrap has been defined in Remark 3.1
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formulas, e.g. in temporal logic). We have seleciggl, betY andSetEzp(A) be theSE;.s, obtained by applying
to describe test purposes; this model gives enough expresSetExp to A.

siveness for describing test purposes defined by scenarios

with timing constraints and variables. For test purposes4.1. AcTIONS Set AND Ezp

defined by a property, we will need to construct s, Set(c;, k) means: clock; is reset (to 0) and will expire
that allows to check the given property. This processiis in whenc; evaluates td:. And

general iterative: a firsliqsa iS constructed grossly and is Set(ci ki ko, ky), k1 < ko < --- < kp, means

refined repeatedly. thatc; is reset and will expire several times, when its
We will also use the followingest hypothesimspired value is equal td, k2, - - - , kp, resp.

from [23]:

Ezp(c;, k) means: clock; evaluates td and thus expi-

Hypothesis 3.2 The behavior of théUT can be descri- res.

bed b ibl k input- &te,. ZUT. )
ed by a (possibly unknown) input-complete, Therefore, Set(c;,k) is followed (after a de-

lay k) by Ezp(c;, k), and Set(c;, ki, ke, -+, ky) IS
followed (after delayski,---,k,) by FExp(c;, ki),
Exp(c;, ko), -+, Exp(ci, ky). When aSet(c;, m) oc-
curs, then allExp(c¢;, *) which were expected before this
Set(c;, m) are canceled.

We think that Hyp. 3.2 is realistic because the model
of Tiusa IS sufficiently rich for modeling many real-time
discrete event systems using parameters.

3.3. CLARIFICATION OF THE TEST PROBLEM
We can now state our objective: Given _t\ﬂbosas 4.2. BASIC PRINCIPLE OF SetBzp
Spec and TP over the same alphabet, modeling the spe- . . L
o . L In a Tiysa A, a clocke is reset with the objective to
cification and the test purpose respectively, the aim is to

synthesize an automatofiTG (Complete Test Graph) compare later its value to (at least) one constant,ksay
and then to extract test cases fraii'c. The actionSet(c, k) is very convenient for that purpose,

The test cases are intended to be executed otuthe gﬁg;?js ;ﬁ;ﬁﬁﬂg@;ﬁa@fﬁ (g’ kl)i;’\éhtlgg? a ?40_
in order to check whethefi/7T confr, , Spec. We as- ' b s

sume Spec input-complete (see Hyp. 3.1)CTG is an SetEzp is realized in two steps as follows:

interesting automaton because it contains all test cases ddtep 1 : To replace each clock reset i by the appro-
Spec leading to locationst of TP. priate Set action.

The test system takes into accoufiP by ignoring
every execution of thelUT accepted byspec (i.e., \ € Step 2 : To construct a finite state automaton, denoted

TOLz35 N TOLg'=) and such that: a locatioR of 7P SetExp(A), that accepts sequences containing acti-
may be reached by, or no locationd of TP is reachable ons of A andSet actions obtained in Step 1 and the
after \ by Spec. correspondingzzp actions, and such that the order

of actions in each accepted sequence respects order
and timing constraints ofl.

4. TRANSFORMATION OF T, INTO In order to illustrateSetExp by a trivial example, let
SEiosa us consider the following two specifications. Specifica-
Our test problem will be solved in Sect. 6 by using tion 1: a task must be realized in less than two units of
a transformation, calle@etEzp, that is described in de- time. Specification 2: at the beginning of the task an
tail in [24] and applied in [10, 11, 25, 26, 27]. In these alarmis programmed so that it occurs after two time units,
referencesSetEzp basically transforms a timed automa- and the task must be terminated before the alarm. Cle-
ton (TA) into a finite state automaton by adding to the arly, these two specifications define the same timing cons-
structure of thel'A two additional types of actionsSet traint. Intuitively, SetExzp generates the second specifica-
and Ezp, that capture the temporal aspect of th&. In tion from the first one. The programming of the alarm
the present article, we appl§etEzp to Tios, instead of ~ corresponds to et action, and the occurrence of the
TA. When applyingSetEzp t0 Tios,, the semantics of ~ alarm corresponds to afirp action.
data and their DG and VA is ignored, that is, they are pro-
cessed just like action labels. Their semantics is takerd.3. TRANSITIONS OF SEjusa
into account when using (interpreting, processing, ...)  We have seen in Sect. 2 that a transitiolgf,,, is de-
the automaton calleflE; s, that results fromSetEzxp. In fined by (¢;r;0;0,; CG; Z,; DG; VA) and is represen-
this Section, we present thi;.s, model and illustrate ted in a figure by an arrow linking to » and labeled by:
SetExp by an example. Lefl be aTj.s, Over an alpha- o(6,), (CG; Z,) and(DG; VA). Let: n be an action of
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the alphabek of the T),s. A with its parameterss (resp.
&) be aset obet (resp. Exp) actions, anadccurrence o

(resp.£) mean the simultaneous occurrences of all the ac-

tions inS (resp.£). Transitions of th&E;qs, SetExp(A)
can be categorized into three types as follows:

Type 1 : a transition labeled&) represents the occur-
rence of€.

Type 2 : a transition labeled byn) or (1, S), and by a
DG and aVA. (n) represents the occurrencempf
(n,S) represents the simultaneous occurrences of
andS, and DG and VA have the same semantics as
in Tiosa. A transition TR of Type 2 in théSE;qq,
SetExp(A), corresponds to a transition Tr dfsuch
that: Tr and TR have the sameand DG and VA,
and Tr resets the clocks in tide(if any) of TR.

Type 3 : transition labeled by&, n) or (£,7,S), and by
a DG and aVA. (€, n) represents the simultaneous
occurrences of andn, and(€,n, S) represents the
simultaneous occurrences&fn andS. A transition
TR of Type 3 in theSE;,s, SetFzp(A) corresponds
to simultaneous executions 6fand a transition Tr
of A such that: Tr and TR have the samand DG
and VA, and Tr resets the clocks in tie(if any) of
TR.

Remark 4.1 A transition of type 3 corresponds to the si-
multaneity of two transitions of type 1 and 2, respectively.

Definition 4.1 An Exp-Transof SetEzp(A) is a transi-
tion of type 1 or 3, i.e., whose label contains one or seve-
ral Ezp actions.

4.4. TWO EXAMPLES OF APPLICATION OF SetFExp :
Tiosa — SEiosa

“(a, Set(c, 1,8))-Exp(c, 1)-b-Exp(c, 3)", i.e., Tr2
occursafter Exp(c, 1).
>.

“(a, Set(c, 1, 8)XExp(c, 1),byExp(c,3)",i.e., Tr2
occurssimultaneously t&zp(c, 1).

4.4.2. Example 2:For theT;.s, A of Fig. 1, we ob-
tain theSE;qs, SetExp(A) of Fig. 2, whereSet, 5 is an
abbreviation of?Set(c;, 2, 8), Ezp; is an abbreviation
of | Exp(cy, i) for i = 2,3, z++ means % is incremen-
ted by 1", and the consta?G True and the absence of
VA are indicated by “-". Transitions of Type 1 are those
labeled Ezp;. Transitions of Types 2 and 3 are labeled
in two lines, where Line 2 consists ¢DG; VA). Tran-
sitions of Type 2 are those labeledm), (a, Setz 5), 8
or p in Line 1. Transitions of Type 3 are those labeled
(Ezp;, ) in Line 1, and correspond to the simultaneous
executions ofEzp;, and 3. We do not indicate whether
each actiony(m), «, 3 or p is an input, an output or an
internal action, because this aspect is irrelevant for the
comprehension ofetEzp.

Remark 4.2 Clocks are real-valued variables although
they are compared to (nonnegative) integers, the latter
being considered just as particular realSet Fxzp remains
applicable if clocks are compared to reals.

(X€P; x++)

Cp
(=i

4.4.1. Example 1:We illustrate hereSetEzp by an

example without data. We consider the specification:
1 < d4 < 3, whered,; is the delay between actions
a andb. In aTi.,, such a constraint is expressed by:
1) using two transitions Tr1 and Tr2 that represent the oc-
currences ofi andb, respectively; 2) resetting a cloclat

the occurrence of Trl; and 3) associating to Tr2 the clock
guard CG): ((¢c > 1) A (¢ < 3)). This timing cons-
traint can be expressed differently as follows: i) the reset
“c:=0"of Trlis replaced by &et(c, 1, 3) (which will

be followed byEzp(c, 1) andEzp(c, 3)), and i) theCG

“((e > 1)A(c < 3))" of Tr2 becomes “Tr2 occurs after or
simultaneously tdvzp(c, 1) and beforeEzp(c, 3)". This
timing constraint will be represented inS&;.s, by the

Figure 2.SE;s, SetExzp(A) obtained from thél';os, A of Fig. 1

4.5. SYNTAX OF SE;osa
Let A = (L,lo,H,D,Z,%,7) be aTies, and B =

SetExp(A) be the correspondingE;os.. The syntaxof

B can be defined b8 = (9, qo, D, Z, A, V), where: Q

is a finite set of stategy is the initial state A is a finite
alphabet that labels the transitionsi®f ¥ is a transition
relation, andD andZ are the same as those used in the
definition of A (see Sect. 2.3). A transition @& is syn-
tactically defined by TR =g;r; u; DG; VA), where: ¢

following two sequences, where consecutive actions areandr are origin and destination statgs;consists of the
separated by-" and simultaneous actions are grouped in action(s) of TR; and)G and VA are a data guard and a
“O)"): variable assignmentDG and VA are always empty for
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transitions of Type 1 (see Sects. 4.3 and 4.4)is an Definition 4.3 Let I’ and S’ be two SE;,.,S over

alphabet consisting of labels of transitions of types 1, 2the same alphabet:I’ confsg,,_, S’ = (OL}F* C
and 3 (see Sect. 4.3). OLEI,E;OS&)_
4.6. EMANTICS OF SE;osa We terminate this section by presenting a fundamen-

Initially, the SE;osa B = (9, g0, D,Z, A, V) isatstate  tal property ofSetExp. Let TL = AddTime(L) be a ti-
qo With all clocks ofH equal to0, and variables and cons- med language obtained from a langudgley associating
tants taking values such that evaluates térue. Atran-  a time to each action such that the consistency condition
sition TR <¢; r; u; DG; VA) isenabledvhengisthe cur-  is respected. LeRmuSetEzp(TL) be obtained from a
rent state and @G (if any) evaluates t@rue; otherwise, timed languageél/’L by removing all theSet and Ezp ac-
TR is disabled From this state, 1 (consisting of one tions, if any. We have the following proposition of equi-
or more actions) is executed only when TR is enabled;valence:
and after the execution ¢f: Stater is reached, and the

assignments if/A (if any) are applied. Proposition 4.1 7

Letsequence GiEs, denote asequenc&iEs -, RmoSetErp(AddTime(OLG 5n 4))) = TOLy ™.
where Eq, Es,---,€ A; and let atrace of SE;us. be
obtained from a sequence 6ffi.. by removing all  |ntuitively, Proposition 4.1 states that from a behavio-
its internal actions. The semantics ofS&i,sa B =  ral point of view, there is no difference betweenand
(Q,490,D,Z, A, ¥) can also be defined by the set of se- gctEzp(A) for an observer who does not see (or ignores)
quences and traces acceptedhy Set and Ezp actions. In a senséetFEzp(A) does nothing

but add some new actionSdt and Fzp) to A that capture
the relevant temporal aspect af As we will see in the
next section, in our test method theSet and Fzp are

physical actions that are produced by the test system.

Acceptance of a (finite or infinite) sequence
A= EEy---, for E1,E5,--- € A. Letn be the
length of\ (n can be infinite), and; = E1Fs - - - E;
be the prefix ofA of lengthi, for0 < ¢ < n (i is
finite). A is accepted byB iff :

* either) is the empty sequence; 5. TEST ARCHITECTURE, AND A PRO-
e or there exists a sequence of transitions POSITION
Tr; Trg - - - of B of lengthn such thatvi = Given two T;.s.S Spec and TP over the same alpha-
1,2,---,n: Tr; is labeled byE; and, after the  bet, we have clarified in Sect. 3.3 that our objective is
execution of\;_;, Tr; is enabled. to synthesize an automat@*’G (Complete Test Graph)
from which test cases are extracted. The latter are inten-
Intuitively, A corresponds to an execution Bf ded to be executed in order to study the conformance of

) ) ) thelUT to the part ofSpec corresponding tal'P. CTG

Acceptance of a traceu : uis accepted b3 iff pisob- iy not e directly computed on thgi,..s Spec and TP,

tained by removing the internal actions of a sequencey ¢ rather on SEio.. computed from the twiges. In

accepted by3. Intuitively, ;2 corresponds to the ob- o qer 1o make the link betweeiTG and thelUT, we

servation of an execution . use the test architecture represented in Fig. 3 and propo-
sed in [11]. It comprises thkJT, a Tester, and a Clock-
Handler that mimics the timing aspect of théT . More
precisely, we have:

We can now introduce the notion of Observable Lan-
guage of BE;sa:

Definition 4.2 The observable language of$iosa B Clock-Handler receivesSet actions from the Tester and

(OLy"=) is the set of traces accepted i That s, sendsFEzp actions to the Tester. It respects the con-
OLj > models the observable behavior/f sistency condition (see end of Sect. 4.6). It can be
seen as a Timer module that upon the reception of

Note thatOLSBEm implicitly respects the following a Set action, activates a timer and sends back to

Consistency condition every Set(c¢, k) and its corres- the Tester the correspondiififyp action when the ti-

pondingEzp(c, k) are effectively separated by tinke mer elapses. Note that Clock-Handler guarantees the
We define the following conformance relation consistency condition, i.eSet(c, k) and the corres-

confgg, . relating twoSE;qs,S: pondingEzp(c, k) are separated by tinie

8 is the set of clocks of th&;,s, A such thatB = SetEzp(A). "Proof in Section C
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Tester executes test cases that are derived frdfiias. corresponds to &et (resp.Fzp) action. Tester orders the
and is tagged with thé&et and Ezp actions of this  IUT to start7 and, simultaneously, programs the alarm
SEiosa- It sends the inputs and receives the outputs ofby sending aSet(c¢, 2) to Clock-Handler. Tester dedu-
thelUT, it also sendsSet actions to Clock-Handler ces thatUT has conformed t¢ iff it receivesEzp(c, 2)
and receivedizp actions from Clock-Handler. The from Clock-Handleafterit receives from théUT the in-
timing constraints that the Tester has to deal with aredication that7 is terminated.
performed via its interaction with the Clock-Handler The proposed architecture is applicable only if tran-
module. sitions executing internal (i.e., unobservable) actioas d

not reset clocks. In fact, in order to gener&te acti-
‘ ons, the Tester needs to observe every action to which is

Tester %’ Clock-Handler a_ssociate_d a clock reset. Hence the follqwing hypothe-

= 3 : sis meaning that there is no timing constraint relatively to

- ,",‘F?l%‘,{] . ,Z}F’,“?P“,‘, TR 5 unobservable actions:

Hypothesis 5.1 Transitions executing internal actions do
Figure 3. Test architecture not reset clocks.
We argue that there exist many real examples respec-
ting Hyp. 5.1, because in many cases, timing constraints
Notation 5.1 If L is a language, theft denotes the prefix that interest the user 80T are defined between actions

of L. That is, T contains everyinite sequence that is a that (S)he observes.
prefix of a sequence containediin

Here are a few necessary notations:

Notation 5.2 Tester < K means that during a test exe-
cution, the Tester generates orflyt actions that are ac-
cepted by th8E;.s, K. More formally, it means:

6. METHOD OF TEST GENERATION

Let us propose a test method that can be used to
SE. . . synthesize test cases for real-time systems without enu-
VA € OLg™™, V,U action oflUT, VS set ofSet qctlons. merating all the possible values of their variables. The
after the execution ok, the Tester generate simulta- 5564 method combines, and thus extends, two com-
neously ta (if any)iff \-(U,S) € OL . plementary test methods: 1) a test method applica-

We can now state the next proposition which ma- ble to (non-symb_olic) real-time systgms L], anq 2) a

X , test method applicable to (non-real-time) symbolic sys-
kes the link betweeronfsg,,., (relating twoSEios.S)  tems [13]. It consists of five steps outlined in Fig. 4 and
a_\nd the real-time conformance relatioanfr,,., (rela- described in subsections 6.1 to 6.5. Its inputs gper
t|_ng WO Tis,$), whereSUT (System Under Test) con- (input-complete, from Lemma 3.1 and Hyp. 3.1) afit
ﬁ:wséslStll'u;;;di;:[c(r)l(;ks-gandiiﬂiﬁnﬁéﬁefg;adn;oigi (complete, from Def. 3.4). In a first step, we compute

' iosa ' a Tiosa SpecTP that accepts (all and only) the timed se-
Tiosa guences ofSpec and indicates the locations correspon-
ding to the locationsi and R of TP. Then, we synthe-
size in three steps (2 to 4) a complete test grapii'@),
from which test cases are extracted in Step 5. Test cases
are intended to be executed on thE in order to check

The above proposition implies that we can whether:IZﬂ_' confr,  SpecTP. _The indicationA and
check “SUT confsg, . SetEap(S)” instead  of Ris used_ to ignore every execution qf ﬂtd_aT that leads
“TUT confyr  S”. We have transformed the test to a locationR or from which no locatiord is reachable.
ofa real-timéozymbolic system into a non-real-time form, The fact .th_atTP is deterministic a“?' F:omplete implies
and thus, we can (and will) adapt a non-real-time methodhatspec is input-completdff SpecTP is input-complete.
of Symbolic Test Generation (STG) [13]. An gdvantage of our methoq is its S|mpI|C|ty because

Here is a simple example that gives the intuition of Fhe main treatment of the real—tn‘_ne aspe(_:t is concen;rated
Prop. 5.1.5 specifies that a tasK is realized in less than N Stép 2. Steps 1, 3and 4 constitute a slight adaptation of
two units of time. SetEzp(S) specifies that: i) at the be- the (non-real-time) symbolic test generator (STG) [3].

ginning of 7 an alarm is programmed so that it occurs StepP 5 is inspired from [11].

after two units of tlme'.and "T is terminated before the SActually, STG is a software tool. But here, STG denotes tkettétical
alarm. The programming (resp. occurrence) of the alarmyethod that underlies the tool.

Proposition 5.1 Tester < SetEzp(S) implies:
TUT confr, . S < (3 SEisa SUT accepting behavior
of SUT s.t. SUT confgsg, , SetExp(S).

osa

38



Ahmed Khoumsi On Synthesizing Test Cases in Symbolic
Real-time Testing

Spec Step 1 Step 2 Step 3
P Synchronized| SpecTP| TransformatioySpeCT'sEA
TP—~\__product 3 = SetExp visible behavio

Q10ads

Step 4
Extraction of Computation of
Test cases—(_ RGOl ) CTe (0 Compuiaton of)

Figure 4. Steps of the test method

Spec and T'P of Figure 5 will be used to illustrate the
five steps of the test method. These fiug,, are defined
over the alphabet = {?¢, 70, !p, €4, €, }. Data of Spec
areH! = {1}, V! = {z},C' = {p}, P! = {m}, where
x,p, m are integers. Data df P areH? = V? = C? = (),

P? = {n}, wheren is integer.# z means any action of

¥ different fromz, and?« means any input X (i.e., 7¢

or 70). Spec was not initially input-complete and we re-
present by dotted arrows the part that has been added
make Spec input-complete. Recall that input-completion
of Spec is justified by Lemma 3.1, and that we do not
know how to compute itin the general case (Def. 3.2 is not
constructive). In the particular example of Fig. 5, input- satisfied:

completion ofSpec can be computed using Remark 3.1,

althoughSpec contains internal actions. Transitions labe- 1. X' = X?. The common alphabet will then be deno-
led only by an action mean that: their (clock and data) ~ t€dX. This condition can be easily relaxed [13], but
guards are equal to the constahtue, and they do not we will keep it for simplicity.

reset clocks anq do not have variable assigr]ments. 2. H'AH? = [28].

The TP of this example means that: we intend to test
executions ofSpec terminating by the first occurrence of 3. (V' UPH N (V2UP?)=0,CnP? =0, and
lp in Spec (i.e. without traversing Locatiorf’L). This CinPl=0[13].
example of TP is taken very simple (with one parameter ) _ )
andnotiming constraint) in order to clarify the operations 4. E2ach actiom € ¥ has the same signature it and
of the different steps. Recall that generallif should be A7 [13].

relatively simple because the objective of its use is to S€-Assuming the above four conditions satisfied, © A2 is
lect a relatively small part of the specification in order to jefined by(L, 1o, H, D, T, S, T) such thatL = £ x £2,
concentrate only in certain aspects (e.g., scenarios, Prop, = (18,12), H = H'UH2, D = VUCUP,V = VIUV2,
perties) of the specification. A simple test purpose defi-» _ (CTUC)\V, P = PLUP2?, T = (I' AT?), and the
ned by scenarios can be easily modelediy.. Inthe  get of transitions is defined as follows: For each pair
presence of a test purpose defined by a propBrtyve of transitions({(g; 1% 0 0.; CG': Zi; DG'; VA') € T7,
need to transforn® into a Tj.sa in an iterative way: a  ; _ 1,2:
first Tosa IS coOnstructed grossly and is refined repeatedly.

If 6,5 and 6.” are the empty tuplee : then there exists a

6.1. STEP 1 : COMPUTE THE SYNCHRONOUS PRO- transition<(q11; 7°); (21;7’21);0?6;26@1 A CG?
DUCT OF Spec AND TP Z}UZ2; DG NDG?* VA' U VA*) € T.

We compute dl'ios, SpecTP that is observationally 1t 91 5nd 62 are not empty : let DG (resp. VA™?)

i i Tiosa _ Tiosa o c : .
equivalent toSpec (i.e., TOLgwe = TOLgirp), but denote the expression obtained by replacing
SpecTP contains locations indicated by (resp. R) that in DG? (resp. VA%) each parameter from

correspond to locationgl _(resp. R) of TP. For that 92 by the corresponding, same-position para-
purpose, we need to define the synchronized product of | \ater from 0l then there exists a transition

WO TiosaS. LetAi = ([,i', I8, H!, D¢, T8, %4 T*) where (q": ¢2); (r1;72); 03 0.1, CGY A CG?:

Dt =V .U ctuPpr, fori = 1,2, be t\(VOTiosaS. The ZI U Zg;DGl A DGY2: VAL U VA1’2> cT.
synchronized product afl! and A2, written A7 ® A?, ) ]
is inspired (but different) from the synchronized product Note thaé wecan aéslo proceed symr1n2etr|cally E’g defi-
of TA [28] and the synchronized product&®STS [13]. ning DG™" and VA™, instead ofDG™" and VA ™.

A; ® Ay is definediff the following four conditions are This procedure is inspired from [13].

D

Figure 5. Example for illustrating the test method
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In Step 1, we comput&pecTP = Spec ® TP, from
which we remove the (unreachable) locations without in-
coming transitions.

Completeness of P implies thatSpec and SpecTP
are observationally equivalent (i.e.TOL s

Spec
TOLE;;S;‘TP). Completeness of TP and input-
completeness ofSpec imply that SpecTP is input-
complete. The effect obpec ® TP is to determine in
Spec all the executions that correspond to locatiehand
R, respectively.

For Spec and TP of Fig. 5, we obtain th&pecTP of
Fig. 6. Locationsl.; and A; are equivalent in the sense
that the same behavior can be produced from them. Th
difference between these two locations is that oAly
corresponds to Locatiod of TP. Note that, in accor-
dance with the definition of synchronized product, para-
metern of T'P has been removed by replacing it by para-
meterm of Spec. The symmetrical approach consists of
removingm, instead of.

Figure 6. Step 1SpecTP obtained fromSpec and T'P of Fig. 5

6.2. STEP 2 : TRANSFORMING THE Tjosa SpecTP
INTO SEiosa

We transform the problem into a non-real-time form
by computingSpecTPS¥ies» = SetExp(SpecTP). For
the SpecTP of Fig. 6, we obtain theSpecTP5Fies of
Fig. 7: 7« denotes any input (i.€?¢(m) or ?0); ¥ means
any actionz € ¥ = {?¢(m), 70, lp, €4, € }; Seta 3 deno-
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tes?Set(cy, 2, 8); Exp; denotesEzp(cy, i) fori = 2,3;
(Expi, X) means the simultaneous occurrenceEsdp;
and anyr € ¥; nodes linked by a dotted line correspond
to the same locatidh and states that correspond to loca-
tion A (resp.R) of SpecTP are indicated by (resp.R).
StateA, is equivalent to Staté§; with the difference that
S1 does not correspond to a locatidnof TP. We have
not represented the states reachable fronbecause the
sequences to be tested are those terminating in and not
traversing a statel. In Fig. 7 and subsequent figures, if
DG evaluates térue and VA is empty in a transition (of
Type 2 or 3), the{ DG; VA) is not represented.

Exp, = Qﬂ Exps, =
g? Exp; ®

EEEIIC
?0 2@m)
® ®
[\ [\

>X) O

-

JER S T

Figure 7. Step 2SpecTPSEiosa obtained fromSpecTP of Fig. 6

6.3. STEP 3 : EXTRACTING THE OBSERVABLE
BEHAVIOR OF SpecTPSBiosa

We construct the observable behaviospécTPSFios
in three substeps:

Substep 3a: Internal actions are eliminated by projec-
tion into the observable alphabet. For that purpose,
we canadapta procedure proposed in [13]. The re-
sult is denoted)bs(SpecTPFie==). The adaptation
consists of a preliminary step where internal actions
in transitions of Type 3 are simply erased. After that,

9They are duplicated for the sake of clarity.
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we can use the procedure of [13] because the remai
ning internal actions are “alone” in their transitions
(of type 2). (Recall that we consider only the case
where internal actions do not reset clocks.)

Substep 3b:  Obs(SpecTPS¥) is determinized by
using a heuristic proposed in [13]. The result is de-
notedDet ( Obs(SpecTPSFio==)).

Substep 3c: Note that every state of
Det(Obs(SpecTPS¥e=)) corresponds to one
or several states dfpecTP5Pio= . Statesk and A of
Det(Obs(SpecTPS¥)) are selected as follows:

?0,Seb 3

2¢(m)

e We call R every state corresponding to at least
one stateR of SpecTPS%ies=  Intuitively, we
ignore every execution which can correspond
to a sequence not to be tested.

e We call A every state corresponding exclusi-
vely to statesd of SpecTPSFies= . Intuitively,
we accept an execution only when we are sure
that it corresponds to a sequence to be tested.

Ciax: d ) .

i SEiosa
The result is denotefipecTP ) 2%

For theSpecTPSE“’Sa of Fig. 7, after Substep 3a, we ob- Figure 8. Step 3a: After g!émination of internal actionsnfro
. ) ~! ’ SpecTP>Yiosa of Fig. 7

tain Obs(SpecTPSE'°Sa) of Fig. 8 whereX, means any

observable action € {70, 7¢(m),!p}; and after Subs-

tep 3c, we obtairpecTP? 5% of Fig. 9. g (P9 Seba o Bep o B

6.4. STEP 4 : COMPUTING A COMPLETE TEST -
GRAPH (CTG)
Recall that a transition &§E;,s, can be labeled as fol-

lows: (£), (0), (0,8), (€,0), 0r (€,0,S), (in addition to _ SBioe e -
(DG; VA)). Let: Figure 9. Step 3SpecTPOBSFig(.)t7Jta|ned fromSpecT P> iosa of

output transition be any transition labeled in one of the

five forms and such that is an output of théUT ; SEiosa
P e LetInconc be the set of states SpecTP% 3% that

input transition be any transition labelegr) or (o, S) are notinL2A U Pass and are accesssigle frofeA
and such tha is an input of thdUT ; by a single output transition dpecT'P})3%5*.

mixed transition be any transition labeled&, o) or e We then obtairCTG from SpecTP s by:
(€,0,8) and such that is an input of thdUT . - adding (implicitly) stateFail and its incoming

_ (non-specified output) transitions,
We construct a Complete Test Graghl{G) in a way - removing every stat¢ L24 U Pass U Inconc U
inspired (but different) from [22, 11, 13] as follows: Fail, and

o Let 124 be the set of states 6hecTP? %" that are :Premgvllng outgoing transitions of every state
co-accessible to a locatiof, i.e., from which a state ass L nconc.

Alis accessible. To synthesize test cases executable in acceptable time

e LetPass be the set of states of SpecTP iz . (thatis, to avoid that Tester waits for an output of Hi&
during a very long time), we select a del@yand define
e Let Fail = {fail} consist of a new state that is a fictitious events whose occurrence means: no obser-
reached by every non-specified output transition of vable action occurs during a period equallto We then
SpecTP s executable fronL24. proceed as follows:
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e we define a new stai@concs € Inconc, and

o to every stateZ PassUInconcUFail in which only

Hypothesis 6.1 When desired, the Tester is capable of re-
acting more promptly than tHeUT in all situations where
both are allowed to send an action to each other.

output transitions of type 2 can be executed, we add

a transition labeletb and leading tdnconcs.

The use ofl§ andinconc;s can be intuitively explained

Hyp 6.1 is reasonable when tB&JT is a system with
very high computing ressources and a very high clock
frequency. Assuming this hypothesis, controllable sub-

as follows: in a test execution if nothing happens during graphs can be extracted fro@i’'G by executing one the

time T, then the verdicinconclusive is generated.
For the SpecTP{ii%* of Fig. 9, we obtain theC TG

of Fig. 10. Transitiorl§ in State 4 indicates that nothing

has happened during tiniE, which implies the verdict
Inconclusive. For simplicity, Fail and its incoming tran-
sitions are not representeBail is implicitly reached by
every non-specified transition. Note tHatcan be ea-
sily implemented by usingSet(cy, T) and!Ezp(cg, T),

wherecg is a clock not used for describing timing cons-

traints of Spec and T'P.

. 708 EX| - Exp !
@0 Seha, 5 B _ 5 B3 g (x\<pp;><++)@
7 1
9
(incongs)

Figure 10. Step 4C'T'G obtained fromS'pecTP%%‘gsa of Fig. 9

Correctness of our construction 6f7'G is stated by
the following three lemmas:

Lemma 6.1 1°© When the Tester observes a trakeof

SUT that leads to a statp € Pass, then thelUT has

executed a timed tracg that conforms toSpec w.r.t.

confr,,, (e, p € TOLg<::) and that leads to a lo-
cation A of TP.

Lemma 6.2 ' When the Tester observes a trakeof
SUT that leads to the statg¢ail, then thelUT has exe-
cuted a timed trace that does not conform tSpec w.r.t.

confr,  (i.e.,u ¢ TOLEZ‘,OQSS).

iosa

Lemma 6.3 12 When the Tester observes a traseof
SUT that leads to the state € Inconc, then thelUT
has executed a timed tragethat conforms taSpec w.r.t.
confr

L

iosa

6.5. STEP 5 :
CTG
The objective of Step 5 is to extract so-caltaghtrol-

EXTRACTING TEST CASES FROM

lable subgraphef CTG. For that purpose, let us use the

following hypothesis:

IOProof in Section D.1
11proof in Section D.2
12proof in Section D.3
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but no locationA4 of TP can be reached after

following three options for each state 611'G:

e One input transition is kept and all other (input, out-
put, and mixed) transitions are pruned. That is, the
Tester sends a given input to tB&JT, before the lat-
ter has the time to generate an output.

e All output transitions are kept, and all other (input
and mixed) transitions are pruned. That is, the Tes-
ter sends no input and waits for the reception of any
possible output from th8UT.

e One mixed transition T is kept with all the outputs
transitions that have not the sahas T, and all other
transitions are pruned. That is, the Tester waits for
the reception of a given set of expiratiafiswith the
objective to send a given input to tI8JT simulta-
neously tof;. The inputis not sent if Tester receives
an output or anothef from theSUT.

Note that this procedure is more complex than proce-
dures in [22, 11] that have inspired us. For th&G of
Fig. 10, we obtain a single controllable subgraghf’G
itself.

7. CONTRIBUTION AND FUTURE WORK

We have proposed a test method that combines two
types of testing: real-time testing that consists of tgstin
systems with timing constraints; and symbolic test that
consists of testing systems without enumerating values of
their data. More precisely, our method combines and ex-
tends in a rigorous way the method STG of symbolic tes-
ting of [13] and the method of real-time testing of [11].
An advantage of our method is its simplicity because the
main treatment of the real-time aspectis concentrated into
one step. Since the test method in [11] is a rigorous gene-
ralization of TGV [22] to the real-time case, we can say
that our method is a rigorous generalization of STG and
TGV to the real-time case. We are optimistic for the
applicability of our method because both TGV and STG
have led to interesting software tools. But we recognize
that such applicability remains to be demonstrated with
real world examples.

BActually, STG and TGV are software tools for testing. Buthe83TG
and TGV denote the theoretical test methods that underltothis, res-
pectively.
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Theoretically, the method may suffer from state explo-

sion essentially during the synchronized product (Step 1)
and the transformatiofietExp (Step 2). But in practice,
the state explosion is attenuated by the following facts:

For Step 1: TP is relatively simple.

For Step 2: the following two numbers, that influence

state explosion, are relatively small: - the number
of clocks,

- the number of values to which each clock is com-
pared in timing constraints.

A previous version of his article has been published

in [18]. Here are the main contributions of the present
paper w.r.t. [18]:

1.

6.

All lemmas and propositions are rigorously proved
(in the Appendix).

. New lemmas (6.1, 6.2, 6.3), that state correctness of

the test method, are added and proved.

. The test method contains an additional (fifth) step

that extracts test cases from the synthesized Com-
plete Test Graph.

. Proposition 5.1 is expressed more formally and pro-

ved; this proposition is the basis for transforming the
test problem into a non-real-time form.

. The notion ofest purposés presented and explained

in more detail.

A few errors have been corrected.

Here are some future work directions:

e Our method (as well as STG in [13]) does not sup-

port the quiescence aspect, that is used for specifying
when thelUT is permitted to stop its execution. We
intend to investigate the possibility to fill this gap.

Our method (as well as other methods of real-time
testing) does not support unobservable clock resets.
We intend to determine conditions under which our
method is applicable in the presence of unobservable
clock reset.

We intend to add the notion of invariants in order to
model actions thanustoccur (instead of being only
permittedto occur) when they are enabled.

Def. 3.2 is not constructive and we do not know [10]

how to computdnpComp(S) from aTj.s, A inthe
general case. We have explained how to compute
InpComp(S) when S has no internal action and is
deterministic. We intend to determine a more gene-
ral class ofT;.s,S for which we can construct their
input-completion.
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e We intend to implement a prototype of the test

method in order to study it with real world examples.
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. (A-(0,7) € TOLT™**) = (T > 7).

. Items 4 and 5 imply that

Tiosa Tiosa -
VA€ TOLpwe, o\ TOLY™™:

(A-(o,7) € TOL;P‘OSH) =

Tiosa
(A-(0,7) € TOLw2

).

; Tiosa .
. Items 3 and 6 imply that\ € TOLIanOmp(S).
(A-(0,7) € TOL ) =

Tiosa
(A-(o,7) € TOLIan’omp(S))'
8. Item 7 mean$! confr, , InpComp(S)). QED

A.1.2. Proof of:

(I confr, , InpComp(S)) = (I confr, , S):

1. We assume(I confr, , InpComp(S)), that is

Tiosa N
(from Def. 3.1) V) € TOL]anomp(S)'

(A-(o,7) € TOL?‘OSE‘) =

Tiosa
(A-(0,7) € TOLEwe

iosa iosa

).

Tiosa Tiosa
2. TOLg*** € TOL %0 (s)-

3. Items 1 and 2 imply that\ € TOLg">*:
(A-(o,7) € TOL?‘OSE‘) =

Tiosa
(A-(0,7) € TOLEww2

).

4. Item 2 of Sect. A.1.1 and the above Item 3 imply that 55 and VA inT

YA € TOLG:
(A-(0,7) € TOLT***) = (A-(0,7) € TOLg"*).

5. Item 4 mean$! confr, , S). QED

iosa

A.2. PROOF OF LEMMA 3.2:

I confr, S TOL;** C TOLg"*
A.2.1. Proof of:
I COHfTiosaS = TOL?iOSa C TOLgiosa: In the fol-

lowing, 7, denotes the time of the last (observable) action

of \.

1. We assumé& = InpComp(S)).

2. We assumél confr, , S), thatis (from Def. 3.1)

for any outpub andv € TOLgiosa:
(\-(0,7) € TOLF™) = (A-(0,7) € TOLG™)

. € € TOLg* ande € TOL} ">, thatis, TOLg"***
and TOL?W contain the empty sequence.

. Item Limplies((\ € TOLg">*) =
(V1 > 7\, Vi, \-(3,7) € TOLgiosa)_

c\(e,7) € TOLT ™ = 7 > 73,

. Iltems 2, 4 and and 5 imply thef € TOLE‘OS“*:
(\-(e,T) € TOL}****) = (\-(e,T) € TOLg"™).

. Items 3 and 6 imply(\ € TOL}***) =
(Ae TOLE“’S"‘). This implication can be easily pro-
ved by induction.

8. Item 7 meansTOL;*** C TOLg**. QED
A.2.2. Proofof:

TOLT* C TOLY*** = I confr, , S:
1. We assum@'OL7** C TOLg**.

2. Item 1 implies
(M-(o,7) € TOL?‘OSH) = (A(o,7) € TOLE‘OSH).

3. Item 2 implies:(I confr, _ S). QED

B. PROOF OF PROPOSITION 4.1

We first need to define symbolic languagesIgf,.
andSE;sa.

B.1. SYMBOLIC LANGUAGES OF Tj,sa AND SE;gga

In [24], SetExp is used to transform timed automata
(TA) into Set-Exp-AutomataSEA), and timed language
of aTA A (TL%*) and timed language of SEA B are
defined as the set of timed sequences accepted &yd
B, respectively. Note that if we ignore the semantics of
iosa @NdSE; ., we obtain the models of
TA andSEA, respectively.

By analogy with timed language of'A, we de-
fine the symbolic timed language of &, A
(L,lo,H,D,T,%,T) (STL>*) as the set of timed se-
quences accepted by, where in each transition Tr
=(q;r;0;0; CG; Z; DG; VA) of A: the semantics of
DG and VA is ignored, and(o(0); DG; VA) is syn-
tactically processed as an action. That is, a se-
quenceft = (a177’1)(042, Tg) SR (Oéi, Ti) cee € STLE‘OSa
corresponds to a sequence of consecutive transitions
Tr; Trg -+ Tr; - - - in A such that:

- Tr; is a first transition ofA (i.e., executable from

- a; consists ot (6), DG and VA of Tr;; and

- after the execution of a prefixvy, 1) - - - (ap, 7) Of
¢t the CG of Tryy 4 is True attimer,;1.

In the same way, by analogy with timed language
of SEA, the symbolic timed language of 8Eus,
B (STLSBE‘M) is defined as the set of timed sequen-
ces accepted byB, where in each transition Tr
(g;r; 11; DG; VA) of B: the semantics oDG and VA is
ignored, andu; DG; VA) is syntactically processed as an
action. That s, a sequence
&t (a1, 71)(ag,72) - (ay, 1)+ € SCZ’L%E‘OSa
corresponds to a sequence of consecutive transitions
Try Trg -+ Tr; ---in B such that:
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- Try is afirst transition ofB,
- «; consists ofu, DG and VA of Tr;, and

(TOL’>*) is obtained fromI'L’;>** by removing all the
internal actions. And thémed observable languagé B

- consistency condition is respected (see Definition in(TOL%E‘Osa) is obtained in the same way frofﬁL%E‘osa.

Sect. 4.6).

In [24], it is proved that for aT’A A and the cor-
respondingSEA B = SetExp(A), we have: TL{A
RmuvSetExp(TLSFA).  From the above analogy, we
deduce that for aTi,sa A and the corresponding
SEisa B = SetErxp(A), we have: STLy>* =
RmuvSetBxp(STL o).

B.2. TRANSFORMING A SYMBOLIC TIMED LAN -
GUAGE INTO A TIMED LANGUAGE

To a symbolic timed language&'{’L) corresponds a
timed languageT'L) defined as follows:
A= (61,7’1)(62,7‘2) ... e TLiff
Egt = (041,7'1)((12,7'2) - e STL s.t.

- A\t and¢t have the same length(n can be infinite)

- a; = (e;, DGy, VA;) or a; = e; (in the latter case,
DG; = True and VA; is empty),

-Vi < n: DG, evaluates tdl'rue after the application
of VAl, VAQ, s VAifl.

Let then STL2TL be the operator that transforms
STL into TL, (written TL STL2TL(STL)).
Therefore, for aTsa A we have TLEiosa
STL2TL(STL>*), and for a SEi. B we have
TLy o = STL2TL(STL ).

B.3. PROOF THAT:
TLy = RmvSetBup(TLyg s 1))
1. In Sect. B.1, we have seen that for evany,, A:

STLy" = RmvSetEop(STLY 52 4)):

. In Sect. B.2, we have seen that for evéry, A:
TLy = STL2TL(STL}>*).

. In Sect. B.2, we have seen that for evBB,s, B:
TL3 o = STL2TL(STLE ).

. The order in which operator&muvSetExzp and
STL2TL are applied has no influence on the result.

ltems 1 and 2 imply:
TLy* = STL2TL(RmvSetExp(STLg 52 4)))-
Items 4 and 5 imply:

TLy** = RmoSetEap(STL2TL(STLg 52 4)))-

Items 3 and 6 imply:

TL}osa — RmvSetEl’p(TL%Eti?ES;p(A))'

QED
B.4. PROOF THAT:
TOLy** = RmuSetExp(TOLY 52 1))

Let A be aTi,s. and B = SetExp(A) be the cor-

respondindE;.s,. Thetimed observable languagd A
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And let RmuIntern(z) be the operation that removes all
internal actions from a timed language. Let us prove that:

TOLy* = RmuvSetEep(TOLg 52 4))-

TLSEiosa

1. TL}** = RmwSetBrp( Sethp(A)).

TOLY > = Rmulntern(TLYy )

TLSEiosa

SEiosa
. TOL SetExp(A))'

SetBap(A) = RmuIntern(

Iltems 1 and 2 imply:

TOLY > = Rmv]ntern(RmvSetEmp(TL%E;?ES;p ( A))).
The order in whictbet and Exp actions and internal
actions are removed from a timed sequence, has no
influence on the result.

Iltems 4 and 5 imply:

TOLY > = RmwSetExp(Rmulntern( TL%E;‘,’ES;Z) ( A))).

. Iltems 3 and 6 imply:

TOLaiosa — RmUSEtEIp( TOL%‘EL:OES;p(A))

QED
Proposition 4.1 is obtained by replacih@L%E‘Osa by
AddTime(OL% ) in the above Item 7. QED

C. PROOF OF PROPOSITION 5.1

Let S be an input-complet&’..,, and X, Y be defi-
ned as follows:

X: TOLL3 € TOLg™>™

Y: 3 SEjesa SUT accepting the behavior &UT s.t.
OLgis" C OLgn, s
From Hyp. 3.1, Lemma 3.2 and Def. 4.3, we deduce that
the objective is to prove:
(Tester < SetEzp(S)) = (X & Y).

C.1. PROOFOF: X =Y
AssumingX and Tester < SetEzp(S), the aim is to
proveY . Recall tha denotes a set dfzp actions.

Definition C.1 The supremabE;.s, of aSE;.s, B is de-
notedSupSEi.s.(B) and constructed as follows:

e ConstructObs(B), the projection ofB into the ob-
servable alphabet, i.e., internal actions are made in-
visible.

e For every internal actiory,: add a selfloop labeled
€, to every location oDbs(B).
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e For every internal actiore, and every transition of
type 1 (i.e, labeled in the for&i) from a locationg to
a locationr: add another transition of type 3 labeled
(€,¢e,) fromgtor.

Note that by constructionp Lo = QLS

SupSEijosa(B)’
SEiosa __ SEiosa
TOLP = TOLP% )

SEiosa SEiosa
TLE - TLSupSEiosa(B), and

TLSEiosa

_ LSEiosa
SupSEiosa(B) X )

SEiosa SEiosa
TOLY9s*CTOLy

1. Let SUT SupSEiesa (SetEzp(S)), and thus,
OLSEiosa

SEiosa

SetExp(S) — OLSUT '
SEiosa _ SEiosa
TOL s = TOLS s,

SetExp(
TLBiosn  C TLeen,

SetEzp(S) =

In Sect. B.4 we have shown that:

TOL?S[:iosa J— RmvSEtEIp( TOL%EL:OES;p(S))

3. X and Item 2 imply:

TOLL53 C RmuSetEap(TOLY s

Sethp(S))'

SupSEigsa(SetEzp(S)) of
C RmuSetExp( TL%E“’TS*‘ ).

Iltem 3 andSUT
Tiosa

ltem 1 imply: TL7;o5
Item 4 andTester < SetEzp(S) imply thatSUT
accepts the behavior &UT.

FromX and (Tester < SetExzp(S)), we have determined
a SE;sa SUT that accepts the behavior 80T and s.t.
SEiosa SEiosa
OLg5m(s) = OLsys™- Therefore, we have'.
C.2. PROOFOF: Y = X
Let RmvTime(x) be the operation defined as follows:
if A (61,7’1)(62,7‘2)"'(ei,Ti)'-', then
RmuTime(\) = e1ea---€; -

1. We consideA € TOL75.

2. In Sect. B.4 we have shown that:
TOLg* = RmuvSetEBep(TOL w2 o).

The existence ofU/T that accepts the behavior of
SUT implies: TL753 C RmuSetExp(TLas*),
and thus TOLT55 C RmuSetExp( TOLS ).

i D SEiosa
ltems 1 and 3 imply3\ € TOLg,/s* such that
A = RmuSetExp(\).
N € TOLZ s in ltem 4 implies:
N = RmvTime(N) € OLE 5.

: 9 SEiosa
Y and Item 5 imply:\” € OLSetEmp(S)'

Item 6 and the fact that” = RmuvTime()\’) imply:

SEiosa
Ne TOLSetExp(S) '
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8. Items 2 and 7 imply:
A\ = RmuSetExp(N) € TOLg*™*.

FromY and Item 1, we have deduced Item 8. Therefore,
we haveX. QED

D. PROOFS OF LEMMAS 6.2

AND 6.3

Let SpecTP 4 denote the part ofpecTP (obtained in
Step 1) that leads to a locatioh and SpecTP"ip=»  de-
note the part ofSpecTP5Fo== (obtained in Step 2) that
leads to a statd.

6.1,

D.1. PROOF OF LEMMA 6.1
1. WhenSUT executes a tracg that leads to a state
p € Pass, then\ conforms (w.r.t. confsg, ., ) to
SpecTPSFigsa

iosa

. Prop. 5.1 and item 1 imply that whe8UT execu-
tes a trace\ that leads t@ € Pass, then thelUT
has executed a timed tragethat conforms (w.r.t.

confr, . ) to SpecTP 4.

. ltem 2 andTOL g © TOLg2,p, imply that
whenSUT executes a trackthat leads tp € Pass,
then thelUT has executed a timed trapethat con-
forms (w.r.t. confr, . ) to SpecTP.

. ltem 3 andTOLgsp, = TOLge::, imply that

whenSUT executes a tracethat leads tp € Pass,

then thelUT has executed a timed trapethat con-
forms (w.r.t. confr, _, ) to Spec.

. Item 2 implies that wheBUT executes a trackthat
leads top € Pass, then thelUT has executed a ti-
med traceu that leads to locatior of TP.

6. Items 4 and 5 imply Lemma 6.1. QED

D.2. PROOF OF LEMMA 6.2
1. WhenSUT executes a track that leads to the state
fail, then\ does not conform (w.r.tconfsg, _, ) to
S’pecTPSE‘Osa .

. Prop. 5.1 and item 1 imply that wh&UT executes
a trace) that leads tofail, then thelUT has exe-
cuted a timed tracg that does not conform (w.r.t.
confr, ) to SpecTP.

iosa

. ltem 2 andTOLg>sp = TOLge:, imply that
whenSUT executes a trackthat leads tgf ail, then
thelUT has executed a timed tragethat does not

conform (w.r.t. confr, _ ) to Spec. QED
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D.3. PROOF OF LEMMA 6.3
1. WhenSUT executes a traca that leads to a state
z € Inconc, then)\ conforms toSpecTPSFie= but
no stated can be reached aftex

2. Prop. 5.1 and item 1 imply that wh&WUT executes
a trace) that leads tor € Inconc, then thelUT
has executed a timed tragethat conforms (w.r.t.
confr, ) to SpecTP but no locationd can be rea-
ched aften..

3. Item 2 andTOLg %, = TOLg<::, imply that
when SUT executes a trace that leads tor €
Inconc, then thelUT has executed a timed trace
w that conforms (w.r.t. confr, _, ) to Spec but no
locationA can be reached after.  QED

48



