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Abstract
Test synthesis (or test generation) can be described as

follows: from a formal specification of an implementa-
tion under test (IUT ), and from a test purpose describing
behaviors to be tested, the aim is to synthesize test cases
to be executed in order to check whether theIUT con-
forms to its formal specification, while trying to control
the IUT so that it satisfies the test purpose. In this paper,
we study the synthesis of test cases for symbolic real-time
systems. Bysymbolic, we mean that the specification of
the IUT contains variables and parameters. And byreal-
time, we mean that the specification of theIUT contains
timing constraints. Our method combines and generalizes
two testing methods presented in previous work, namely:
1) a method for synthesizing test cases for (non-symbolic)
real-time systems, and 2) a method for synthesizing test
cases for (non-real-time) symbolic systems.

Keywords: Test cases synthesis, real-time test, sym-
bolic test,timed input output symbolic automata,test ar-
chitecture.

1. INTRODUCTION
Testing is an essential step in the design of software

systems, andconformance testing[1] is one of the most ri-
gorous testing techniques. The objective of conformance
testing is to determine whether theIUT respectsa for-
mal specification of the desired behavior of theIUT . The
notion ofconformance relationis used in order to define
rigorously what we mean by “respects”. In the sequel,
the termtestingmeansconformance testing. The main
test activities consist of:synthesizing(or generating) test
cases from the specification, andexecutingthem on the
IUT . We study both activities by proposing: a synthesis
method, as well as an architecture for the execution of the
synthesized test cases. Among existing work on testing,
we are essentially interested by the following two com-
plementary works:

Real-time testing (or test of real-time systems): the spe-
cification of theIUT containsorder as well asti-
mingconstraints of the interactions between theIUT
and its environment. This is the case for example
of many safety-critical applications, such as patient
monitoring systems and air traffic control systems.
Several real-time testing methods have been develo-
ped in the last years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Symbolic testing (or test of symbolic systems): the spe-
cification of theIUT contains variables and parame-
ters. This is the case for example of most indus-
trial softwares. A few symbolic testing methods have
been developed [13, 14, 15]. These methods aim at
avoiding the synthesis of test cases where all varia-
bles are instantiated. Note that symbolic techniques
have also been developed in other areas than testing,
e.g., model-checking [16] and diagnosis [17].

This paper is motivated by the fact that each of the above
two types of testing is unsatisfactory when theIUT is
both real-time and symbolic. And our objective is indeed
to propose a test synthesis method which combines the
two types of testing. That is, the method to be developed
can be used to synthesize test cases for real-time systems
without instantiating their variables (i.e., without enume-
rating all the possible values of variables). We first de-
fine the model oftimed input output symbolic automata
(Tiosa), that adds time to theIOSTS model of [13] and
is used to model the specification of theIUT . We use a
two-step synthesis method:

Step 1: we express the test problem into a non-real-time
form, by transforming aTiosa into an automaton
called Set-Exp-IOSA (SEiosa). SetExp denotes the
transformation, andSetExp(A) is theSEiosa obtai-
ned by applyingSetExp to aTiosa A.

Step 2: we adapt the non-real-time symbolic test method
of [13].
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An advantage of our method is its simplicity, due to
the fact that the main treatment of the real-time aspect
is concentrated into the first step. A short and incom-
plete version of this paper has been published in [18]. In
Sect. 7 we will indicate the contributions of the present
paper w.r.t. [18].

The rest of the paper is structured as follows. Sect. 2
describes theTiosa model used to describe the specifica-
tion of the IUT . In Sect. 3, we define formally the test
problem to be solved. Sect. 4 introduces theSEiosa mo-
del and the transformation “SetExp : Tiosa 7→ SEiosa”.
In Sect. 5, we propose a test architecture. Sect. 6 presents
a method based onSetExp that solves the test problem.
In Sect. 7, we conclude the paper. And finally, follows an
appendix containing proofs of all lemmas and propositi-
ons.

2. TIMED IOSA (Tiosa)
In this section, we present timed input output symbo-

lic automata (Tiosa) used to model theIUT and its speci-
fication.Tiosa is a combination of timed automata of [11]
and input output symbolic transition systems (IOSTS)
of [13].

2.1. CLOCKS AND RELATED CONCEPTS

A clock ci is a real-valued variable that can be reset (to
0) when an action occurs and such that, between two
resets, its derivative (w.r.t. time) is equal to 1. Let
H = {c1, · · · , cNc

} be a set of clocks.

A Clock Guard (CG) is a conjunction of formula(s) in
the form “ci ∼ k”, whereci ∈ H, ∼∈ {<, >,≤,≥
, =}, andk is a nonnegative integer. A CG can be
the constantTrue (empty conjunction). LetΦH be
the set of CGs using clocks ofH.

A clock reset is a (possibly empty) subset ofH, and2H

is the set of clock resets.

2.2. DATA AND RELATED CONCEPTS

A variable is a data whose value can be set when an ac-
tion occurs. LetV be a set of variables.

A constant is a data whose value is set once at initial
time. LetC be a set of constants.

A communication parameter (or more briefly, apara-
meter) is a data which is transmitted as a parameter
of an action. LetP be a set of parameters.

A Data Guard (DG) is a boolean expression using data
of D = V ∪ C ∪ P . Let ΓD be the set of data guards
(we consider thatTrue ∈ ΓD).

A Variable Assignment (VA) is a (possibly empty) set
of assignmentsv := E, wherev ∈ V andE is an
expression depending onD. Let ΛD be the set of
VAs.

Let alsoType(x ) denote the domain of definition ofx ∈
D.

2.3. SYNTAX OF Tiosa

A Tiosa is defined by(L, l0,H,D, I, Σ, T ), where:L
is a finite set of locations,l0 is the initial location,H is a
finite set of clocks,D = V ∪C∪P is a finite set of data,I
is a boolean expression depending ofV ∪ C called initial
condition,Σ is a finite set of actions, andT is a transition
relation. There are three kinds of actions: the reception of
an input, the sending of an output, and the occurrence of
an internal action. In the sequel, these three kinds of acti-
ons will be abbreviated by “input”, “output” and “internal
action”, respectively. To each input or outputa ∈ Σ is
associated a (possibly empty) tuple(p1, · · · , pk) of para-
meters denotedθa . Signature ofa is denotedSig(a) and
defined as follows:

Sig(a) =

{

〈Type(p1 ) · · ·Type(pk )〉 if a = input or output
empty tuple ifa = internal action

We will use the following notation for actions: an in-
put i containing a tupleθi is written ?i(θi), an outputo
containing a tupleθo is written!o(θo), and an internal ac-
tion a (without tuple) is writtenǫa. θi andθo are omitted
when empty. Inputs and outputs areobservable, whereas
internal actions areunobservable.

A transition of Tiosa is defined by Tr =
〈q; r; σ; θσ ;CG ;Zσ;DG;VA〉, where: q and r are
origin and destination locations;σ is an action in the
form ?i, !o or ǫa; θσ is the (possibly empty) tuple of
parameters associated toσ; CG andZσ are a clock guard
and a clock reset; andDG andVA are a data guard and
a variable assignment defined inV ∪ C ∪ θσ.1 The index
σ in Zσ means that the clock reset of a transition depends
only on its action, that is, all transitions with the same
event will also have the same clock reset. This restriction
guarantees determinizability ofTiosa [11].

Fig. 1 illustrates the definition ofTiosa through an
example. Locations are represented by nodes, and a tran-
sition Tr = 〈q; r; σ; θσ ;CG ;Zσ;DG;VA〉 is represented
by an arrow linkingq to r and labeled in 3 lines by:σ(θσ),
(CG ;Zσ) and(DG ;VA). TheCG andDG True and the
absence ofZσ or VA are indicated by “-”.x, p, m are in-
tegers,Σ = {φ, α, β, ρ}, H = {c1}, V = {x}, C = {p},
andP = {m}. φ cannot be an internal action because it
contains parameterm, and the other actions can be of any
type.

1Note that DG and VA of a transition Tr =
〈q; r;σ; θσ; CG; Zσ;DG;VA〉 are defined inV ∪ C ∪ θσ and
not in the wholeD = V ∪ C ∪ P
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Figure 1. Example ofTiosa

2.4. SEMANTICS OF Tiosa

At time τ0 = 0, theTiosa A = (L, l0,H,D, I, Σ, T )
is at locationl0 with all clocks equal to0, and variables
and constants taking values such thatI evaluates toTrue.
A transition Tr =〈q; r; σ; θσ ;CG ;Zσ;DG;VA〉 of A is
enabledwhenq is the current location and bothCG and
DG evaluate toTrue; otherwise, Tr isdisabled. From
this locationq, the actionσ (containing parameters ofθσ)
can be executed only when Tr is enabled2; and after the
execution ofσ: locationr is reached, the clocks inZσ

(if any) are reset, and the assignments inVA (if any) are
applied.

For the example of Fig. 1, letδu,v be the delay
between actionsu andv:

• The Tiosa is initially in location l0. At the occur-
rence ofφ(m), locationl1 is reached and variablex
is assigned with the value ofm.

• Froml1, theTiosa reachesl2 at the occurrence ofα.

• From l2, theTiosa reachesl3 or l4 at the occurrence
of β. l3 is reached only ifδα,β < 3 andx ≥ p, and
l4 is reached only ifδα,β > 2 andx ≤ p.
We see that there is a nondeterminism when2 <

δα,β < 3 andx = p.
x is incremented whenl4 is reached.

• Froml3, theTiosa executes nothing.

• From l4, theTiosa reachesl1 at the occurrence ofρ.
We haveδα,ρ > 3.

The semantics of aTiosa A can also be defined by
the set of timed traces accepted byA. Here are a few
necessary definitions:

A timed action is a pair(e, τ) wheree is an action and
τ is the instant of time whene occurs. Whene is
an input (resp. output, internal) action, then(e, τ) is
called timed input(resp. timed output, timed inter-
nal) action.

2But when Tr is enabled,σ is not necessarily executed.

A timed sequenceis a (finite or infinite) sequence
of timed actions “(e1, τ1) · · · (ei, τi) · · ·”, where
0 < τ1 < · · · < τi < · · ·.

A timed trace is obtained from a timed sequence by re-
moving all its timed internal actions.

Acceptance of a timed sequenceλt =
(e1, τ1)(e2, τ2) · · ·, for e1, e2, · · · ∈ Σ. Let
n be the length ofλt (n can be infinite), and
λt

i = (e1, τ1) · · · (ei, τi) be the prefix of λt

of length i, for 0 ≤ i ≤ n (i is finite). λt is
accepted byA iff λt is the empty sequenceλt

0

or A has a sequence of lengthn of consecutive
transitionsTr1Tr2 · · · starting atl0 and such that
∀i = 1, 2, · · · , n: the action ofTri is ei and, after
the execution ofλt

i−1, Tri is enabled at timeτi.
Intuitively, λt corresponds to an execution ofA.

Acceptance of a timed trace: Let µt =
(e1, τ1)(e2, τ2) · · · be a timed trace. µt is ac-
cepted byA iff µt is obtained by removing all the
timed internal actions of a timed sequence accepted
by A. Intuitively, µt corresponds to the observation
of an execution ofA.

We can now introduce the notion of timed observable
language of aTiosa:

Definition 2.1 TheTimed observable language of aTiosa

A (TOLTiosa

A ) is the set of timed traces accepted byA.
That is,TOLTiosa

A models the observable behavior ofA.

The class ofTiosa that we will consider obeys to the
following hypothesis:

Hypothesis 2.1 Infinite timed sequences accepted by a
Tiosa A are non-zeno, i.e., an infinite number of actions
cannot be executed into a finite time interval.

Remark 2.1 Unlike [19], with our model, consecutive
actions cannot occur at the same time. We think that this
is not a restriction, because we consider that if an action
e is followed an actionf , thene andf arenotsimultane-
ous.

3. TEST PROBLEM TO BE SOLVED

In order to clarify the test problem to be solved, we
need to define formally a conformance relation between
Tiosa and the notion of test purpose. A test hypothesis is
also necessary.

33



Ahmed Khoumsi On Synthesizing Test Cases in Symbolic
Real-time Testing

3.1. CONFORMANCE RELATION BETWEEN Tiosa

Let I andS denote twoTiosas over the same alpha-
bet Σ. We define the following conformance relation
I confTiosa

S , whereλ is a timed trace, “.” stands for
concatenation,o is an output action ofΣ andτ is its oc-
currence time:

Definition 3.1 I confTiosa
S is read “I conforms toS ”

and means:∀λ ∈ TOLTiosa

S ,
(λ·(o, τ) ∈ TOLTiosa

I ) ⇒ (λ·(o, τ) ∈ TOLTiosa

S ).

The intuition of “I confTiosa
S ” is that after an execution

of theIUT (modeled byI ), theIUT can generate an out-
puto at timeτ only if S acceptso at timeτ .

In order to give a simpler definition ofconfTiosa
, we

will first define theinput-completionof Tiosa. Let Σ? be
the set of inputs of the alphabetΣ, andUniv be the “uni-
versal”Tiosa acceptingall the timed traces overΣ. That
is, TOLTiosa

Univ contains every timed trace overΣ. The fol-
lowing definition is inspired from [20, 21].

Definition 3.2 The input-completion of a
Tiosa A = (L, l0,H,D, I, Σ, T ) is a Tiosa

InpComp(A) that contains all the timed traces of
A, as well as all the timed traces that diverge from the
timed traces ofA by executing inputs not accepted byA.
Formally,InpComp(A) is aTiosa such that:

TOLTiosa

InpComp(A) = TOLTiosa

A ∪

(
⋃

w∈TOL
Tiosa

A
,a∈Σ?,w·a6∈TOL

Tiosa

A
,x∈TOL

Tiosa

Univ

w·a·x).

A is said input-complete iffA = InpComp(A). Intuiti-
vely, an input-completeTiosa accepts every input at any
time.

Lemma 3.1 3 I confTiosa
S ⇔

I confTiosa
InpComp(S ).

Lemma 3.2 4 If S is input-complete then:I confTiosa
S

⇔ TOLTiosa

I ⊆ TOLTiosa

S .

Lemma 3.1 implies that we can replace aTiosa S by
its input-completion before checking if aTiosa I con-
forms to it, w.r.t. confTiosa

. Lemma 3.2 means that if
S is input-complete, thenconfTiosa

is simplified into an
inclusion of timed observable languages ofTiosa. Based
on these two lemmas, an interesting approach would be to
checkI confTiosa

InpComp(S ) instead ofI confTiosa
S .

However, Def. 3.2 is not constructive and we do not know
how to computeInpComp(S )) from aTiosa S in the ge-
neral case. Hence, we will use the following hypothesis:

Hypothesis 3.1 In “ I confTiosa
S ”, we assumeS input-

complete.

3Proof in Section A.1
4Proof in Section A.2

Note that Lemma 3.1 and Hyp. 3.1 are inspired from
their non-real-time and non-symbolic (i.e., without clocks
and data) version in [20].

Remark 3.1 In the simple case whereS has no internal
action and is deterministic, its input-completion can be
simply computed as follows:

1. A trapTL is added toS ; by trap we mean a loca-
tion such that for every actionσ, TL has a self-loop
transition 〈TL;TL; σ; θσ;True; ∅;True; ∅〉. That
is, when a trap is reached, then it is never left and
every action is executable from it at any time.

2. For every locationl and every inputi of S , a non-
specified transition
〈l;TL; i; θi ;CG ; ∅;DG; ∅〉 is added toS ; by non-
specifiedwe mean that the guardsCG andDG de-
fine the domain in whichi is notenabled inl of S .

Therefore, Hyp. 3.1 is not restrictive when we are in the
case of Remark 3.1. There exist many real examples in
this case. But we agree that there are also many real exam-
ples containing internal actions. For these examples, we
can try to input-complete the specification manually by
using our intuition, but we have no guarantee of success.
This issue is being studied presently.

3.2. TEST PURPOSE, AND TEST HYPOTHESIS

In order to definetest purpose, let us first define the
notion ofcompleteness:

Definition 3.3 ATiosa A = (L, l0,H,D, I, Σ, T ) is said
to becomplete iff: ∀l ∈ L and∀e ∈ Σ, e is enabled inl
for every possible clock value and data value. Intuitively,
a completeTiosa accepts every (input, output or internal)
action at any time.

Definition 3.4 A test purposeis aTiosa TP used to select
the behaviors to be tested. By analogy with [22, 13, 11],
TP is complete, deterministic, and equipped with two sets
of trap5 locationsA andR (for AcceptandRefuse). Ti-
med Sequences to be considered in testing activity are
those terminating in and not traversing a locationA, whe-
reas timed sequences to be ignored are those terminating
in or traversing a locationR.

In the above Def. 3.4, bycomplete, we mean that
TestPurp accepts every (input, output, and internal) ac-
tion at any time. A test purpose should be simple because
the objective of its use is to select a relatively small part
of the specification in order to concentrate only in certain
aspects (e.g., scenarios, properties) of the specification.
Ideally, a test purpose should correspond exactly to what
the user has in mind to test. Generally, this intention is de-
fined by scenarios (i.e., executions) or by properties (i.e.

5The notion oftrap has been defined in Remark 3.1
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formulas, e.g. in temporal logic). We have selectedTiosa

to describe test purposes; this model gives enough expres-
siveness for describing test purposes defined by scenarios
with timing constraints and variables. For test purposes
defined by a property, we will need to construct theTiosa

that allows to check the given property. This process is in
general iterative: a firstTiosa is constructed grossly and is
refined repeatedly.

We will also use the followingtest hypothesisinspired
from [23]:

Hypothesis 3.2The behavior of theIUT can be descri-
bed by a (possibly unknown) input-completeTiosa IUT .

We think that Hyp. 3.2 is realistic because the model
of Tiosa is sufficiently rich for modeling many real-time
discrete event systems using parameters.

3.3. CLARIFICATION OF THE TEST PROBLEM

We can now state our objective: Given twoTiosas
Spec andTP over the same alphabet, modeling the spe-
cification and the test purpose respectively, the aim is to
synthesize an automatonCTG (Complete Test Graph)
and then to extract test cases fromCTG .

The test cases are intended to be executed on theIUT
in order to check whetherIUT confTiosa

Spec. We as-
sumeSpec input-complete (see Hyp. 3.1).CTG is an
interesting automaton because it contains all test cases of
Spec leading to locationsA of TP .

The test system takes into accountTP by ignoring
every executionλ of the IUT accepted bySpec (i.e.,λ ∈
TOLTiosa

IUT ∩TOLTiosa

Spec ) and such that: a locationR of TP

may be reached byλ, or no locationA of TP is reachable
afterλ by Spec.

4. TRANSFORMATION OF Tiosa INTO
SEiosa

Our test problem will be solved in Sect. 6 by using
a transformation, calledSetExp, that is described in de-
tail in [24] and applied in [10, 11, 25, 26, 27]. In these
references,SetExp basically transforms a timed automa-
ton (TA) into a finite state automaton by adding to the
structure of theTA two additional types of actions:Set

andExp, that capture the temporal aspect of theTA. In
the present article, we applySetExp to Tiosa instead of
TA. When applyingSetExp to Tiosa, the semantics of
data and their DG and VA is ignored, that is, they are pro-
cessed just like action labels. Their semantics is taken
into account when using (interpreting, processing, . . . )
the automaton calledSEiosa that results fromSetExp. In
this Section, we present theSEiosa model and illustrate
SetExp by an example. LetA be aTiosa over an alpha-

betΣ andSetExp(A) be theSEiosa obtained by applying
SetExp to A.

4.1. ACTIONS Set AND Exp

Set(ci , k) means: clockci is reset (to 0) and will expire
whenci evaluates tok. And
Set(ci , k1 , k2 , · · · , kp), k1 < k2 < · · · < kp, means
thatci is reset and will expire several times, when its
value is equal tok1, k2, · · · , kp, resp.

Exp(ci , k) means: clockci evaluates tok and thus expi-
res.

Therefore, Set(ci , k) is followed (after a de-
lay k) by Exp(ci , k), and Set(ci , k1 , k2 , · · · , kp) is
followed (after delays k1, · · · , kp) by Exp(ci , k1 ),
Exp(ci , k2 ), · · · ,Exp(ci , kp). When aSet(ci ,m) oc-
curs, then allExp(ci , ∗) which were expected before this
Set(ci ,m) are canceled.

4.2. BASIC PRINCIPLE OF SetExp

In a Tiosa A, a clockc is reset with the objective to
compare later its value to (at least) one constant, sayk.
The actionSet(c, k) is very convenient for that purpose,
because it resetsc and programsExp(c, k) which is a no-
tification thatc evaluates tok. When applied to aTiosa A,
SetExp is realized in two steps as follows:

Step 1 : To replace each clock reset inA by the appro-
priateSet action.

Step 2 : To construct a finite state automaton, denoted
SetExp(A), that accepts sequences containing acti-
ons ofA andSet actions obtained in Step 1 and the
correspondingExp actions, and such that the order
of actions in each accepted sequence respects order
and timing constraints ofA.

In order to illustrateSetExp by a trivial example, let
us consider the following two specifications. Specifica-
tion 1: a task must be realized in less than two units of
time. Specification 2: at the beginning of the task an
alarm is programmed so that it occurs after two time units,
and the task must be terminated before the alarm. Cle-
arly, these two specifications define the same timing cons-
traint. Intuitively,SetExp generates the second specifica-
tion from the first one. The programming of the alarm
corresponds to aSet action, and the occurrence of the
alarm corresponds to anExp action.

4.3. TRANSITIONS OF SEiosa

We have seen in Sect. 2 that a transition ofTiosa is de-
fined by 〈q; r; σ; θσ ;CG ;Zσ;DG;VA〉 and is represen-
ted in a figure by an arrow linkingq to r and labeled by:
σ(θσ), (CG ;Zσ) and(DG ;VA). Let: η be an action of
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the alphabetΣ of theTiosa A with its parameters,S (resp.
E) be a set ofSet (resp.Exp) actions, andoccurrence ofS
(resp.E) mean the simultaneous occurrences of all the ac-
tions inS (resp.E). Transitions of theSEiosa SetExp(A)
can be categorized into three types as follows:

Type 1 : a transition labeled(E) represents the occur-
rence ofE .

Type 2 : a transition labeled by(η) or (η,S), and by a
DG and aVA. (η) represents the occurrence ofη,
(η,S) represents the simultaneous occurrences ofη

andS, andDG andVA have the same semantics as
in Tiosa. A transition TR of Type 2 in theSEiosa

SetExp(A), corresponds to a transition Tr ofA such
that: Tr and TR have the sameη andDG andVA,
and Tr resets the clocks in theS (if any) of TR.

Type 3 : transition labeled by(E , η) or (E , η,S), and by
a DG and aVA. (E , η) represents the simultaneous
occurrences ofE andη, and(E , η,S) represents the
simultaneous occurrences ofE , η andS. A transition
TR of Type 3 in theSEiosa SetExp(A) corresponds
to simultaneous executions ofE and a transition Tr
of A such that: Tr and TR have the sameη andDG

andVA, and Tr resets the clocks in theS (if any) of
TR.

Remark 4.1 A transition of type 3 corresponds to the si-
multaneity of two transitions of type 1 and 2, respectively.

Definition 4.1 An Exp-Transof SetExp(A) is a transi-
tion of type 1 or 3, i.e., whose label contains one or seve-
ral Exp actions.

4.4. TWO EXAMPLES OF APPLICATION OF SetExp :
Tiosa 7→ SEiosa

4.4.1. Example 1:We illustrate hereSetExp by an
example without data. We consider the specification:
1 ≤ δa,b < 3, whereδa,b is the delay between actions
a and b. In a Tiosa, such a constraint is expressed by:
1) using two transitions Tr1 and Tr2 that represent the oc-
currences ofa andb, respectively; 2) resetting a clockc at
the occurrence of Tr1; and 3) associating to Tr2 the clock
guard (CG): ((c ≥ 1) ∧ (c < 3)). This timing cons-
traint can be expressed differently as follows: i) the reset
“c := 0” of Tr1 is replaced by aSet(c, 1 , 3 ) (which will
be followed byExp(c, 1 ) andExp(c, 3 )), and ii) theCG

“((c ≥ 1)∧(c < 3))” of Tr2 becomes “Tr2 occurs after or
simultaneously toExp(c, 1 ) and beforeExp(c, 3 )”. This
timing constraint will be represented in aSEiosa by the
following two sequences, where consecutive actions are
separated by “·” and simultaneous actions are grouped in
“〈〉”.):

• “〈a,Set(c, 1 , 3 )〉·Exp(c, 1 )·b·Exp(c, 3 )”, i.e., Tr2
occursafter Exp(c, 1 ).

• “〈a,Set(c, 1 , 3 )〉·〈Exp(c, 1 ), b〉·Exp(c, 3 )”, i.e., Tr2
occurssimultaneously toExp(c, 1 ).

4.4.2. Example 2:For theTiosa A of Fig. 1, we ob-
tain theSEiosa SetExp(A) of Fig. 2, whereSet2 ,3 is an
abbreviation of?Set(c1 , 2 , 3 ), Expi is an abbreviation
of !Exp(c1 , i) for i = 2, 3, x++ means “x is incremen-
ted by 1”, and the constantDG True and the absence of
VA are indicated by “-”. Transitions of Type 1 are those
labeledExpi . Transitions of Types 2 and 3 are labeled
in two lines, where Line 2 consists of(DG ;VA). Tran-
sitions of Type 2 are those labeledφ(m), (α,Set2 ,3 ), β

or ρ in Line 1. Transitions of Type 3 are those labeled
(Expi , β) in Line 1, and correspond to the simultaneous
executions ofExpi andβ. We do not indicate whether
each actionφ(m), α, β or ρ is an input, an output or an
internal action, because this aspect is irrelevant for the
comprehension ofSetExp.

Remark 4.2 Clocks are real-valued variables although
they are compared to (nonnegative) integers, the latter
being considered just as particular reals.SetExp remains
applicable if clocks are compared to reals.
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Figure 2.SEiosa SetExp(A) obtained from theTiosa A of Fig. 1

4.5. SYNTAX OF SEiosa

Let A = (L, l0,H,D, I, Σ, T ) be aTiosa andB =
SetExp(A) be the correspondingSEiosa. Thesyntaxof
B can be defined byB = (Q, q0,D, I, Λ, Ψ), where:Q
is a finite set of states,q0 is the initial state,Λ is a finite
alphabet that labels the transitions ofB, Ψ is a transition
relation, andD andI are the same as those used in the
definition ofA (see Sect. 2.3). A transition ofB is syn-
tactically defined by TR =〈q; r; µ;DG ;VA〉, where: q

andr are origin and destination states;µ consists of the
action(s) of TR; andDG andVA are a data guard and a
variable assignment.DG andVA are always empty for
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transitions of Type 1 (see Sects. 4.3 and 4.4).Λ is an
alphabet consisting of labels of transitions of types 1, 2
and 3 (see Sect. 4.3).

4.6. SEMANTICS OF SEiosa

Initially, theSEiosa B = (Q, q0,D, I, Λ, Ψ) is at state
q0 with all clocks ofH equal to0, and variables and cons-
tants taking values such thatI6 evaluates totrue. A tran-
sition TR =〈q; r; µ;DG;VA〉 isenabledwhenq is the cur-
rent state andDG (if any) evaluates totrue; otherwise,
TR is disabled. From this stateq, µ (consisting of one
or more actions) is executed only when TR is enabled;
and after the execution ofµ: Stater is reached, and the
assignments inVA (if any) are applied.

Let sequence ofSEiosa denote a sequence “E1E2 · · ·”,
where E1, E2, · · · ,∈ Λ; and let atrace of SEiosa be
obtained from a sequence ofSEiosa by removing all
its internal actions. The semantics of aSEiosa B =
(Q, q0,D, I, Λ, Ψ) can also be defined by the set of se-
quences and traces accepted byB:

Acceptance of a (finite or infinite) sequence
λ = E1E2 · · ·, for E1, E2, · · · ∈ Λ. Let n be the
length ofλ (n can be infinite), andλi = E1E2 · · ·Ei

be the prefix ofλ of length i, for 0 ≤ i ≤ n (i is
finite). λ is accepted byB iff :

• eitherλ is the empty sequenceλ0;

• or there exists a sequence of transitions
Tr1Tr2 · · · of B of lengthn such that∀i =
1, 2, · · · , n: Tri is labeled byEi and, after the
execution ofλi−1, Tri is enabled.

Intuitively, λ corresponds to an execution ofB.

Acceptance of a traceµ : µ is accepted byB iff µ is ob-
tained by removing the internal actions of a sequence
accepted byB. Intuitively, µ corresponds to the ob-
servation of an execution ofB.

We can now introduce the notion of Observable Lan-
guage of aSEiosa:

Definition 4.2 The observable language of aSEiosa B

(OLSEiosa

B ) is the set of traces accepted byB. That is,
OLSEiosa

B models the observable behavior ofB.

Note thatOLSEiosa

B implicitly respects the following
Consistency condition: everySet(c, k) and its corres-
pondingExp(c, k) are effectively separated by timek.

We define the following conformance relation
confSEiosa

relating twoSEiosas:

6H is the set of clocks of theTiosa A such thatB = SetExp(A).

Definition 4.3 Let I ′ and S ′ be two SEiosas over
the same alphabet:I ′

confSEiosa
S ′ ≡ (OLSEiosa

I ′ ⊆

OLSEiosa

S ′ ).

We terminate this section by presenting a fundamen-
tal property ofSetExp. Let TL = AddTime(L) be a ti-
med language obtained from a languageL by associating
a time to each action such that the consistency condition
is respected. LetRmvSetExp(TL) be obtained from a
timed languageTL by removing all theSet andExp ac-
tions, if any. We have the following proposition of equi-
valence:

Proposition 4.1 7

RmvSetExp(AddTime(OLSEiosa

SetExp(A))) = TOLTiosa

A .

Intuitively, Proposition 4.1 states that from a behavio-
ral point of view, there is no difference betweenA and
SetExp(A) for an observer who does not see (or ignores)
Set andExp actions. In a sense,SetExp(A) does nothing
but add some new actions (Set andExp) to A that capture
the relevant temporal aspect ofA. As we will see in the
next section, in our test method theseSet andExp are
physical actions that are produced by the test system.

5. TEST ARCHITECTURE , AND A PRO-
POSITION

Given twoTiosas Spec andTP over the same alpha-
bet, we have clarified in Sect. 3.3 that our objective is
to synthesize an automatonCTG (Complete Test Graph)
from which test cases are extracted. The latter are inten-
ded to be executed in order to study the conformance of
the IUT to the part ofSpec corresponding toTP . CTG

will not be directly computed on theTiosasSpec andTP ,
but rather on aSEiosa computed from the twoTiosas. In
order to make the link betweenCTG and theIUT , we
use the test architecture represented in Fig. 3 and propo-
sed in [11]. It comprises theIUT , a Tester, and a Clock-
Handler that mimics the timing aspect of theIUT . More
precisely, we have:

Clock-Handler receivesSet actions from the Tester and
sendsExp actions to the Tester. It respects the con-
sistency condition (see end of Sect. 4.6). It can be
seen as a Timer module that upon the reception of
a Set action, activates a timer and sends back to
the Tester the correspondingExp action when the ti-
mer elapses. Note that Clock-Handler guarantees the
consistency condition, i.e.,Set(c, k) and the corres-
pondingExp(c, k) are separated by timek.

7Proof in Section C
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Tester executes test cases that are derived from aSEiosa

and is tagged with theSet andExp actions of this
SEiosa. It sends the inputs and receives the outputs of
the IUT , it also sendsSet actions to Clock-Handler
and receivesExp actions from Clock-Handler. The
timing constraints that the Tester has to deal with are
performed via its interaction with the Clock-Handler
module.

Tester

IUT
SUT

input output

Clock−Handler
Exp(c,k)

Set(c,k)

Figure 3. Test architecture

Here are a few necessary notations:

Notation 5.1 If L is a language, thenL denotes the prefix
of L. That is,L contains everyfinite sequence that is a
prefix of a sequence contained inL.

Notation 5.2 Tester � K means that during a test exe-
cution, the Tester generates onlySet actions that are ac-
cepted by theSEiosa K. More formally, it means:

∀λ ∈ OLSEiosa

K , ∀U action ofIUT , ∀S set ofSet actions:
after the execution ofλ, the Tester generatesS simulta-

neously toU (if any) iff λ·(U,S) ∈ OLSEiosa

K .

We can now state the next proposition which ma-
kes the link betweenconfSEiosa

(relating twoSEiosas)
and the real-time conformance relationconfTiosa

(rela-
ting two Tiosas), whereSUT (System Under Test) con-
sists ofIUT and Clock-Handler,IUT is theTiosa mode-
ling IUT , SUT is theSEiosa modelingSUT, andS is a
Tiosa:

Proposition 5.1 Tester � SetExp(S ) implies:
IUT confTiosa

S ⇔ (∃ SEiosa SUT accepting behavior
of SUT s.t.SUT confSEiosa

SetExp(S ).

The above proposition implies that we can
check “SUT confSEiosa

SetExp(S )” instead of
“IUT confTiosa

S ”. We have transformed the test
of a real-time symbolic system into a non-real-time form,
and thus, we can (and will) adapt a non-real-time method
of Symbolic Test Generation (STG) [13].

Here is a simple example that gives the intuition of
Prop. 5.1.S specifies that a taskT is realized in less than
two units of time.SetExp(S ) specifies that: i) at the be-
ginning of T an alarm is programmed so that it occurs
after two units of time, and ii)T is terminated before the
alarm. The programming (resp. occurrence) of the alarm

corresponds to aSet (resp.Exp) action. Tester orders the
IUT to startT and, simultaneously, programs the alarm
by sending aSet(c, 2 ) to Clock-Handler. Tester dedu-
ces thatIUT has conformed toS iff it receivesExp(c, 2 )
from Clock-Handlerafter it receives from theIUT the in-
dication thatT is terminated.

The proposed architecture is applicable only if tran-
sitions executing internal (i.e., unobservable) actions do
not reset clocks. In fact, in order to generateSet acti-
ons, the Tester needs to observe every action to which is
associated a clock reset. Hence the following hypothe-
sis meaning that there is no timing constraint relatively to
unobservable actions:

Hypothesis 5.1Transitions executing internal actions do
not reset clocks.

We argue that there exist many real examples respec-
ting Hyp. 5.1, because in many cases, timing constraints
that interest the user ofIUT are defined between actions
that (s)he observes.

6. METHOD OF TEST GENERATION

Let us propose a test method that can be used to
synthesize test cases for real-time systems without enu-
merating all the possible values of their variables. The
proposed method combines, and thus extends, two com-
plementary test methods: 1) a test method applica-
ble to (non-symbolic) real-time systems [11], and 2) a
test method applicable to (non-real-time) symbolic sys-
tems [13]. It consists of five steps outlined in Fig. 4 and
described in subsections 6.1 to 6.5. Its inputs areSpec

(input-complete, from Lemma 3.1 and Hyp. 3.1) andTP

(complete, from Def. 3.4). In a first step, we compute
a Tiosa SpecTP that accepts (all and only) the timed se-
quences ofSpec and indicates the locations correspon-
ding to the locationsA andR of TP . Then, we synthe-
size in three steps (2 to 4) a complete test graph (CTG),
from which test cases are extracted in Step 5. Test cases
are intended to be executed on theIUT in order to check
whether:IUT confTiosa

SpecTP . The indicationA and
R is used to ignore every execution of theIUT that leads
to a locationR or from which no locationA is reachable.
The fact thatTP is deterministic and complete implies
thatSpec is input-completeiff SpecTP is input-complete.

An advantage of our method is its simplicity because
the main treatment of the real-time aspect is concentrated
in Step 2. Steps 1, 3 and 4 constitute a slight adaptation of
the (non-real-time) symbolic test generator (STG) [13].8

Step 5 is inspired from [11].

8Actually, STG is a software tool. But here, STG denotes the theoretical
method that underlies the tool.
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Figure 4. Steps of the test method

Spec andTP of Figure 5 will be used to illustrate the
five steps of the test method. These twoTiosa are defined
over the alphabetΣ = {?φ, ?σ, !ρ, ǫa, ǫb}. Data ofSpec

areH1 = {c1}, V1 = {x}, C1 = {p}, P1 = {m}, where
x, p, m are integers. Data ofTP areH2 = V2 = C2 = ∅,
P2 = {n}, wheren is integer. 6= x means any action of
Σ different fromx, and?∗ means any input∈ Σ (i.e.,?φ
or ?σ). Spec was not initially input-complete and we re-
present by dotted arrows the part that has been added to
makeSpec input-complete. Recall that input-completion
of Spec is justified by Lemma 3.1, and that we do not
know how to compute it in the general case (Def. 3.2 is not
constructive). In the particular example of Fig. 5, input-
completion ofSpec can be computed using Remark 3.1,
althoughSpec contains internal actions. Transitions labe-
led only by an action mean that: their (clock and data)
guards are equal to the constantTrue, and they do not
reset clocks and do not have variable assignments.

TheTP of this example means that: we intend to test
executions ofSpec terminating by the first occurrence of
!ρ in Spec (i.e. without traversing LocationTL). This
example ofTP is taken very simple (with one parameter
andno timing constraint) in order to clarify the operations
of the different steps. Recall that generally,TP should be
relatively simple because the objective of its use is to se-
lect a relatively small part of the specification in order to
concentrate only in certain aspects (e.g., scenarios, pro-
perties) of the specification. A simple test purpose defi-
ned by scenarios can be easily modeled byTiosa. In the
presence of a test purpose defined by a propertyP , we
need to transformP into a Tiosa in an iterative way: a
first Tiosa is constructed grossly and is refined repeatedly.

6.1. STEP 1 : COMPUTE THE SYNCHRONOUS PRO-
DUCT OF Spec AND TP

We compute aTiosa SpecTP that is observationally
equivalent toSpec (i.e., TOLTiosa

Spec = TOLTiosa

SpecTP ), but
SpecTP contains locations indicated byA (resp.R) that
correspond to locationsA (resp. R) of TP . For that
purpose, we need to define the synchronized product of
two Tiosas. LetAi = (Li, li0,H

i,Di, Ii, Σi, T i) where
Di = V i ∪ Ci ∪ P i, for i = 1, 2, be twoTiosas. The
synchronized product ofA1 andA2, written A1 ⊗ A2 ,
is inspired (but different) from the synchronized product
of TA [28] and the synchronized product ofIOSTS [13].
A1 ⊗ A2 is definediff the following four conditions are
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Figure 5. Example for illustrating the test method

satisfied:

1. Σ1 = Σ2. The common alphabet will then be deno-
tedΣ. This condition can be easily relaxed [13], but
we will keep it for simplicity.

2. H1 ∩H2 = ∅ [28].

3. (V1 ∪ P1) ∩ (V2 ∪ P2) = ∅, C1 ∩ P2 = ∅, and
C2 ∩ P1 = ∅ [13].

4. Each actiona ∈ Σ has the same signature inA1 and
A2 [13].

Assuming the above four conditions satisfied,A1 ⊗ A2 is
defined by(L, l0,H,D, I, Σ, T ) such that:L = L1×L2,
l0 = (l10, l

2
0),H = H1∪H2,D = V∪C∪P ,V = V1∪V2,

C = (C1∪C2)\V , P = P1∪P2, I = (I1 ∧I2), and the
set of transitionsT is defined as follows: For each pair
of transitions(〈qi; ri; σ; θσ

i;CGi;Z i
σ;DGi;VAi〉 ∈ T i,

i = 1, 2:

If θσ
1 and θσ

2 are the empty tupleǫ : then there exists a
transition〈(q1 ; q2 ); (r1 ; r2 ); σ; ǫ;CG1 ∧ CG2;
Z 1

σ ∪ Z 2
σ ;DG1 ∧ DG2;VA1 ∪ VA2〉 ∈ T .

If θσ
1 and θσ

2 are not empty : let DG1,2 (resp. VA1,2)
denote the expression obtained by replacing
in DG2 (resp. VA2) each parameter from
θσ

2 by the corresponding, same-position para-
meter from θσ

1; then there exists a transition
〈(q1 ; q2 ); (r1 ; r2 ); σ; θσ

1;CG1 ∧ CG2;
Z 1

σ ∪ Z 2
σ ;DG1 ∧ DG1,2;VA1 ∪ VA1,2〉 ∈ T .

Note that we can also proceed symmetrically by defi-
ningDG2,1 andVA2,1, instead ofDG1,2 andVA1,2.

This procedure is inspired from [13].
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In Step 1, we computeSpecTP = Spec ⊗ TP , from
which we remove the (unreachable) locations without in-
coming transitions.

Completeness ofTP implies thatSpec andSpecTP

are observationally equivalent (i.e.,TOLTiosa

Spec =

TOLTiosa

SpecTP ). Completeness ofTP and input-
completeness ofSpec imply that SpecTP is input-
complete. The effect ofSpec ⊗ TP is to determine in
Spec all the executions that correspond to locationsA and
R, respectively.

ForSpec andTP of Fig. 5, we obtain theSpecTP of
Fig. 6. LocationsL1 andA1 are equivalent in the sense
that the same behavior can be produced from them. The
difference between these two locations is that onlyA1

corresponds to LocationA of TP . Note that, in accor-
dance with the definition of synchronized product, para-
metern of TP has been removed by replacing it by para-
meterm of Spec. The symmetrical approach consists of
removingm, instead ofn.
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Figure 6. Step 1:SpecTP obtained fromSpec andTP of Fig. 5

6.2. STEP 2 : TRANSFORMING THE Tiosa SpecTP

INTO SEiosa

We transform the problem into a non-real-time form
by computingSpecTPSEiosa = SetExp(SpecTP). For
the SpecTP of Fig. 6, we obtain theSpecTPSEiosa of
Fig. 7: ?∗ denotes any input (i.e.,?φ(m) or ?σ); Σ means
any actionx ∈ Σ = {?φ(m), ?σ, !ρ, ǫa, ǫb}; Set2,3 deno-

tes?Set(c1 , 2 , 3 ); Expi denotes!Exp(c1 , i) for i = 2, 3;
(Expi, Σ) means the simultaneous occurrence ofExpi

and anyx ∈ Σ; nodes linked by a dotted line correspond
to the same location9; and states that correspond to loca-
tion A (resp.R) of SpecTP are indicated byA (resp.R).
StateA1 is equivalent to StateS1 with the difference that
S1 does not correspond to a locationA of TP . We have
not represented the states reachable fromA1 because the
sequences to be tested are those terminating in and not
traversing a stateA. In Fig. 7 and subsequent figures, if
DG evaluates totrue andVA is empty in a transition (of
Type 2 or 3), then(DG ;VA) is not represented.
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Figure 7. Step 2:SpecTPSEiosa obtained fromSpecTP of Fig. 6

6.3. STEP 3 : EXTRACTING THE OBSERVABLE

BEHAVIOR OF SpecTPSEiosa

We construct the observable behavior ofSpecTPSEiosa

in three substeps:

Substep 3a : Internal actions are eliminated by projec-
tion into the observable alphabet. For that purpose,
we canadapta procedure proposed in [13]. The re-
sult is denotedObs(SpecTPSEiosa). The adaptation
consists of a preliminary step where internal actions
in transitions of Type 3 are simply erased. After that,

9They are duplicated for the sake of clarity.
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we can use the procedure of [13] because the remai-
ning internal actions are “alone” in their transitions
(of type 2). (Recall that we consider only the case
where internal actions do not reset clocks.)

Substep 3b : Obs(SpecTPSEiosa) is determinized by
using a heuristic proposed in [13]. The result is de-
notedDet(Obs(SpecTPSEiosa)).

Substep 3c : Note that every state of
Det(Obs(SpecTPSEiosa)) corresponds to one
or several states ofSpecTPSEiosa . StatesR andA of
Det(Obs(SpecTPSEiosa)) are selected as follows:

• We callR every state corresponding to at least
one stateR of SpecTPSEiosa . Intuitively, we
ignore every execution which can correspond
to a sequence not to be tested.

• We call A every state corresponding exclusi-
vely to statesA of SpecTPSEiosa . Intuitively,
we accept an execution only when we are sure
that it corresponds to a sequence to be tested.

The result is denotedSpecTPSEiosa

OBS .

For theSpecTPSEiosa of Fig. 7, after Substep 3a, we ob-
tain Obs(SpecTPSEiosa) of Fig. 8 whereΣo means any
observable actionx ∈ {?σ, ?φ(m), !ρ}; and after Subs-
tep 3c, we obtainSpecTPSEiosa

OBS of Fig. 9.

6.4. STEP 4 : COMPUTING A COMPLETE TEST

GRAPH (CTG )
Recall that a transition ofSEiosa can be labeled as fol-

lows: (E), (σ), (σ,S), (E , σ), or (E , σ,S), (in addition to
(DG;VA)). Let:

output transition be any transition labeled in one of the
five forms and such thatσ is an output of theIUT ;

input transition be any transition labeled(σ) or (σ,S)
and such thatσ is an input of theIUT ;

mixed transition be any transition labeled(E , σ) or
(E , σ,S) and such thatσ is an input of theIUT .

We construct a Complete Test Graph (CTG) in a way
inspired (but different) from [22, 11, 13] as follows:

• Let L2A be the set of states ofSpecTPSEiosa

OBS that are
co-accessible to a locationA, i.e., from which a state
A is accessible.

• Let Pass be the set of statesA of SpecTPSEiosa

OBS .

• Let Fail = {fail} consist of a new state that is
reached by every non-specified output transition of
SpecTPSEiosa

OBS executable fromL2A.
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Figure 8. Step 3a: After elimination of internal actions from
SpecTPSEiosa of Fig. 7
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Figure 9. Step 3:SpecTP
SEiosa

OBS
obtained fromSpecTPSEiosa of

Fig. 7

• Let Inconc be the set of states ofSpecTPSEiosa

OBS that
are not inL2A∪Pass and are accessible fromL2A

by a single output transition ofSpecTPSEiosa

OBS .

• We then obtainCTG from SpecTPSEiosa

OBS by:
- adding (implicitly) stateFail and its incoming
(non-specified output) transitions,
- removing every state6∈ L2A ∪ Pass ∪ Inconc ∪
Fail, and
- removing outgoing transitions of every state∈
Pass ∪ Inconc.

To synthesize test cases executable in acceptable time
(that is, to avoid that Tester waits for an output of theIUT
during a very long time), we select a delayT and define
a fictitious event!δ whose occurrence means: no obser-
vable action occurs during a period equal toT . We then
proceed as follows:
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• we define a new stateinconcδ ∈ Inconc, and

• to every state6∈ Pass∪Inconc∪Fail in which only
output transitions of type 2 can be executed, we add
a transition labeled!δ and leading toinconcδ.

The use of!δ and inconcδ can be intuitively explained
as follows: in a test execution if nothing happens during
timeT , then the verdictInconclusive is generated.

For theSpecTPSEiosa

OBS of Fig. 9, we obtain theCTG

of Fig. 10. Transition!δ in State 4 indicates that nothing
has happened during timeT , which implies the verdict
Inconclusive. For simplicity,Fail and its incoming tran-
sitions are not represented;Fail is implicitly reached by
every non-specified transition. Note that!δ can be ea-
sily implemented by using?Set(c0 ,T ) and!Exp(c0 ,T ),
wherec0 is a clock not used for describing timing cons-
traints ofSpec andTP .

?σ , 2
( − ;           )x := m

Exp(m) Set2,3 3Exp
pass

!ρ
(         ; x++ )x    p<

δ

?φ

inconc

4

!δ
320 1

Figure 10. Step 4:CTG obtained fromSpecTP
SEiosa

OBS
of Fig. 9

Correctness of our construction ofCTG is stated by
the following three lemmas:

Lemma 6.1 10 When the Tester observes a traceλ of
SUT that leads to a statep ∈ Pass, then theIUT has
executed a timed traceµ that conforms toSpec w.r.t.
confTiosa

(i.e., µ ∈ TOLTiosa

Spec ) and that leads to a lo-
cationA of TP .

Lemma 6.2 11 When the Tester observes a traceλ of
SUT that leads to the statefail, then theIUT has exe-
cuted a timed traceµ that does not conform toSpec w.r.t.
confTiosa

(i.e.,µ 6∈ TOLTiosa

Spec ).

Lemma 6.3 12 When the Tester observes a traceλ of
SUT that leads to the statex ∈ Inconc, then theIUT
has executed a timed traceµ that conforms toSpec w.r.t.
confTiosa

but no locationA of TP can be reached after
µ.

6.5. STEP 5 : EXTRACTING TEST CASES FROM

CTG

The objective of Step 5 is to extract so-calledcontrol-
lable subgraphsof CTG . For that purpose, let us use the
following hypothesis:

10Proof in Section D.1
11Proof in Section D.2
12Proof in Section D.3

Hypothesis 6.1When desired, the Tester is capable of re-
acting more promptly than theSUT in all situations where
both are allowed to send an action to each other.

Hyp 6.1 is reasonable when theSUT is a system with
very high computing ressources and a very high clock
frequency. Assuming this hypothesis, controllable sub-
graphs can be extracted fromCTG by executing one the
following three options for each state ofCTG :

• One input transition is kept and all other (input, out-
put, and mixed) transitions are pruned. That is, the
Tester sends a given input to theSUT, before the lat-
ter has the time to generate an output.

• All output transitions are kept, and all other (input
and mixed) transitions are pruned. That is, the Tes-
ter sends no input and waits for the reception of any
possible output from theSUT.

• One mixed transition T is kept with all the outputs
transitions that have not the sameE as T, and all other
transitions are pruned. That is, the Tester waits for
the reception of a given set of expirationsE1 with the
objective to send a given input to theSUT simulta-
neously toE1. The input is not sent if Tester receives
an output or anotherE from theSUT.

Note that this procedure is more complex than proce-
dures in [22, 11] that have inspired us. For theCTG of
Fig. 10, we obtain a single controllable subgraph:CTG

itself.

7. CONTRIBUTION AND FUTURE WORK

We have proposed a test method that combines two
types of testing: real-time testing that consists of testing
systems with timing constraints; and symbolic test that
consists of testing systems without enumerating values of
their data. More precisely, our method combines and ex-
tends in a rigorous way the method STG of symbolic tes-
ting of [13] and the method of real-time testing of [11].
An advantage of our method is its simplicity because the
main treatment of the real-time aspect is concentrated into
one step. Since the test method in [11] is a rigorous gene-
ralization of TGV [22] to the real-time case, we can say
that our method is a rigorous generalization of STG and
TGV13 to the real-time case. We are optimistic for the
applicability of our method because both TGV and STG
have led to interesting software tools. But we recognize
that such applicability remains to be demonstrated with
real world examples.

13Actually, STG and TGV are software tools for testing. But here, STG
and TGV denote the theoretical test methods that underly thetools, res-
pectively.
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Theoretically, the method may suffer from state explo-
sion essentially during the synchronized product (Step 1)
and the transformationSetExp (Step 2). But in practice,
the state explosion is attenuated by the following facts:

For Step 1: TP is relatively simple.

For Step 2: the following two numbers, that influence
state explosion, are relatively small: - the number
of clocks,
- the number of values to which each clock is com-
pared in timing constraints.

A previous version of his article has been published
in [18]. Here are the main contributions of the present
paper w.r.t. [18]:

1. All lemmas and propositions are rigorously proved
(in the Appendix).

2. New lemmas (6.1, 6.2, 6.3), that state correctness of
the test method, are added and proved.

3. The test method contains an additional (fifth) step
that extracts test cases from the synthesized Com-
plete Test Graph.

4. Proposition 5.1 is expressed more formally and pro-
ved; this proposition is the basis for transforming the
test problem into a non-real-time form.

5. The notion oftest purposeis presented and explained
in more detail.

6. A few errors have been corrected.

Here are some future work directions:

• Our method (as well as STG in [13]) does not sup-
port the quiescence aspect, that is used for specifying
when theIUT is permitted to stop its execution. We
intend to investigate the possibility to fill this gap.

• Our method (as well as other methods of real-time
testing) does not support unobservable clock resets.
We intend to determine conditions under which our
method is applicable in the presence of unobservable
clock reset.

• We intend to add the notion of invariants in order to
model actions thatmustoccur (instead of being only
permittedto occur) when they are enabled.

• Def. 3.2 is not constructive and we do not know
how to computeInpComp(S ) from aTiosa A in the
general case. We have explained how to compute
InpComp(S ) whenS has no internal action and is
deterministic. We intend to determine a more gene-
ral class ofTiosas for which we can construct their
input-completion.

• We intend to implement a prototype of the test
method in order to study it with real world examples.
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A. PROOFS OF L EMMAS 3.1 AND 3.2
A.1. PROOF OF L EMMA 3.1:
(I confTiosa

S ) ⇔ (I confTiosa
InpComp(S ))

A.1.1. Proof of:
(I confTiosa

S ) ⇒ (I confTiosa
InpComp(S )):

1. We assume(I confTiosa
S ), that is (from Def. 3.1),

for any outputo and∀λ ∈ TOLTiosa

S :
(λ·(o, τ) ∈ TOLTiosa

I ) ⇒ (λ·(o, τ) ∈ TOLTiosa

S ).

2. λ ∈ TOLTiosa

S implies:
λ·(o, τ) ∈ TOLTiosa

S ⇔ λ·(o, τ) ∈ TOLTiosa

InpComp(S),
because only inputs (and not outputs) are added to
locations ofS whenInpComp operator is applied to
S .

3. Items 1 and 2 imply that∀λ ∈ TOLTiosa

S :
λ·(o, τ) ∈ TOLTiosa

I ⇒ λ·(o, τ) ∈ TOLTiosa

InpComp(S).

4. Let τλ be the time of the last (observable) event of
λ.
If λ ∈ TOLTiosa

InpComp(S) \ TOLTiosa

S

then, from Def. 3.2, λ = w · a · x

such that: a ∈ Σ?, w · a 6∈ TOLTiosa

A ,

x ∈ TOLTiosa

Univ . Therefore:(τ > τλ) ⇔

(λ·(o, τ) = w·a·y ∈ TOLTiosa

InpComp(S) \ TOLTiosa

S ),

wherey = x·(o, τ) ∈ TOLTiosa

Univ .
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5. (λ·(o, τ) ∈ TOLTiosa

I ) ⇒ (τ > τλ).

6. Items 4 and 5 imply that
∀λ ∈ TOLTiosa

InpComp(S) \ TOLTiosa

S :

(λ·(o, τ) ∈ TOLTiosa

I ) ⇒

(λ·(o, τ) ∈ TOLTiosa

InpComp(S)).

7. Items 3 and 6 imply that∀λ ∈ TOLTiosa

InpComp(S):

(λ·(o, τ) ∈ TOLTiosa

I ) ⇒

(λ·(o, τ) ∈ TOLTiosa

InpComp(S)).

8. Item 7 means(I confTiosa
InpComp(S )). QED

A.1.2. Proof of:
(I confTiosa

InpComp(S )) ⇒ (I confTiosa
S ):

1. We assume(I confTiosa
InpComp(S )), that is

(from Def. 3.1),∀λ ∈ TOLTiosa

InpComp(S):

(λ·(o, τ) ∈ TOLTiosa

I ) ⇒

(λ·(o, τ) ∈ TOLTiosa

InpComp(S)).

2. TOLTiosa

S ⊆ TOLTiosa

InpComp(S).

3. Items 1 and 2 imply that∀λ ∈ TOLTiosa

S :
(λ·(o, τ) ∈ TOLTiosa

I ) ⇒

(λ·(o, τ) ∈ TOLTiosa

InpComp(S)).

4. Item 2 of Sect. A.1.1 and the above Item 3 imply that
∀λ ∈ TOLTiosa

S :
(λ·(o, τ) ∈ TOLTiosa

I ) ⇒ (λ·(o, τ) ∈ TOLTiosa

S ).

5. Item 4 means(I confTiosa
S ). QED

A.2. PROOF OF L EMMA 3.2:
I confTiosa

S ⇔ TOLTiosa

I ⊆ TOLTiosa

S

A.2.1. Proof of:
I confTiosa

S ⇒ TOLTiosa

I ⊆ TOLTiosa

S : In the fol-
lowing,τλ denotes the time of the last (observable) action
of λ.

1. We assumeS = InpComp(S )).

2. We assume(I confTiosa
S ), that is (from Def. 3.1),

for any outputo and∀λ ∈ TOLTiosa

S :
(λ·(o, τ) ∈ TOLTiosa

I ) ⇒ (λ·(o, τ) ∈ TOLTiosa

S ).

3. ε ∈ TOLTiosa

S andε ∈ TOLTiosa

I , that is,TOLTiosa

S

andTOLTiosa

I contain the empty sequence.

4. Item 1 implies:(λ ∈ TOLTiosa

S ) ⇒

(∀τ > τλ, ∀i, λ·(i, τ) ∈ TOLTiosa

S ).

5. λ·(e, τ) ∈ TOLTiosa

I ⇒ τ > τλ.

6. Items 2, 4 and and 5 imply that∀λ ∈ TOLTiosa

S :
(λ·(e, τ) ∈ TOLTiosa

I ) ⇒ (λ·(e, τ) ∈ TOLTiosa

S ).

7. Items 3 and 6 imply:(λ ∈ TOLTiosa

I ) ⇒

(λ ∈ TOLTiosa

S ). This implication can be easily pro-
ved by induction.

8. Item 7 means:TOLTiosa

I ⊆ TOLTiosa

S . QED

A.2.2. Proof of:
TOLTiosa

I ⊆ TOLTiosa

S ⇒ I confTiosa
S :

1. We assumeTOLTiosa

I ⊆ TOLTiosa

S .

2. Item 1 implies
(λ·(o, τ) ∈ TOLTiosa

I ) ⇒ (λ·(o, τ) ∈ TOLTiosa

S ).

3. Item 2 implies:(I confTiosa
S ). QED

B. PROOF OF PROPOSITION 4.1
We first need to define symbolic languages ofTiosa

andSEiosa.

B.1. SYMBOLIC LANGUAGES OF Tiosa AND SEiosa

In [24], SetExp is used to transform timed automata
(TA) into Set-Exp-Automata (SEA), and timed language
of a TA A (TLTA

A ) and timed language of aSEA B are
defined as the set of timed sequences accepted byA and
B, respectively. Note that if we ignore the semantics of
DG and VA inTiosa andSEiosa, we obtain the models of
TA andSEA, respectively.

By analogy with timed language ofTA, we de-
fine the symbolic timed language of aTiosa A =
(L, l0,H,D, I, Σ, T ) (STLTiosa

A ) as the set of timed se-
quences accepted byA, where in each transition Tr
=〈q; r; σ; θ;CG ;Z ;DG;VA〉 of A: the semantics of
DG and VA is ignored, and(σ(θ);DG ;VA) is syn-
tactically processed as an action. That is, a se-
quenceξt = (α1, τ1)(α2, τ2) · · · (αi, τi) · · · ∈ STLTiosa

A

corresponds to a sequence of consecutive transitions
Tr1Tr2 · · ·Tri · · · in A such that:

- Tr1 is a first transition ofA (i.e., executable from
l0);

- αi consists ofσ(θ), DG andVA of Tri ; and
- after the execution of a prefix(α1, τ1) · · · (αp, τp) of

ξt , theCG of Trp+1 is True at timeτp+1.
In the same way, by analogy with timed language

of SEA, the symbolic timed language of aSEiosa

B (STLSEiosa

B ) is defined as the set of timed sequen-
ces accepted byB, where in each transition Tr =
〈q; r; µ;DG ;VA〉 of B: the semantics ofDG andVA is
ignored, and(µ;DG;VA) is syntactically processed as an
action. That is, a sequence
ξt = (α1, τ1)(α2, τ2) · · · (αi, τi) · · · ∈ STLSEiosa

B

corresponds to a sequence of consecutive transitions
Tr1Tr2 · · ·Tri · · · in B such that:
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- Tr1 is a first transition ofB,
- αi consists ofµ, DG andVA of Tri , and
- consistency condition is respected (see Definition in

Sect. 4.6).
In [24], it is proved that for aTA A and the cor-

respondingSEA B = SetExp(A), we have:TLTA
A =

RmvSetExp(TLSEA
B ). From the above analogy, we

deduce that for aTiosa A and the corresponding
SEiosa B = SetExp(A), we have: STLTiosa

A =

RmvSetExp(STLSEiosa

B ).

B.2. TRANSFORMING A SYMBOLIC TIMED LAN -
GUAGE INTO A TIMED LANGUAGE

To a symbolic timed language (STL) corresponds a
timed language (TL) defined as follows:
λt = (e1, τ1)(e2, τ2) · · · ∈ TL iff
∃ξt = (α1, τ1)(α2, τ2) · · · ∈ STL s.t.

- λt andξt have the same lengthn (n can be infinite)
- αi = (ei,DGi,VAi) or αi = ei (in the latter case,

DGi = True andVAi is empty),
- ∀i ≤ n: DGi evaluates toTrue after the application

of VA1,VA2, · · ·VAi−1.
Let then STL2TL be the operator that transforms

STL into TL, (written TL = STL2TL(STL)).
Therefore, for a Tiosa A we have TLTiosa

A =

STL2TL(STLTiosa

A ), and for a SEiosa B we have
TLSEiosa

B = STL2TL(STLSEiosa

B ).

B.3. PROOF THAT :
TLTiosa

A = RmvSetExp(TLSEiosa

SetExp(A))
1. In Sect. B.1, we have seen that for everyTiosa A:

STLTiosa

A = RmvSetExp(STLSEiosa

SetExp(A)).

2. In Sect. B.2, we have seen that for everyTiosa A:
TLTiosa

A = STL2TL(STLTiosa

A ).

3. In Sect. B.2, we have seen that for everySEiosa B:
TLSEiosa

B = STL2TL(STLSEiosa

B ).

4. The order in which operatorsRmvSetExp and
STL2TL are applied has no influence on the result.

5. Items 1 and 2 imply:
TLTiosa

A = STL2TL(RmvSetExp(STLSEiosa

SetExp(A))).

6. Items 4 and 5 imply:
TLTiosa

A = RmvSetExp(STL2TL(STLSEiosa

SetExp(A))).

7. Items 3 and 6 imply:
TLTiosa

A = RmvSetExp(TLSEiosa

SetExp(A)). QED

B.4. PROOF THAT :
TOLTiosa

A = RmvSetExp(TOLSEiosa

SetExp(A))

Let A be aTiosa and B = SetExp(A) be the cor-
respondingSEiosa. Thetimed observable languageof A

(TOLTiosa

A ) is obtained fromTLTiosa

A by removing all the
internal actions. And thetimed observable languageof B

(TOLSEiosa

B ) is obtained in the same way fromTLSEiosa

B .
And let RmvIntern(x) be the operation that removes all
internal actions from a timed language. Let us prove that:
TOLTiosa

A = RmvSetExp(TOLSEiosa

SetExp(A)).

1. TLTiosa

A = RmvSetExp(TLSEiosa

SetExp(A)).

2. TOLTiosa

A = RmvIntern(TLTiosa

A )

3. TOLSEiosa

SetExp(A) = RmvIntern(TLSEiosa

SetExp(A)).

4. Items 1 and 2 imply:
TOLTiosa

A = RmvIntern(RmvSetExp(TLSEiosa

SetExp(A))).

5. The order in whichSet andExp actions and internal
actions are removed from a timed sequence, has no
influence on the result.

6. Items 4 and 5 imply:
TOLTiosa

A = RmvSetExp(RmvIntern(TLSEiosa

SetExp(A))).

7. Items 3 and 6 imply:
TOLTiosa

A = RmvSetExp(TOLSEiosa

SetExp(A)). QED

Proposition 4.1 is obtained by replacingTOLSEiosa

B by
AddTime(OLSEiosa

B ) in the above Item 7. QED

C. PROOF OF PROPOSITION 5.1
Let S be an input-completeTiosa, andX , Y be defi-

ned as follows:
X : TOLTiosa

IUT ⊆ TOLTiosa

S

Y : ∃ SEiosa SUT accepting the behavior ofSUT s.t.
OLSEiosa

SUT ⊆ OLSEiosa

SetExp(S)
From Hyp. 3.1, Lemma 3.2 and Def. 4.3, we deduce that
the objective is to prove:
(Tester � SetExp(S )) ⇒ (X ⇔ Y ).

C.1. PROOF OF: X ⇒ Y

AssumingX andTester � SetExp(S ), the aim is to
proveY . Recall thatE denotes a set ofExp actions.

Definition C.1 The supremalSEiosa of aSEiosa B is de-
notedSupSEiosa(B) and constructed as follows:

• ConstructObs(B), the projection ofB into the ob-
servable alphabet, i.e., internal actions are made in-
visible.

• For every internal actionǫx: add a selfloop labeled
ǫx to every location ofObs(B).
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• For every internal actionǫx and every transition of
type 1 (i.e, labeled in the formE) from a locationq to
a locationr: add another transition of type 3 labeled
(E , ǫx) from q to r.

Note that by construction,OLSEiosa

B = OLSEiosa

SupSEiosa(B),

TOLSEiosa

B = TOLSEiosa

SupSEiosa(B),

TLSEiosa

B ⊆ TLSEiosa

SupSEiosa(B), and

TLSEiosa

SupSEiosa(B) =

⋃

TOL
SEiosa

Xi
⊆TOL

SEiosa

B

TLSEiosa

Xi
.

1. Let SUT = SupSEiosa(SetExp(S )), and thus,
OLSEiosa

SetExp(S) = OLSEiosa

SUT ,

TOLSEiosa

SetExp(S) = TOLSEiosa

SUT ,

TLSEiosa

SetExp(S) ⊆ TLSEiosa

SUT .

2. In Sect. B.4 we have shown that:
TOLTiosa

S = RmvSetExp(TOLSEiosa

SetExp(S)).

3. X and Item 2 imply:
TOLTiosa

IUT ⊆ RmvSetExp(TOLSEiosa

SetExp(S)).

4. Item 3 andSUT = SupSEiosa(SetExp(S )) of
Item 1 imply:TLTiosa

IUT ⊆ RmvSetExp(TLSEiosa

SUT ).

5. Item 4 andTester � SetExp(S ) imply thatSUT
accepts the behavior ofSUT.

FromX and (Tester � SetExp(S )), we have determined
a SEiosa SUT that accepts the behavior ofSUT and s.t.
OLSEiosa

SetExp(S) = OLSEiosa

SUT . Therefore, we haveY .

C.2. PROOF OF: Y ⇒ X

LetRmvTime(x) be the operation defined as follows:
if λ = (e1, τ1)(e2, τ2) · · · (ei, τi) · · ·, then

RmvTime(λ) = e1e2 · · · ei · · ·.

1. We considerλ ∈ TOLTiosa

IUT .

2. In Sect. B.4 we have shown that:
TOLTiosa

S = RmvSetExp(TOLSEiosa

SetExp(S)).

3. The existence ofSUT that accepts the behavior of
SUT implies: TLTiosa

IUT ⊆ RmvSetExp(TLSEiosa

SUT ),
and thus,TOLTiosa

IUT ⊆ RmvSetExp(TOLSEiosa

SUT ).

4. Items 1 and 3 imply:∃λ′ ∈ TOLSEiosa

SUT such that
λ = RmvSetExp(λ′).

5. λ′ ∈ TOLSEiosa

SUT in Item 4 implies:
λ” = RmvTime(λ′) ∈ OLSEiosa

SUT .

6. Y and Item 5 imply:λ” ∈ OLSEiosa

SetExp(S).

7. Item 6 and the fact thatλ” = RmvTime(λ′) imply:
λ′ ∈ TOLSEiosa

SetExp(S).

8. Items 2 and 7 imply:
λ = RmvSetExp(λ′) ∈ TOLTiosa

S .

FromY and Item 1, we have deduced Item 8. Therefore,
we haveX . QED

D. PROOFS OF L EMMAS 6.1, 6.2
AND 6.3

Let SpecTPA denote the part ofSpecTP (obtained in
Step 1) that leads to a locationA, andSpecTPSEiosa

A de-
note the part ofSpecTPSEiosa (obtained in Step 2) that
leads to a stateA.

D.1. PROOF OF L EMMA 6.1
1. WhenSUT executes a traceλ that leads to a state

p ∈ Pass, thenλ conforms (w.r.t. confSEiosa
) to

SpecTPSEiosa

A .

2. Prop. 5.1 and item 1 imply that whenSUT execu-
tes a traceλ that leads top ∈ Pass, then theIUT
has executed a timed traceµ that conforms (w.r.t.
confTiosa

) to SpecTPA.

3. Item 2 andTOLTiosa

SpecTPA
⊆ TOLTiosa

SpecTP , imply that
whenSUT executes a traceλ that leads top ∈ Pass,
then theIUT has executed a timed traceµ that con-
forms (w.r.t. confTiosa

) to SpecTP .

4. Item 3 andTOLTiosa

SpecTP = TOLTiosa

Spec , imply that
whenSUT executes a traceλ that leads top ∈ Pass,
then theIUT has executed a timed traceµ that con-
forms (w.r.t. confTiosa

) to Spec.

5. Item 2 implies that whenSUT executes a traceλ that
leads top ∈ Pass, then theIUT has executed a ti-
med traceµ that leads to locationA of TP .

6. Items 4 and 5 imply Lemma 6.1. QED

D.2. PROOF OF L EMMA 6.2
1. WhenSUT executes a traceλ that leads to the state

fail, thenλ does not conform (w.r.t.confSEiosa
) to

SpecTPSEiosa .

2. Prop. 5.1 and item 1 imply that whenSUT executes
a traceλ that leads tofail, then theIUT has exe-
cuted a timed traceµ that does not conform (w.r.t.
confTiosa

) to SpecTP .

3. Item 2 andTOLTiosa

SpecTP = TOLTiosa

Spec , imply that
whenSUT executes a traceλ that leads tofail, then
the IUT has executed a timed traceµ that does not
conform (w.r.t.confTiosa

) to Spec. QED
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D.3. PROOF OF L EMMA 6.3
1. WhenSUT executes a traceλ that leads to a state

x ∈ Inconc, thenλ conforms toSpecTPSEiosa but
no stateA can be reached afterλ.

2. Prop. 5.1 and item 1 imply that whenSUT executes
a traceλ that leads tox ∈ Inconc, then theIUT
has executed a timed traceµ that conforms (w.r.t.
confTiosa

) to SpecTP but no locationA can be rea-
ched afterµ.

3. Item 2 andTOLTiosa

SpecTP = TOLTiosa

Spec , imply that
when SUT executes a traceλ that leads tox ∈
Inconc, then theIUT has executed a timed trace
µ that conforms (w.r.t. confTiosa

) to Spec but no
locationA can be reached afterµ. QED
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