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Guanylation of Thiosemicarbazones: A New Synthetic Route to Polysubstituted
Guanylhydrazones with Antimicrobial Activity
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Guanil-hidrazonas poli-substituidas foram sintetizadas através da rea¢do de guanilagdo de
tiossemicarbazonas com aminas aromaticas e alifaticas, promovida HgCl,. Este método representa
o primeiro emprego de tiossemicarbazonas como componente eletrofilico em reacdes de sintese
de guanidinas mediadas por tidfilo, onde a introduc¢do de cada substituinte dos nitrogénios das
guanil-hidrazonas ocorreu de forma regiosseletiva. As atividades antibacteriana e antiftingica
foram avaliadas e alguns derivados mostraram atividade em valores pequenos de concentragiao
inibitéria minima e com amplo espectro de atividade. Estudou-se a estrutura cristalina de duas
guanil-hidrazonas, determinando-se suas configuragdes e, as tnicas interagdes relevantes observadas
foram intermoleculares do tipo N-H...N e C-H...N.

Thiosemicarbazones were employed for the first time as electrophiles in the guanylation reaction
promoted by HgCl,, affording polysubstituted guanylhydrazones, with regioselective introduction
of each nitrogen substituent. The antibacterial and antifungal activities of guanylhydrazones were
evaluated by determination of minimal inhibitory concentrations. Some of them exhibited very low
minimal inhibitory concentrations (MIC) and broad-spectrum activities. The configurations of two
guanylhydrazones were assigned by X-ray analysis that also revealed intramolecular interactions
of the type N-H...N and C-H...N.

Keywords: thiosemicarbazones, guanylhydrazones, guanidines

Introduction

Due to its large spectrum of biological activity the
guanidine functional group has been intensively studied
as a synthetic goal.! As a result of these efforts, a diversity
of methods, both in solution? and in the solid phase® have
been developed. In the first case, a particularly interesting
approach involves the utilization of inorganic thiophiles,
such as HgCl,, as promoters of thioureas guanylation.*

From the structural point of view, guanylhydrazones
can be envisioned as aldimine-guanidine derivatives. In
addition, guanylhydrazones are compounds of exceptional
biological importance, due to activities such as cardiotonic,’
antitumoral,® antibacterial” and trypanocidal agents.® Despite
these important pharmacological and biological properties,
the available synthetic routes to guanylhydrazones are rather
limited to structural modifications.>® The most successful
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route to this class of compounds is restricted to the reaction
of oxo compounds with aminoguanidine, although only
nitrogen-unsubstituted guanylhydrazones can be prepared
by this method, affording structural variation only at the
aldimine moiety. Moreover, the absence of selectivity in the
introduction of alkyl or acyl substituents on the nitrogens
of the guanidine moiety of the guanylhydrazones is a
serious drawback for obtaining a library of N-substituted
guanylhydrazones by this route.

Recently, we demonstrated that N-benzoylthioureas are
easily converted to acylguanidines using HgCl,, being a
versatile starting material for densely substituted guanidines
containing electronically neutral as well as electron
withdrawing and electron releasing groups. We also described
N-iminopyridinium ylide as the nucleophilic component in
this reaction.’ These results prompted us to explore the scope
of these protocols by the utilization of thiosemicarbazones as
substrates for the guanylation reaction, which should afford
polysubstituted guanylhydrazones.

3]2131y



628 Guanylation of Thiosemicarbazones

While a broad spectrum of thioureas have been
investigated in guanylation methodologies promoted
by inorganic thiophiles, the use of more functionalized
derivatives is limited. To the best of our knowledge, there is no
literature precedent for thiosemicarbazone as the eletrophilic
component in the guanylation reaction. Thus, we envisaged
this strategy as a convenient route to guanylhydrazones.
Moreover, the above mentioned limitation in the synthesis
of polysubstituted guanylhydrazones by the traditional
methods can be overcome, in principle, by the controlled
preparation of a substituted thiosemicarbazones followed
by their guanylation reaction with an appropriate amine.

Herein we disclose our results concerning the
synthesis of new guanylhydrazones by guanylation
of thiosemicarbazones, using HgCl, as thiophile. The
antibacterial and antifungal activities of all obtained
compounds, as well as a structural study of two of them
by X-ray analysis, are also described.

Results and Discussion

To amplify the scope of the guanylation reaction by
the utilization of polysubstituted thiosemicarbazones as
substrates, a representative set of such compounds was
required. Thus, the derivatives 1a-g were obtained in good
overall yields from treatment of phenyl isothiocyanate with
hydrazine followed by condensation of the thiosemicarbazide
with a series of carbonyl compounds according to literature
procedures (Scheme 1).'0

Thiosemicarbazones can be envisioned as a thiourea
with an additional nitrogen atom. They are interesting
starting materials for the evaluation of electronic effects
in guanylation reactions because the additional nitrogen
atom is a point for structural diversification.

Thus, with a representative set of thiosemicarbazones in
hand, we turned our attention to the guanylation reaction. The
utilization of HgCl, as a thiophile promoted the guanylation
of thiosemicarbazones 1a-g with cyclohexylamine, giving
the corresponding guanylhydrazones (Table 1). In general,
the electronic nature of the aryl group substituent in the
aldimine moiety of 1 could vary from electron withdrawing
groups, as in 1¢, 1e and 1g, to electron releasing groups
as in 1d and 1j. All reactions were tentatively submitted
to optimization under heat (70-75 °C). Although only
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guanylhydrazone 2g was obtained with a significant
yield improvement, the reaction time was reduced for all
compounds (Table 1).

Table 1. Isolated guanylhydrazones yields

s H\N/Ph
R1\|//N\IIJJJ\I]I/Ph R3R4NH, HgCl, R1 /N\N/)\r}l/m
RZ H H EtsN, DMF R2 R
1a-g 2a-k
Thiosemicarbazone Amine Yield (%)
R!, R? R’ R* rt,24h 70°C, 12h
2a Ph, CH, c-CH ,H 73 68
2b Ph, H c-CH ,H 81 65
2¢ p-NO,Ph, H c-CH ,H 66 62
2d p-MeOPh, H c-CH ,H 45 36
2e p-ClPh, H c-CH,,H 33 40
2f 0-HOPh, H cCH ,H 60 62
2g Furan-2-yl, H c-CGH”, H 26 67
2h Ph, H i-Pr, H 62 -
2i Ph, H Bn, H 65 -
2j Ph, H Phenylethyl, H 23 -
2k Ph, H CH,CH,OCH,CH, 61 -

To verify the scope of the nucleophilic amine,
thiosemicarbazone 1b was submitted to the guanylation
reaction with other amines. Both primary and secondary
amines were evaluated, and the corresponding
guanylhydrazones 2h-k were obtained in moderate to
satisfactory yields (except for 2e and 2j, Table 1).

The structures of two polysubstituted guanylhydrazones,
2a and 2¢, were established by analysis of their spectroscopic
data and unambiguously confirmed by X-ray crystallography.
Thus, the /E,3Z configuration of the double bonds in 2a and 2¢
was confirmed, as can be seen in their ORTEP'? representation
(Figure 1). For 2a, an intramolecular hydrogen bond between
atoms N1-H1..N5 [2.561(2) A, 112(2)°] stabilizes the
planarity through the conjugation of atoms N1-C2-N4-N5
[dihedral angle —1.4(2)°]. This planarity is reinforced by the
occurrence of two weak interactions involving atoms C7—
H7A..N4[2.723(3) A, 100(2)°] and C20-H20...N4 [2.807(2)
A, 100(1)°]. For 2¢, an intramolecular hydrogen bond between
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Scheme 1.
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Figure 1. Crystal structures of 2a (top) and 2¢ (bottom). Displacement
ellipsoids are drawn at the 30% probability level and H atoms are shown
as spheres of arbitrary radii. The intramolecular H-bonds are shown with
dashed lines.

atoms N1-H1..N5 [2.528(9) A, 104°] was observed. The
structures of all other guanylhydrazones were determined by
comparison of their spectroscopic data (IR and NMR), which
were consistently correlated with those of 2a and 2¢. Despite
the possibility of forming several geometric isomers of the
guanylhydrazones 2, only one isomer was observed for all
the prepared guanylhydrazones.

Mechanistically, two reaction pathways may be postulated
for the formation of guanylhydrazones (Scheme 2), both of
which should involve an initial activated species (3) formed
by complexation of thiosemicabazones with Hg*". In the
absence of HgCl, no reaction occurs and the reagents were
fully recovered. In pathway A, 3 suffers desulfurization
forming a carbodiimide intermediate (4), which is trapped
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by the nucleophilic amine affording 2. Alternatively,
species 3 may suffer an addition-elimination reaction via
the intermediate S, affording the guanylhydrazones. Both
mechanistic proposals have been invoked in the literature
concerning guanidine synthesis from thioureas.'

The antimicrobial activities of the synthesized
guanylhydrazones were evaluated in bioassays involving
Gram-positive (entries 1-4, Table 2) and Gram-negative
(entries 5-7) bacteria as well as fungi (entries 8-10). As can be
verified in the shadowed region of Table 2, all the compounds
showed antimicrobial activity in the tested concentrations. In
some cases, the minimal inhibitory concentrations (MIC) were
similar (2b and 2d) or even lower (2b) than that recorded for
the positive control. Guanylhydrazones 2b-2g showed a clear
selectivity against Gram-positive bacteria. Structurally, while
the change of the phenyl ring to the furanyl group in 2g leads
to an overall decrease in the activity levels, the substitution of
the aldimine hydrogen by a methyl group abolishes completely
the antibacterial activity, as can be observed by comparison of
2a with 2b. Antifungal activity was observed for compounds
2a-g, with 2b being the most active substance.

The antimicrobial activity of the guanylhydrazones
herein reported is a relevant result since the emergence of
resistance to the major classes of antibiotics is recognized
as a serious health concern.' Particularly, the emergence
of multidrug-resistant strains of Gram-positive bacterial
pathogens is a problem of ever increasing significance.
Organisms including methicillin-resistant Staphylococcus
aureus and Staphylococcus epidermidis, vancomycin-resistant
enterococci, and penicillin- and cephalosporin-resistant
streptococci are continually challenging scientists, physicians
and patients.'*!> Therefore, the search for antibacterial agents
will always remain an important and challenging task.

In summary, we demonstrated for the first time that
thiosemicarbazones are suitable substrates for guanylation
reactions promoted by HgCl,. This new route to
guanylhydrazones is a versatile protocol since it permits
access to adducts with highly variable substitution patterns at
the nitrogen atoms and a regioselective introduction of each
substituent. Since the experimental conditions are simple,
inexpensive and mild, we believe that our methodology would
be useful for the preparation of complex bioactive derivatives.
In addition, most of the aromatic guanylhydrazones
prepared during this investigation demonstrated significant
antibacterial and antifungal activities. These results suggest
that guanylhydrazones are promising compounds for the
development of antimicrobial drugs. In particular, 2b exhibited
very low MIC values and a broad-spectrum of activity
that should be relevant from a clinical perspective. Further
synthesis optimizations and detailed SAR studies are currently
under investigation and will be reported in due course.
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Table 2. Minimal inhibitory concentration (MIC) of guanylhydrazones

Guanylation of Thiosemicarbazones

J. Braz. Chem. Soc.

Entry Microorganisms*

Guanylhydrazones (MIC; ug/mL)

2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k PC”
1 B. subtilis > 100 6.3 100 12.5 25 12.5 100 25 25 50 > 100 6.3
2 S. aureus > 100 6.3 100 50 100 100 100 25 50 50 > 100 6.3
3 M. luteus > 100 6.3 50 12.5 50 25 100 12.5 12.5 6.3 > 100 0.78
4 S. mutans > 100 6.3 100 50 100 50 100 25 50 50 > 100 6.3
5 S. choleaesuis > 100 25 >100 >100 >100 >100 >100 >100 >100 >100 >100 6.3
6 E. coli > 100 25 >100 >100 >100 >100 >100 >100 >100 >100 >100 3.1
7 P. aeruginosa >100 >100 >100 >100 >100 >100 >100 25 50 >100 >100 100
8 C. albicans 100 12.5 100 25 50 >100 >100 >100 >100 >100 >100 6.3
9 A. Niger 100 3.1 100 100 100 100 >100 >100 >100 >100 >100 12.5
10 C. cladosporioides 100 3.1 100 100 100 100 >100 >100 >100 100 > 100 6.3

* B. subtilis ATCC 6633, S. aureus ATCC6638, M. Iuteus ATCC10240, S. mutans ATCC 24175, S. choleaesuis TCC 14028, E. coli ATCC 94863, P.
aeruginosa, C. albicans ATCC 18804, A. niger ATCC 16404, C. cladosporioides IMI178517; *PC: Positive Control (chloramphenicol for bacteria and

ciclopirox olamin for fungi).
Experimental

Melting points were determined on a Microquimica
MQAPF 301 hot plate apparatus and are uncorrected.
Infrared spectra were recorded as KBr discs on a FT-IR
Bomem MB100 instrument. NMR spectra were obtained
for "H at 300 MHz and for *C at 75 MHz using a Varian
Gemini 300 spectrometer. Chemical shifts are reported in
ppm using TMS as internal reference. Coupling constants
(J) are in hertz (Hz). The single crystal X-ray diffraction
data collection was carried out on a Nonius CAD-4
diffractometer. Thiosemicarbazones la-g were prepared
according to known procedures.!®

General synthetic procedure

To a solution of thiosemicarbazone (0.5 mmol) in DMF
(3 mL), cyclohexylamine (0.5 mmol), Et,N (1.0 mmol) and
then HgCl, (0.5 mmol) were added under magnetic stirring.
The suspension became dark after a few minutes and was left
stirring at room temperature (or heated at 70-75 °C in an oil
bath) while the progress of the reaction was monitored by
TLC. When the thiosemicarbazone was consumed, CH.CI,
(10 mL) was added and the suspension was filtered through
a pad of Celite. The solvents were removed under reduced
pressure and the residue was purified as indicated in each
case.

CAUTION: HgCl, is very toxic and both the reagent
and the crude product must be manipulated carefully.
Although the by-product of the reaction, HgS, is a highly
water insoluble, the solid residue retained in the short
celite column must be disposed of in a suitable flask.

The appropriate disposal of celite and SiO, used in the
purification process must also be considered.

(2Z)-2-(1-Phenylethylideneamino)(cyclohexyl)-3-
phenylguanidine (2a)

Yellowish solid, mp 111-113 °C (recrystallized from
ethanol); IR (KBr)v__/cm™:3413,3357,2923, 2852, 1595,
1534, 1383, 757 and 706; 'H NMR (300 MHz; CDCl,) 0
1.1-1.4 (5 H, m, CH,), 1.6-1.8 3 H, m, CH,), 2.1 (2 H, m,
CH,),2.48 (3H,s,CH,),3.91 (1 H, m, NCH), 4.04 (1 H, br
s, NH), 7.05-7.40 (8 H, m, Ph), 7.79 (2 H, d, J 6.9, Ph), and
8.04 (1 H, br s, NH); “C NMR (75.46 MHz; CDCL,) 6 14.2
(1CH,),24.9 (2CH,), 25.8 (1CH,), 33.3 (2CH,), 49.4 (1CH),
123.9 (2CH), 124.7 (1CH), 126.0 (2CH), 127.9 (1CH), 128.0
(2CH), 129.6 (2CH), 138.6 (1C), 140.2 (1C), 153.2 (1C),
and 153.9 (1C). Anal. found C, 75.22; H, 7.98; N, 16.23;
C21H26N4 requires C, 75.41; H, 7.84; N, 16.75%.
(2Z)-2-(Benzylideneamino)(cyclohexyl)-3-phenylguanidine
(2b)

White solid, mp 119-121 °C (recrystallized from
ethanol); IR (KBr)v__/cm:3197,3067,3041, 2934, 2856,
1741, 1600, 1567, 1537, 1496, 765, and 394; 'H NMR (300
MHz, CDCl,) 6 1.14-1.40 (5 H, m, CH,), 1.58-1.66 (3 H,
m, CH,), 2.03 (2 H, br s, CH,), 3.87 (1 H, m, NCH), 4.11
(1 H,brs,NH), 7.19-7.27 (3 H, m, Ph), 7.30-7.38 (3 H, m,
Ph), 7.37 (2 H, overlap, d, J 6.6, Ph), 7.69 (2 H, d, J 6.6,
Ph), and 8.34 (1 H, s, CH); "C NMR (75.46 MHz, CDCl,)
024.7(2CH,),25.6 (1CH,), 33.6 (2CH,),49.1 (1ICH), 124.2
(2CH), 125.1 (1CH), 126.9 (2CH), 128.4 (2CH), 128.7
(1CH), 129.7 (2CH), 136.1 (1C), 138.2 (1C), 148.3 (1CH)
and 155.1 (1C). Anal. found C, 74.78; H 7.32; N, 17.28;
C, H N, requires C, 74.97; H,7.55; N, 17.48.

2007247 4



Vol. 20, No. 4, 2009

(2Z)-2-(4-Nitrobenzylideneamino)(cyclohexyl)-3-
phenylguanidine (2c)

Yellow solid, mp 167-169 °C (recrystallized from
ethanol); IR (KBr) v /cm: 3395, 3339, 2934, 2847,
1615, 1589, 1544, 1510, 1334, 1089, 751, 721 and 687.
'H NMR (300 MHz, CDCl,) 6 1.10-1.45 (5 H, m, CH)),
1.55-1.80 (3 H, m, CH,), 2.02 (2 H, m, CH,), 3.89 (1 H,
m, NCH), 4.38 (1 H, br s, NH), 7.25 (2 H, d, J 7.5, Ph),
7.25 (1 H, overlap, Ph), 7.41 (2 H, m, Ph), 7.79 (2 H, d, J
8.9,Ph),8.19 (2H,d, J8.9,Ph)and 8.37 (1 H, s, CH); *C
NMR (75.46 MHz, CDCl,) 6 24.7 (2 CH,), 25.5 (1CH,),
33.5 (2 CH,), 49.3 (ICH), 123.9 (4CH), 124.6 (1CH),
126.8 (2CH), 129.8 (2CH), 137.4 (1C), 142.7 (1C), 144.8
(ICH), 147.2 (1C), 156.1 (1C). Anal. found C, 65.72; H,
6.62; N, 19.21; Conzstoz requires C, 65.74; H, 6.34;
N, 19.16%.

(2Z)-2-(4-Methoxybenzylideneamino)(cyclohexyl)-3-
phenylguanidine (2d)

Brownish oil. Purified through silica-gel column
chromatography (hexane/ethyl acetate). IR (film) v__/
cm': 3428, 3341, 3067, 3037, 2934, 2855, 1611, 1585,
1562, 1531, 1513, 1250, 1167, 1030, 828, 753 and 691.
'H NMR (300 MHz, CDCl,) 6 1.10-1.45 (5 H, m, CH)),
1.50-1.75 (3 H, m, CH,), 2.00 (2 H, m, CH,), 3.82 (3 H, s,
CH,), 3.82 (1 H, m, NCH), 6.89 (2H, d, J 8.6, Ph), 7.18-
7.26 (3 H, m, Ph), 7.35-7.40 (2 H, m, Ph), 7.62 (2 H, d,
J 8.6, Ph) and 8.34 (1 H, s, CH). *C NMR (75.46 MHz,
CDCl,) 6 24.6 (2CH,), 25.3 (1CH,), 33.3 (2CH,), 50.4
(1CH), 55.0 (1CH3), 114.0 (2CH), 125.5 (1CH), 127.3
(2CH), 128.9 (2CH), 130.2 (2CH), 133.8 (1C), 149.4 (1C),
154.3 (1C), 157.7 (1CH) and 159.8 (1C); Anal. found C,
71.73; H, 7.88; N, 15.84; C21H26N4O requires C, 71.97;
H, 7.48; N, 15.99%.

(2Z)-2-(4-Chlorobenzylideneamino)(cyclohexyl)-3-
phenylguanidine (2e)

Yellowish solid, mp 98-105 °C (recrystallized from
ethanol); IR (KBr) v__/cm™: 3415, 3330, 3069, 3039,
2927, 2856, 1615, 1574, 1552, 1530, 1497, 1381, 1239,
1086 and 754. '"H NMR (300 MHz, CDCl,) 6 1.12-1.43 (5
H, m, CH,), 1.57-1.69 (3 H, m, CH,), 2.01 (2 H, m, CH,),
3.85 (1 H, m, NCH), 4.11 (1 H, br q, /7.1, NH), 7.21 (3
H,brd,J7.2,Ph),7.30 (2H,d, J84,Ph),7.36 (2 H, brt,
J7.2,Ph),7.61 (2 H,d,J8.4,Ph)and 8.28 (1 H, s, CH);
PCNMR (75.46 MHz, CDCl,) 6 24.7 (2CH,), 25.6 (1ICH,),
33.5(2CH,), 49.1 (1CH), 124.2 (2CH), 125.2 (1CH), 127.9
(2CH), 128.6 (2CH), 129.6 (2CH), 134.2 (1C), 134.7 (1C),
138.0 (1C), 146.8 (1CH) and 155.3 (1C). Anal. found C,
67.58; H, 6.50; N, 15.44; C20H23C1N4 requires C, 67.69;
H, 6.53; N, 15.79%.
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(2Z)-2-(2-Hydroxybenzylideneamino)(cyclohexyl)-3-
phenylguanidine (2f)

Brownish oil. Purified through silica-gel column
chromatography (hexane/ethyl acetate). IR (film) v /cm™:
3421, 3337, 3056, 2934, 2858, 1615, 1570, 1528, 1498,
1452, 1400, 1330, 1308, 1292, 1265, 1247, 1152, 753,730
and 688. '"H NMR (300 MHz, CDCl,) 6 1.15-1.42 (SH, m,
CH), 1.57-1.71 (3 H, m, CH,), 2.02 (2 H, m, CH)), 3.76
(1 H,m, NCH), 4.11 (1 H, brq, J 7.1, NH), 6.88 (1 H, dt,
J74,1.1,Ph),6.93 (1 H,brd, J7.9,Ph), 7.18-7.25 (3 H,
overlap, Ph), 7.22 (2H, d,J 7.4, Ph), 7.36 2 H, brt, J 7.8,
Ph) and 8.41 (1 H, s, CH); "C NMR (75.46 MHz, CDCl,)
24.7 (2CH,), 25.5 (1CH,), 33.5 (2CH,), 49.6 (1CH), 116.1
(1CH), 119.39 (1CH), 119.5 (1C), 124.0 (2CH), 125.5
(2CH), 129.6 (1CH), 130.0 (1CH), 130.4 (CH), 138.0 (1C),
152.8 (1CH), 152.8 (1C) and 158.0 (1C). Anal. found C,
71.60; H, 7.22; N, 16.25; C, H, )N, O requires C, 71.40; H,
7.19; N, 16.65%.

(2E)-2-((Furan-2-yl)methyleneamino)(cyclohexyl)-3-
phenylguanidine (2g)

Yellowish solid, mp 115-118 °C. Purified through silica-
gel column chromatography (hexane/ethyl acetate). IR (KBr)
v Jem': 3384, 2928, 2851, 1626, 1525, 742 and 689; 'H
NMR (300 MHz, CDCL,) 6 1.10-1.39 (5 H, m, CH,), 1.57-
1.69 3 H, m, CH,)), 2.00-2.10 (2 H, m, CH,), 3.82 (1 H, m,
NCH), 4.10 (1 H, br s, NH), 6.43 (1 H, dd, J 3.3, 1.8, CH),
6.57(1H,d,J3.3,CH),7.19(2H,d,J7.4,Ph),7.19 (1 H,
overlap, Ph), 7.36 (2 H, t, 7.4, Ph), 7.44 (1 H, s, CH) and
8.18 (1 H, s, CH); *C NMR (75.46 MHz, CDCL,) 6 24.7
(2CH,),25.5 (1CH,), 33.4 (2CH,), 49.0 (1ICH), 110.4 (1CH),
111.5(1CH), 124.2 (2CH), 125.0 (1CH), 129.5 (2CH), 137.5
(1CH), 137.9(1C), 143.0(1CH), 151.6 (1C) and 155.0 (1C).
Anal. found C, 69.72; H, 6.20; N, 18.21; CH,N,O requires
C, 69.65; H, 7.14; N, 18.05%.

(2E)-2-(Benzylideneamino )(isopropyl)-3-phenylguanidine
(2h)

Yellowish oil. Purified through silica-gel column
chromatography (hexane/ethyl acetate). IR (film) v__/
cm™: 3431, 3347, 3060, 2972, 2867, 1614, 1580, 1556,
1530, 1498, 755 and 693. '"H NMR (300 MHz, CDCl,) 0
1.20 (6 H, d, J 6.35, CH,), 4.03 (1 H, br s, NH), 4.17 (1
H, hept, J 6.35, CH), 7.21 (2 H, d, J 8.4, Ph), 7.29-7.41 (5
H, m, Ph), 7.69 (2 H, d, 7.2, Ph), 8.00 (1 H, br s, NH) and
8.35 (1 H, s, CH); "C NMR (75.46 MHz, CDCl,) 6 23.2
(2CH,), 42.5 (1CH), 124.2 (2CH), 125.0 (1CH), 126.9
(2CH), 128.4 (2CH), 128.7 (1CH), 129.7 (2CH), 136.2
(1C), 138.1 (1C), 148.2 (1CH) and 155.3 (1C). Anal. found
C, 70.72; H, 7.20; N, 20.21; C17H20N4 requires C, 72.83;
H, 7.19; N, 19.98%.
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(2E)-Benzyl-2-(benzylideneamino)-3-phenylguanidine (2i)

Yellowish oil. Purified through silica-gel column
chromatography (hexane/ethyl acetate). IR (film) v /cm™:
3429, 3352, 3064, 2923, 1615, 1580, 1558, 1534, 1498,
1378, 1233, 755 and 695; 'H NMR (300 MHz, CDCL,) 6
4.40 (1 H, br s, NH), 4.58 (2 H, s, CH,), 7.16-7.38 (13 H,
m, Ph), 7.71 (2 H, d, J 6.6, Ph), 7.80-7.20 (1 H, br s, NH)
and 8.38 (1 H, s, CH); "C NMR (75.46 MHz, CDCl,) ¢
45.2 (1CH,), 124.4 (2CH), 125.3 (1CH), 127.0 (2CH),
127.3 (1CH), 127.7 (2CH), 128.5 (2CH), 128.6 (2CH),
128.8 (1CH), 129.7 (2CH), 136.1 (1C), 137.9 (1C), 138.8
(1C), 149.1 (1CH) and 155.8 (1C). Anal. found C, 77.06;
H, 6.22; N, 17.17; C, H, N, requires C, 76.80; H, 6.14;
N, 17.06%.

(2E)-2-(Benzylideneamino)(phenyl)-3-(1-phenylethyl)
guanidine (2j)

Yellowish oil. IR (film) v /cm': 3408, 3373, 3054,
2974,2928,1617, 1579, 1563, 1528, 1496, 1443, 754, 700
and 689. 'H NMR (300 MHz, CDCl,) 0 1.52 (3 H, d, J 6.1,
CH,), 4.78 (1 H, br s, NH), 5.24 (1 H, m, CH), 7.20-7.38
(13 H, m, Ph), 7.20-7.38 (1 H, overlap, NH), 7.69 (2 H, d,
J 7.1, Ph) and 8.33 (1 H, s, CH); 1*C NMR (75.46 MHz,
CDCl,) 6 22.7 (ICH,), 49.8 (1CH), 124.2 (2CH), 125.3
(ICH), 125.7 (1CH), 126.0 (2CH), 126.9 (2CH), 127.0
(ICH), 128.4 (2CH), 128.8 (2CH), 129.8 (2CH), 136.0
(10),137.9 (1C), 144.0 (1C), 148.9 (1CH) and 154.9 (1C).
Anal. found C, 76.97; H, 6.88; N, 15.91; C,H,N, requires
C,77.16; H, 6.48; N, 16.36%.

(4Z)-N’-(Benzylideneamino)-N-phenylmorpholine-4-
carboxamidine (2k)

Yellowish oil. Purified through silica-gel column
chromatography (hexane/ethyl acetate). IR (film) v /cm:
3451, 3321, 2966, 2844, 1617, 1558, 1120, 756 and 691;
'H NMR (300 MHz, CDCl,) 6 3.33 (4 H, t, J 4.8, CH,),
3.69 (4 H,t,J4.8,CH,),7.06 (1 H,t,J7.2,Ph),7.21 (2H,
d, J 8.5, Ph), 7.29-7.39 (5 H, m, Ph), 7.68-7.71 (2 H, m,
Ph), 7.82 (1 H, br s, NH) and 8.41 (1 H, s, CH); *C NMR
(75.46 MHz, CDCl,) 6 47.1 (2CH,), 66.2 (2CH,), 120.2
(2CH), 123.2 (1CH), 127.3 (2CH), 128.5 (2CH), 129.3
(2CH), 129.4 (1CH), 135.5 (1C), 140.8 (1C), 152.0 (1CH)
and 158.2 (1C). Anal. found C, 69.72; H, 6.20; N, 17.91;
C18H20N4O requires C, 70.11; H, 6.54; N, 18.17%.
Determination of minimal inhibitory concentration
(MIC)

Values are means of three experiments. The bacteria
cultures used were grown for 24 h at 35 °C on nutrient
agar. The fungi and yeast were cultivated for 72 h at 26 °C

J. Braz. Chem. Soc.

on malt extract agar and yeast malt agar respectively. The
inocula for the assays were prepared by cell suspensions
according to McFarland scale 0.5, except for filamentous
fungi for which a modified method!'® was used. A broth
microdilution method was carried out to determine the MIC
of the compounds against the microorganisms in sterile
96-well microplates.'” The 20% dimethyl sulfoxide aqueous
stock solutions of the compounds were transferred into
the first well from which serial dilutions were performed
so that concentrations ranged from 100 to 0.78 pug mL".
Chloramphenicol and cyclopirox olamin were used as the
reference drugs against bacteria and fungi respectively.
Aqueous dimethyl sulfoxide (20%) was used as negative
control. The inoculum was added to all wells and the
plates were incubated under the appropriate conditions.
After incubation, microorganism growth was observed by
the presence of turbidity in the well. MIC was defined as
the lowest concentration of the substances that inhibited
appearance of turbidity.

Crystal structures

(2a): C, H,)N,, M =334.46, monoclinic, space group
C2/c [nr. 15],Z = 8, a = 32.155(9) A, b = 6.0490(9) A,
c=19.916(2) A, B =98.72(2)°, V=3829(1) A%, d_=1.160
Mg m?, A (CuKo) = 1.54180 A, u = 0.54 mm™', 4129
measured reflections, 3330 unique (R, =0.0265) of which
2958 were considered as observed with I > 2c(I). Final
indices: R (F ) = 0.0669, wR, (F*) = 0.167 for 245 refined
parameters. (2¢): C,H,,N.O,, M =365.43, orthorhombic,
space group P ca2 [nr. 29], Z = 4, a = 10.495(1) A,
b = 12.017(2) A, ¢ = 15.583(2) A, V = 1965.3(5) A3,
d =1.235Mg.m?, A (CuKo) = 1.54180 A, n=0.669 mm,
1997 measured reflections, 1863 unique (R, = 0.0312) of
which 1421 were considered as observed with I > 26(I).
Final indices: R (F) = 0.0726, wR, (F?) = 0.3056 for
252 refined parameters. The O26 and O27 atoms are
disordered over two sites with occupancies of 0.82 and
0.18. The structures were solved with direct methods
using SHELXS97 and were refined anisotropically with
full-matrix least-squares on F* using SHELXL.97.'%" The
hydrogen atoms were placed at calculated positions except
those involved in H-bonds and in weak interactions, found
on difference maps and refined with riding constraints. The
crystallographic data were deposited at the Cambridge
Crystallographic Data Center under the numbers CCDC
292281 and 606880 for 2a and 2c, respectively. Copies of
the data can be obtained free of charge, on application to
CCDC, 12 Union Road, Cambridge, CB21EZ, UK (fax
+44 1223 336033) or e-mail: deposit@ccdc.camac.uk.
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The spectra were acquired with a Varian Gemini-300 spectrometer operating at 300.069 MHz for 'H and 75.458 MHz
for C using a Smm direct probe unless otherwise indicated.
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Figure S1. Full 'H NMR spectrum of compound 2a (CDCL,).
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Figure S12. Full *C NMR spectrum of compound 2f (CDCL,).
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Figure S13. Full'H NMR spectrum of compound 2g (CDCL).
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Figure S14. Full "C NMR spectrum of compound 2g (CDCL,).
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Figure S15. Full'H NMR spectrum of compound 2h (CDCL,).
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Figure S16. Full *C NMR spectrum of compound 2h (CDCL,).
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Figure S17. Full'H NMR spectrum of compound 2i (CDCL,).
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Figure S18. Full *C NMR spectrum of compound 2i (CDCL,).
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Figure S19. Full 'H NMR spectrum of compound 2j (CDCL,).
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Figure S21. Full'H NMR spectrum of compound 2k (CDCL,).
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Figure S22. Full *C NMR spectrum of compound 2k (CDCL,).



