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Este artigo investiga a influência da família e comprimento da wavelet, bem como do 
número de níveis de resolução, sobre o desempenho de modelos obtidos por calibração 
multivariada no domínio wavelet. Vinte e uma propriedades físicas e químicas de amostras 
de diesel, gasolina, milho e trigo foram determinadas por espectrometria no infravermelho 
médio e próximo empregando mínimos-quadrados parciais (PLS) e regressão por passos (SR) 
nos domínios original e wavelet. Mediante seleção adequada dos parâmetros da transformada 
wavelet, reduções médias de 8,2% (PLS) e 27,0% (SR) foram obtidas para o RMSEP em relação 
ao domínio original. Contudo, os modelos SR apresentaram expressiva sensibilidade à escolha 
dos parâmetros da transformada. Neste caso, uma análise de variância indicou que o número de 
níveis de resolução é o fator mais importante a ser considerado. 

This paper investigates the influence of wavelet family, length and number of resolution levels 
on the performance of multivariate calibration models obtained in the wavelet domain. Twenty-one 
physical and chemical properties of diesel, gasoline, corn and wheat were determined by near/
mid infrared spectrometry employing partial least-squares (PLS) and stepwise regression (SR) 
in the original and wavelet domains. Through proper selection of the wavelet transform settings, 
average RMSEP reductions of 8.2% (PLS) and 27.0% (SR) were obtained with respect to the 
original domain. However, the SR models presented considerable sensitivity with respect to the 
choice of transform settings. In this case, an analysis of variance indicated that the number of 
resolution levels is the most important factor to be considered.

Keywords: multivariate calibration, wavelet transform, analysis of variance, mid and near 
infrared spectrometry, food and fuel analysis

Introduction 

Over the past two decades, the wavelet transform 
(WT)1,2 has been employed in a variety of chemometrics 
applications such as denoising,3,4 signal compression,5 

baseline correction,6 classification7 and multivariate 
calibration.8-10 In the context of multivariate calibration, 
WT can be used to compress the data set prior to the use 
of regression techniques such as principal component 
regression (PCR)11 or partial least squares (PLS).12 Variable 
selection algorithms may also be employed to choose an 
appropriate subset of wavelet coefficients for use with 
multiple linear regression (MLR).8,13,14

Although several papers have been published on the use 
of WT for multivariate calibration, the choice of a suitable 
wavelet for a particular application is still an open problem. 
In fact, unlike the Fourier transform, which is restricted 
to the use of sine and cosine basis functions, WT can be 
implemented with a wide variety of wavelets.2,4 In signal 
compression and denoising applications, the choice of 
wavelet could be guided by the minimum description length 
(MDL) criterion, as described elsewhere.4 However, such 
a criterion does not take into account the x-y relationship 
between the instrumental responses and the property of 
interest for multivariate calibration.

The choice of wavelet usually entails the selection 
of a family, such as Daubechies (db), Symlet (sym) and 
Coiflet (coif), as well as an order (i.e., wavelet length) 
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within that family.2,4,15 Some authors opted to test several 
wavelets and choose the most appropriate one on the basis 
of the performance of the resulting model.10,16,17 Chalus et 
al.,16 for instance, tested the db2, db6 and sym6 wavelets. 
Eriksson et al.17 employed db4, sym8 and coif2. Nicolai 
et al.10 tested 16 wavelets from the Daubechies (db2, db4, 
db6, db8, db10, db18), Symlet (sym2, sym4, sym6, sym8, 
sym10) and Coiflet (coif1, coif2, coif3, coif4, coif5) 
families. Other authors only reported the use of a single 
wavelet in their work, such as sym8,18,19 or db4.9,12 

In addition to the choice of wavelet, another issue 
that may affect the results of multivariate calibration is 
the number of resolution levels employed in WT.9,16,18,19 
However, this aspect has received comparatively little 
attention from the researchers and has even been omitted in 
some papers.12,17,20 Therefore, more detailed investigations 
concerning this issue would be of value.

The present paper investigates the influence of wavelet 
family, length and number of resolution levels on the 
predictive performance of a multivariate calibration model. 
More specifically, the investigation is aimed at determining 
whether such WT settings have a significant effect on the 
result and which setting should deserve more attention from 
the analyst. For this purpose, four datasets are employed, 
namely: near-infrared (NIR) absorbance spectra of 170 diesel 
samples, mid-infrared (MIR) absorbance spectra of 104 
gasoline samples, NIR reflectance spectra of 80 corn samples 
and NIR reflectance spectra of 100 wheat flour samples. A 
total of 21 physical and chemical properties are considered. 
Multivariate calibration is carried out by using PLS, as well 
as MLR with variable selection by stepwise regression.21 

Background

The wavelet transform can be implemented in a 
computationally efficient manner by using a digital 
filter bank algorithm.22 The basic structure of the filter 
bank consists of a pair of low-pass and high-pass filters, 
followed by a dyadic downsampling operation.14,15,22 The 
downsampled outputs of the low-pass and high-pass 
filters are termed approximation and detail coefficients, 
respectively. The filtering/downsampling operations can be 
reapplied to the approximation coefficients up to the number 
M of decomposition levels specified by the analyst. The 
transform result consists of the approximation coefficients 
at the last level in addition to all detail coefficients. The 
low-pass and high-pass filters are typically of finite length, 
and, therefore, each approximation or detail coefficient 
corresponds to a section of the original signal. This spatial 
localization feature is one of the main advantages of WT 
over the Fourier transform.1,2,15 

The most commons wavelet filters employed in 
multivariate calibration belong to the Daubechies, Symlet 
and Coiflet families.9,10,12,16-19 These families differ by features 
such as symmetry and smoothness.15,23 Each family comprises 
filters of different length L. The dbN, symN and coifN filters 
have length L = 2N, 2N and 6N, respectively. Parameter N is 
termed the filter order. For illustration, Figure 1 presents the 
Daubechies, Symlet and Coiflet low-pass filters of length 12, 
18, 24 and 30. The high-pass filters are obtained by reversing 
the corresponding low-pass filters and changing the sign of 
every other element of the sequence.14,15

Experimental

Data sets

Four data sets were employed in the present investigation. 
The first data set consists of NIR absorbance spectra of 170 
diesel samples, recorded in the range 1000-1600 nm with 
resolution of 0.5 nm.24 The second data set comprises MIR 
absorbance spectra of 104 gasoline samples in the range 
2500-15400 nm with resolution of 2 nm.25 The third data 
set is publicly available and consists of NIR reflectance 
spectra of 80 corn samples in the range 1100-2500 nm with 
resolution of 2 nm.26 Data from instrument “mp5” were 
employed. The fourth data set, also publicly available,27 
consists of NIR reflectance spectra of 100 wheat flour 
samples in the range 1000-2500 nm with resolution of 2 nm. 
The spectra of the four data sets are presented in Figure 2.

The physical and chemical properties under consideration 
in each data set are presented in Table 1. Henceforth these 
properties will be denoted by codes P1-P9. 

As can be seen in Figure 2, the spectra display undesirable 
baseline features. For this reason, first derivative spectra 
were calculated by using a Savitzky-Golay filter,28 with a
2nd order polynomial and an 11 point window. The 
resulting spectra, which were used throughout the work, 
are presented in Figure 3.

Within each data set, 70% of the samples were used for 
construction of the models. These samples were selected 
by applying the Kennard-Stone algorithm29 to the derivative 
spectra. For PLS calibration, the modelling samples were 
further divided into a calibration set (50% of the overall 
dataset) and a validation set (20% of the overall dataset). The 
remaining 30% of the samples formed a prediction set, which 
was used to evaluate the performance of the resulting models. 

Wavelet transform 

The wavelet transform of the derivative spectra was 
calculated with the Daubechies, Symlet and Coiflet 
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filters, which are the most commonly used in multivariate 
calibration.9,10,12,16-19 Four filter lengths were employed, 
namely 12, 18, 24 and 30, as shown in Figure 1. Constant 
extension (“smooth padding of order zero”)23,30 was used 
to reduce border effects at the endpoints of the spectra. The 
number of decomposition levels was varied from one up to 
the maximum number L for which the spatial localization 
features of WT are not lost. This limit situation occurs when 
the wavelet filters span the entire length of the downsampled 
approximation coefficients.31 In the Matlab software, 
such a maximum number of decomposition levels can be 
obtained by using function “wmaxlev” from the Wavelet 
Toolbox. It is worth noting that the maximum number of 
decomposition levels depends on the filter length and the 
number of spectral variables. Table 2 summarizes the WT 
settings employed in the investigation. 

In order to reduce computational workload in the model-
building process, a preliminary compression procedure 
was applied to the wavelet coefficients. Compression was 
carried out by discarding the smallest wavelet coefficients 

(in absolute value) while retaining 99% of explained 
variance.32 

Multivariate calibration

PLS and stepwise regression (SR) were employed to build 
regression models in the wavelet, as well as in the original 
domains. For each property, the number of latent variables 
in PLS was chosen to minimize the root-mean-square error 
in the validation set. In stepwise regression, the a-entry 
and a-exit values21 were set to 0.01. The results for each 
parameter under consideration were evaluated in terms of 
the root-mean-square error of prediction (RMSEP) defined as

	 (1)

where  and  are the reference and predicted parameter 
values for the ith sample of the prediction set, which 
comprises Np samples.

Figure 1. Low-pass filters h
i
 (i = 1, 2, …, L) of the Daubechies (db), Symlet (sym) and Coiflet (coif) families.
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Software

All calculations were performed in Matlab® 6.5 R13 by 
using functions from the Wavelet and Statistics Toolboxes, 
as well as lab-made routines.

Results

Tables 3 and 4 show the PLS and SR results for the 
original spectral domain, as well as the best and worst 
results obtained in the wavelet domain. As can be seen, 

Table 1. Physical and chemical properties under consideration and their respective range in each data set

Property
Data Set

Diesel Gasoline Corn Wheat

P1
Density (kg m-3)

830-864
Density (kg m-3)

738.3-765.4
Moisture (%, m/m)

9.377-10.993
Moisture (%, m/m)

7.75-14.28

P2
ibp (oC)

144.2-240.7
ibp (oC)

38.2-43.0
Protein (%, m/m)

3.088-3.832
Protein (%, m/m)

12.45-17.36

P3
T10 (oC)

186.6-269.9
T10 (oC)

 51.3-56.3
Oil (%, m/m)
7.654-9.711

P4
T50 (oC)

268.9-299.4
T50 (oC)

 69.7-73.6
Starch (%, m/m)
62.826-66.472

P5
T85 (oC)

310.4-366.1
 T90 (oC)

150.2-178.4

P6
T90 (oC)

317.2-385.5
 fbp (oC)

179.7-221.0

P7
Cetane index

42.1-57.6

P8
Sulphur (%, m/m)

0.03-0.31

P9
flame point (oC)

26-100

ibp: initial boiling point; T10, T50, T85, T90: temperatures at which 10, 50, 85 and 90% of the sample has evaporated, respectively; fbp: final boiling point.

Figure 2. Raw spectra of the (a) diesel, (b) gasoline, (c) corn and (d) wheat samples.
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it is not possible to point out a single wavelet family, 
level or filter length that systematically leads to the 
best or worst outcomes. The Diff columns indicate the 
percentual difference between the RMSEP values obtained 
in the original and wavelet domains. In the PLS case, the 
average difference with respect to the original domain 
was –8.2% and +9.9% for the best and worst wavelet 
settings, respectively. For SR, the average differences 
were –27.0% and +34.2%.

These results indicate that the wavelet transform may 
indeed be useful to improve the predictive ability of PLS 
and SR models. However, the SR outcome is more sensitive 
to the choice of wavelet settings as compared to PLS. 
Such a finding can be interpreted in two ways. On the one 
hand, it may be argued that the use of SR in the wavelet 
domain is risky in that poor results may be obtained given 
an inadequate choice of WT settings. On the other hand, 

the potential gains for SR may be significant. In fact, a 
comparison between Tables 3 and 4 reveals that the best 
wavelet settings for stepwise regression provide results 
that are superior, in most cases, to those obtained by PLS 
(either in the original or wavelet domains).

In light of these findings, it can be concluded that the 
choice of WT settings plays a more important role for SR 
than it does for PLS. In order to further investigate the 
influence of WT settings in the SR outcome, an analysis 
of variance (ANOVA)33 was carried out for each parameter 
under consideration. For this purpose, the RMSEP value 
was adopted as response variable. The wavelet family 
(Daubechies, Symlet, Coiflet), filter length (12, 18, 24, 30) 
and number of resolution levels (one up to the maximum 
number L) were the factors under analysis. 

Figure 4 presents the ANOVA results obtained for each 
property and factor (WT setting) under consideration. 

Figure 3. Derivative spectra of the (a) diesel, (b) gasoline, (c) corn and (d) wheat samples.

Table 2. Wavelet transform settings

Filter length Wavelet family Maximum number of decomposition levels (L)

Daubechies Symlet Coiflet Corn spectra Wheat spectra Gasoline spectra Diesel spectra

12 db6 sym6 coif2 5 5 9 6

18 db9 sym9 coif3 5 5 8 6

24 db12 sym12 coif4 4 4 8 5

30 db16 sym16 coif5 4 4 7 5
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Table 3. PLS results in the original and wavelet domains

Data Set Prop Unit
Original 
Domain 
RMSEP

Best wavelet setting Worst wavelet setting

RMSEP Diff % Family Level Length RMSEP Diff % Family Level Length

Wheat P1 %, m/m 0.36 0.36 0.0 coif 3 18 0.52 44.4 coif 4 18

P2 %, m/m 0.19 0.19 0.0 coif 5 18 0.20 5.3 sym 4 18

Corn P1 %, m/m 0.093 0.087 -6.5 db 4 18 0.151 62.4 db 2 24

P2 %, m/m 0.065 0.064 -1.5 coif 4 12 0.068 4.6 db 5 18

P3 %, m/m 0.154 0.142 -7.8 sym 4 18 0.170 10.4 db 5 18

P4 %, m/m 0.340 0.333 -2.1 sym 3 24 0.413 21.5 sym 4 24

Gasoline P1 kg m-3 1.2 1.1 -8.3 sym 7 24 1.3 8.3 db 4 12

P2 oC 0.8 0.8 0.0 sym 2 30 0.9 12.5 db 4 24

P3 oC 0.6 0.4 -33.3 coif 3 12 0.6 0.0 sym 8 18

P4 oC 0.3 0.3 0.0 db 1 30 0.3 0.0 sym 8 24

P5 oC 2.5 2.2 -12.0 sym 4 24 2.5 0.0 db 2 18

P6 oC 3.1 1.9 -38.7 coif 8 24 3.3 6.5 coif 7 30

Diesel P1 kg m-3 1.8 1.8 0.0 db 5 18 1.9 5.6 coif 6 18

P2 oC 10.3 10.5 1.9 sym 5 24 11.1 7.8 sym 3 30

P3 oC 2.9 2.6 -10.3 db 3 30 2.9 0.0 sym 5 24

P4 oC 1.9 1.9 0.0 db 3 24 2.1 10.5 db 2 12

P5 oC 2.9 2.0 -31.0 db 3 24 2.8 -3.4 coif 4 12

P6 oC 3.2 2.8 -12.5 sym 1 24 3.3 3.1 sym 2 24

P7 - 1.4 1.4 0.0 db 3 18 1.4 0.0 db 5 12

P8 %, m/m 0.02 0.02 0.0 db 5 24 0.02 0.0 coif 2 18

P9 oC 7.5 6.8 -9.3 db 5 18 8.2 9.3 sym 3 18

The percentual difference between the RMSEP values obtained in the original and wavelet domains is indicated in the Diff % columns.

Table 4. Stepwise regression results in the original and wavelet domains

Data Set Prop Unit
Original 
Domain 
RMSEP

Best wavelet setting Worst wavelet setting

RMSEP Diff % Family Level Length RMSEP Diff % Family Level Length

Wheat P1 %, m/m 0.70 0.31 -55.7 db 3 24 0.77 10.0 coif 5 18

P2 %, m/m 0.21 0.17 -19.0 coif 3 30 0.23 9.5 coif 5 18

Corn P1 %, m/m 0.135 0.111 -17.8 coif 4 18 0.251 85.9 sym 4 12

P2 %, m/m 0.053 0.051 -3.8 sym 1 18 0.099 86.8 coif 3 30

P3 %, m/m 0.170 0.131 -22.9 coif 4 12 0.210 23.5 db 4 24

P4 %, m/m 0.318 0.283 -11.0 sym 3 24 0.503 58.2 db 4 18

Gasoline P1 kg m-3 1.1 0.8 -27.3 sym 7 18 2.3 109.1 coif 4 24

P2 oC 1.0 0.7 -30.0 db 2 18 1.5 50.0 sym 6 12

P3 oC 0.6 0.3 -50.0 sym 4 30 0.8 33.3 db 6 30

P4 oC 0.3 0.2 -33.3 sym 3 24 0.4 33.3 sym 5 18

P5 oC 3.8 1.8 -52.6 sym 7 30 3.4 -10.5 db 2 18

P6 oC 4.3 2.2 -48.8 db 3 30 5.6 30.2 sym 7 18

Diesel P1 kg m-3 1.8 1.7 -5.6 db 6 18 2.1 16.7 db 3 12

P2 oC 12.6 10.7 -15.1 sym 3 24 14.3 13.5 db 5 12

P3 oC 4.3 2.5 -41.9 db 1 24 6.0 39.5 coif 4 24

P4 oC 2.1 1.7 -19.0 coif 2 30 2.4 14.3 coif 4 24

P5 oC 2.8 2.1 -25.0 coif 6 12 3.3 17.9 coif 4 24

P6 oC 3.5 2.7 -22.9 db 5 18 4.3 22.9 db 4 30

P7 - 1.4 1.3 -7.1 sym 5 30 1.5 7.1 sym 5 24

P8 %, m/m 0.02 0.01 -50.0 coif 4 12 0.03 50.0 coif 4 18

P9 oC 8.3 7.7 -7.2 sym 4 12 9.7 16.9 db 4 30

The percentual difference between the RMSEP values obtained in the original and wavelet domains is indicated in the Diff % columns.
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The effect of a given factor on RMSEP is significant if 
the resulting p-value is small.33 It is worth noting that the 
vertical axis in Figure 4 corresponds to (1 – p). Therefore, 
significant effects are indicated by large bars.

As can be seen, in 11 out of the 21 properties, at least 
one factor displayed a significant effect at a confidence 
level of 95% (horizontal dashed line in Figure 4). This 
result again indicates that the choice of appropriate WT 
settings is indeed important in the SR framework. It 
is interesting to notice that most significant effects are 
associated to the number of resolution levels, rather than 
wavelet family or filter length. In fact, the number of 
decomposition levels had a significant effect in seven 
properties, as compared to five properties for wavelet 
family and only two properties for filter length. In 
addition, it is worth noting that the number of levels was 
the most influential factor in 12 out of the 21 properties. 
Therefore, one may recommend that the analyst should 
pay special attention to the choice of resolution levels 
when building the SR model in the wavelet domain. 

Figure 4. ANOVA results (1 – p) for stepwise regression. The dashed line represents the 95% significance level.

Conclusions

This paper investigated the influence of three WT 
settings (wavelet family, filter length and resolution levels) 
on the predictive performance of PLS and SR models for 
NIR/MIR spectrometric analyses of diesel, gasoline, corn 
and wheat. A total of 21 physical and chemical properties 
were considered in this study. 

The results show that the choice of WT settings 
does affect the results of both PLS and SR, providing 
the potential for gains with respect to modelling in the 
original spectral domain. In fact, through proper selection 
of those settings, average RMSEP reductions of 8.2% 
(PLS) and 27.0% (SR) were obtained with respect to the 
original domain. However, the SR outcome exhibited 
considerable sensitivity to the choice of WT settings. In 
fact, an inadequate choice could lead to an average RMSEP 
increase of 34.2%. In particular, an analysis of variance 
revealed that the number of resolution levels is the most 
important factor to be considered in this framework.
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