Acessibilidade / Reportar erro

Supramolecular Approach in Energy Conversion Devices

Abstract

This review summarizes investigations carried out at the Laboratory of Photochemistry and Energy Conversion (LFCE) in the University of São Paulo dealing with design and characterization of ruthenium(II), rhenium(I) and iridium(III) polypyridine complexes with desired photochemical and photophysical properties in light of the development of optoelectronics and photoinduced energy conversion systems. First, the breakthroughs on molecular engineering of emissive ReI, RuII and IrIII complexes for the development of highly efficient light-emitting devices, such as organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs), are presented. Then, the photochemical and photophysical properties of fac-[Re(CO)3(NN)(trans-L)]+ complexes (NN = bidentate polypyridyl ligands and trans-L = stilbene-like ligand), which find use in molecular machines and photosensors, are discussed. Finally, dye-sensitized energy conversion devices based on RuII complexes and natural dyes, such as dye-sensitized solar cells (DSCs) and dye-sensitized photoelectrosynthesis cells (DSPECs), are reviewed, highlighting some strategies for photoanode engineering aiming at improved device efficiencies.

Keywords:
supramolecular chemistry; energy conversion; molecular devices; solar fuels; dye-sensitized solar cells; OLEDs/LECs


1. Introduction

A supramolecular approach gives rise to the design of organized systems and can be conveniently exploited through metal complexes for the control of photoproperties and development of molecular devices through structurally organized and functionally integrated chemical systems.11 Lehn, J.-M.; Angew. Chem., Int. Ed. 1985, 24, 799.

2 Lehn, J.-M.; Chem. Soc. Rev. 2007, 36, 151.

3 Toma, H. E.; An. Acad. Bras. Cienc. 2000, 72, 5.

4 Toma, H. E.; J. Braz. Chem. Soc. 2003, 14, 845.
-55 Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L.; Chem. Rev. 2015, 115, 10081. One of the strategies is the use of coordination compounds with proper ligands to pursue a high chemical stability and intense absorption in the visible66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.,77 Vogler, A.; Kunely, H. In Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds; Kalyanasundaram, K.; Grätzel, M., eds.; Springer: Netherlands, 1993, p. 71-111. with suitable redox properties for energy and/or electron transfer processes.88 Vogler, A.; Kunkely, H.; Coord. Chem. Rev. 1998, 177, 81.

9 Vogler, A.; Kunkely, H.; Coord. Chem. Rev. 2004, 248, 273.

10 Vos, J. G.; Pryce, M. T.; Coord. Chem. Rev. 2010, 254, 2519.

11 Balzani, V.; Bergamini, G.; Campagna, S.; Puntoriero, F.; Top. Curr. Chem. 2007, 280, 1.
-1212 Balzani, V.; Credi, A.; Venturi, M.; Coord. Chem. Rev. 1998, 171, 3.

The Laboratory of Photochemistry and Energy Conversion (LFCE) at Chemistry Institute of the University of São Paulo has been carrying out investigations in photochemistry and photophysics of coordination compounds and supramolecular systems toward molecular design and devices fabrication.

The initial studies were focused on kinetics, electrochemistry and spectroscopy of cyanoferrate(II) complexes,1313 Murakami Iha, N. Y.; Toma, H. E.; An. Acad. Bras. Cienc. 1982, 54, 491.

14 Murakami Iha, N. Y.; Toma, H. E.; Inorg. Chim. Acta 1984, 71, 181.

15 Murakumi Iha, N. Y.; Ferreira, A. M. C.; Toma, H. E.; Gallotti, M.; Proc. Annu. Meet. Coord. Chem. 1984, 34, 386.

16 Toma, H. E.; Ferreira, A. M. C.; Murakami Iha, N. Y.; Nouv. J. Chim. 1985, 9, 473.
-1717 Murakami Iha, N. Y.; Chum, H. L.; Inorg. Chim. Acta 1985, 97, 151. with emphasis on the reactivity of the ground state. The extensive investigation on kinetics and mechanisms of formation and substitution of pentacyanoferrate(II) complexes, [Fe(CN)5L]3- (L = monodentate neutral ligand, such as NO or CO),1313 Murakami Iha, N. Y.; Toma, H. E.; An. Acad. Bras. Cienc. 1982, 54, 491.,1818 Murakami Iha, N. Y.; Toma, H. E.; Rev. Latinoam. Quim. 1984, 15, 20.,1919 Murakami Iha, N. Y.: Reatividade de Ligantes na Química dos Cianoferratos; PhD Thesis, University of São Paulo, São Paulo, Brazil, 1981, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-28112014-153806/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...
was then extended to the reactivity of coordinated NO to the cyanoferrate moiety.1414 Murakami Iha, N. Y.; Toma, H. E.; Inorg. Chim. Acta 1984, 71, 181.,1919 Murakami Iha, N. Y.: Reatividade de Ligantes na Química dos Cianoferratos; PhD Thesis, University of São Paulo, São Paulo, Brazil, 1981, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-28112014-153806/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...
These studies and the solid knowledge in the ground state spectroscopy, electrochemistry and reactivity of coordination compounds complexes were proven to be fundamental for exploitation of more complex chemical systems and application in several new areas. Subsequent investigation on the photoreactivity of these compounds came as a natural step. The photosubstitution of the L ligand in [Fe(CN)5L]3- was first investigated in the early 80s.1818 Murakami Iha, N. Y.; Toma, H. E.; Rev. Latinoam. Quim. 1984, 15, 20.,2020 Toma, H. E.; Murakami Iha, N. Y.; Inorg. Chem. 1982, 21, 3573.

21 Murakami Iha, N. Y.; Lima, J. F.; Toma, H. E.; Proc. Annu. Meet. Coord. Chem. 1984, 34, 116.

22 Murakami Iha, N. Y.; Toma, H. E.; Lima, J. F.; Polyhedron 1988, 7, 1687.

23 Toma, H.; Moroi, N. M.; Murakami Iha, N. Y.; An. Acad. Bras. Cienc. 1982, 54, 315.
-2424 Lima, J. F.: Reações de Fotossubstituição em Complexos Pentacianoferrato(II ), Master dissertation, University of São Paulo, São Paulo, Brazil, 1990, available at https://repositorio.usp.br/single.php?_id=000733870 accessed in May 2020.
https://repositorio.usp.br/single.php?_i...
The data for substitutionally inert [Fe(CN)5L]3− with L = CO, AsPh3 (triphenylarsine), SbPh3 (triphenylantimony(III)), P(OCH3)3 (trimethyl phosphite), PPh3 (triphenylphosphine) and en (ethylenediamine) are shown in Table 1.

Table 1
Quantum yields for the photosubstitution of L in [Fe(CN)5L]3-

The photochemistry of aqueous solutions of [Fe(CN)5(en)]3− in the presence of a large excess of the diamine ligand under continuous photolysis was the first example reported in the literature,2020 Toma, H. E.; Murakami Iha, N. Y.; Inorg. Chem. 1982, 21, 3573. having a cyanide photolabilization as the reactive deactivation pathway. The neighboring effect in the excited state was exploited as a strategy by using the ability of the dangling free amino group to capture a lower coordinate intermediate to undergo subsequent ring closure after labilization of the Fe-CN bond, Figure 1.2020 Toma, H. E.; Murakami Iha, N. Y.; Inorg. Chem. 1982, 21, 3573.

Figure 1
Neighboring effect and subsequent ring closure.

The inertness of the photoproduct, [Fe(CN)4(NN)]2-, after chelating enabled its further isolation and quantitative analysis.2525 Garcia, C. G.; de Lima, J. F.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2000, 196, 219.,2626 Murakami Iha, N. Y.; Lima, J. F.; J. Photochem. Photobiol., A 1994, 84, 177. The polarity and viscosity of the solvent have a key role on the quantum yields for the CN- release in [Fe(CN)5(NN)]3- complexes.2727 Lima, J. F.; Murakami Iha, N. Y.; Can. J. Chem. 1996, 476480.,2828 Lima, J. F.: Reatividade Fotoquimica dos Cianocomplexos de Ferro(II) e de Sistemas Multicomponentes, PhD thesis, University of São Paulo, São Paulo, Brazil, 1996, available at https://repositorio.usp.br/item/000747325 accessed in May 2020.
https://repositorio.usp.br/item/00074732...
While the wavelength dependence accounts for different efficiencies of primary radical formation in the initial step before deactivation occurs, the dependence on medium parameters is related to the dynamics of deactivation for the formation of the final photoproduct. The medium characteristics can shift the balance from one pathway to another, tuning the efficiency of the photochemical process.

Gradually, the focus has been directed on understanding the photophysical and photochemical properties of ReI, RuII and IrIII complexes as well as the development of photoinduced energy conversion devices, such as dye-sensitized solar cells (DSCs), dye-sensitized photoelectrosynthesis cells (DSPECs), organic light-emitting diodes (OLEDs), light-emitting electrochemical cells (LECs), molecular machines and photosensors, many of them through fruitful collaboration with Prof Carlo A. Bignozzi and Prof Thomas J. Meyer, along with highly motivated students to face such an interdisciplinary area.

In the following sections, we show that these compounds are strategical for the development of such supramolecular devices as they can exhibit a high chemical stability and intense absorption in the visible due to metal-to-ligand charge transfer (1MLCT) transitions,66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.,77 Vogler, A.; Kunely, H. In Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds; Kalyanasundaram, K.; Grätzel, M., eds.; Springer: Netherlands, 1993, p. 71-111. with suitable redox properties for energy and/or electron transfer processes.88 Vogler, A.; Kunkely, H.; Coord. Chem. Rev. 1998, 177, 81.

9 Vogler, A.; Kunkely, H.; Coord. Chem. Rev. 2004, 248, 273.

10 Vos, J. G.; Pryce, M. T.; Coord. Chem. Rev. 2010, 254, 2519.

11 Balzani, V.; Bergamini, G.; Campagna, S.; Puntoriero, F.; Top. Curr. Chem. 2007, 280, 1.
-1212 Balzani, V.; Credi, A.; Venturi, M.; Coord. Chem. Rev. 1998, 171, 3. Some of these complexes also exhibit intense luminescence at room temperature, usually ascribed to a phosphorescence from the 3MLCT counterpart arisen from a high spin-orbit coupling (SOC).2929 McCleverty, J. A.; Meyer, T. J.; Comprehensive Coordination Chemistry II, Vol. 2: Fundamentals: Physical Methods, Theoretical Analysis, and Case Studies; Elsevier: Amsterdam, North-Holland, 2003, p. 785-796.

30 Lees, A. J.; Chem. Rev. 1987, 87, 711.
-3131 Chen, P.; Meyer, T. J.; Chem. Rev. 1998, 98, 1439.

2. Light-Emitting Devices

Sustainable development demands to reduce energy consumption by developing modern optoelectronics and efficient light-emitting devices. In this context, light-emitting diodes (LEDs) are alternatives for replacing old lighting technologies for their less power consumption,3232 Schubert, E. F.; Science 2005, 308, 1274.,3333 Chang, M. H.; Das, D.; Varde, P. V.; Pecht, M.; Microelectron. Reliab. 2012, 52, 762. low voltage and current operation,3333 Chang, M. H.; Das, D.; Varde, P. V.; Pecht, M.; Microelectron. Reliab. 2012, 52, 762. fast response time,3333 Chang, M. H.; Das, D.; Varde, P. V.; Pecht, M.; Microelectron. Reliab. 2012, 52, 762. long durability,3333 Chang, M. H.; Das, D.; Varde, P. V.; Pecht, M.; Microelectron. Reliab. 2012, 52, 762.,3434 Steranka, F. M.; Bhat, J.; Collins, D.; Cook, L.; Craford, M. G.; Fletcher, R.; Gardner, N.; Grillot, P.; Goetz, W.; Keuper, M.; Khare, R.; Kim, A.; Krames, M.; Harbers, G.; Ludowise, M.; Martin, P. S.; Misra, M.; Mueller, G.; Mueller-Mach, R.; Rudaz, S.; Shen, Y.-C.; Steigerwald, D.; Stockman, S.; Subramanya, S.; Trottier, T.; Wierer, J. J.; Phys. Status Solidi 2002, 194, 380. high performance,3535 Schubert, E. F.; Kim, J. K.; Luo, H.; Xi, J.-Q.; Rep. Prog. Phys. 2006, 69, 3069. low maintenance3434 Steranka, F. M.; Bhat, J.; Collins, D.; Cook, L.; Craford, M. G.; Fletcher, R.; Gardner, N.; Grillot, P.; Goetz, W.; Keuper, M.; Khare, R.; Kim, A.; Krames, M.; Harbers, G.; Ludowise, M.; Martin, P. S.; Misra, M.; Mueller, G.; Mueller-Mach, R.; Rudaz, S.; Shen, Y.-C.; Steigerwald, D.; Stockman, S.; Subramanya, S.; Trottier, T.; Wierer, J. J.; Phys. Status Solidi 2002, 194, 380. and eco-friendly fabrication processes.3333 Chang, M. H.; Das, D.; Varde, P. V.; Pecht, M.; Microelectron. Reliab. 2012, 52, 762.,3535 Schubert, E. F.; Kim, J. K.; Luo, H.; Xi, J.-Q.; Rep. Prog. Phys. 2006, 69, 3069.

A LED is based on inorganic semiconductors such as GaN and GaAs. However, crystals usually need to be highly pure to ensure high performances in most optoelectronic applications.3636 Wasisto, H. S.; Prades, J. D.; Gülink, J.; Waag, A.; Appl. Phys. Rev. 2019, 6, 041315. On the other hand, OLEDs are characterized by more facile processing, although they lack the long-term chemical and thermal stability usually observed for inorganic ones.3737 Wang, Q.; Tian, Q. S.; Zhang, Y. L.; Tang, X.; Liao, L. S.; J. Mater. Chem. C 2019, 7, 11329.

An OLED is assembled in a supramolecular multi-layer configuration of organic semiconductors with an active emissive film positioned in between p- and n-type charge transport layers (hole transport layer (HTL) and electron transfer layer (ETL)). Detailed mechanisms for the OLED’s operating principle has been reviewed extensively elsewhere3838 Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T.; Coord. Chem. Rev. 2011, 255, 2622.

39 Evans, R. C.; Douglas, P.; Winscom, C. J.; Coord. Chem. Rev. 2006, 250, 2093.
-4040 Shahnawaz, S.; Swayamprabha, S. S.; Nagar, M. R.; Yadav, R. A. K.; Gull, S.; Dubey, D. K.; Jou, J. H.; J. Mater. Chem. C 2019, 7, 7144. and Figure 2 shows a simplified view. When an external voltage is applied between the electrodes, holes are injected through the anode and electrons are injected through the cathode.4141 Salehi, A.; Fu, X.; Shin, D. H.; So, F.; Adv. Funct. Mater. 2019, 29, 1808803. The holes/electrons are transported through HTL/ETL to reach the active emissive layer and fill its highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO), respectively.4040 Shahnawaz, S.; Swayamprabha, S. S.; Nagar, M. R.; Yadav, R. A. K.; Gull, S.; Dubey, D. K.; Jou, J. H.; J. Mater. Chem. C 2019, 7, 7144.,4141 Salehi, A.; Fu, X.; Shin, D. H.; So, F.; Adv. Funct. Mater. 2019, 29, 1808803. Within the emissive layer, electrons and holes reach a recombination zone, where both particles form a bound state called exciton. Excitons populate the lowest-lying excited state, from which a luminescent decay occurs, resulting in the emission of light from the device.4242 Minaev, B.; Baryshnikov, G.; Agren, H.; Phys. Chem. Chem. Phys. 2014, 16, 1719.

Figure 2
The multilayered architecture, the usual components and the operating mechanism of an OLED (simplified; more details in the main text).

Doping the organic emissive layer with a phosphorescent guest molecule (such as heavy-metal d6 coordination compounds) has been a successful strategy for increasing luminous efficiencies and controlling the emitted color, standing as the second generation of OLEDs.3838 Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T.; Coord. Chem. Rev. 2011, 255, 2622.,3939 Evans, R. C.; Douglas, P.; Winscom, C. J.; Coord. Chem. Rev. 2006, 250, 2093.,4242 Minaev, B.; Baryshnikov, G.; Agren, H.; Phys. Chem. Chem. Phys. 2014, 16, 1719.

43 Xu, H.; Huang, W.; Liu, X.; Chem. Soc. Rev. 2014, 43, 3259.
-4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559. Under operation, excitons are generated in the organic layer, then posteriorly transferred to the guest complex excited state, from which a phosphorescent deactivation occurs.

Conversion of electricity into light can be also reached using LECs in a simpler architecture. These devices share a similar base structure with OLEDs, in which an emissive film is placed in between a metallic and a transparent electrode; however an active layer in LECs contains mobile ions, changing the operating mechanism and properties of the device.4545 Slinker, J.; Bernards, D.; Houston, P. L.; Abruña, H. D.; Bernhard, S.; Malliaras, G. G.; Chem. Commun. 2003, 2003, 2392.

46 Rudmann, H.; Shimada, S.; Rubner, M. F.; J. Appl. Phys. 2003, 94, 115.

47 Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A.; Suter, A.; Nieuwenhuys, G. J.; Prokscha, T.; Morenzoni, E.; Gillin, W. P.; Drew, A. J.; Nat. Mater. 2011, 10, 39.

48 Su, H.; Chen, Y.; Wong, K.; Adv. Funct. Mater. 2019, 1906898.

49 Zhao, J.; Chi, Z. Z.; Yang, Z.; Chen, X.; Arnold, M. S.; Zhang, Y.; Xu, J.; Chi, Z. Z.; Aldred, M. P.; Aldreda, M. P.; Nanoscale 2018, 10, 5764.
-5050 Gao, J.; ChemPlusChem 2018, 83, 183. As summarized in Figure 3, application of bias causes the mobile charge carriers to drift within the active film towards the proper electrode with an opposite charge.5151 Su, H. C.; ChemPlusChem 2018, 83, 197.,5252 Kong, S. H.; Lee, J. I.; Kim, S.; Kang, M. S.; ACS Photonics 2018, 5, 267. The ion redistribution leads to a formation of double layers close to the electrodes. The double layers facilitate injection of electrons and holes into the emissive film when the applied bias is enough to overcome the HOMO-LUMO gap (or bandgap in the case of a semiconductor) of most usual emitters.4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559. After injection, electrons and holes produce excitons which then recombine resulting in luminescence.5252 Kong, S. H.; Lee, J. I.; Kim, S.; Kang, M. S.; ACS Photonics 2018, 5, 267.

Figure 3
The sandwich type architecture, the usual components and the operating mechanism of a LEC (simplified; more details in the main text).

Usually, efficient green- and red-light emission can be reached with these devices; even though obtaining suitable blue-light systems remains a challenge. The LFCE has been investigating numerous phosphorescent coordination compounds, mostly of RuII, ReI and IrIII for applications in light-emitting devices with focus on molecular engineered control of their color and emission quantum yields along with thorough photophysical elucidation.

2.1. Ruthenium(II) complexes

The emission of [Ru(NN)3]2+ complexes (NN = bidentate polypyridinic ligands, such as 2,2’-bipyridine (bpy), 1,10-phenanthroline (phen) and their derivatives) has been extensively investigated over the past 70 years with detailed photophysical elucidation discussed elsewhere and reviewed in several publications.5353 Angerani, S.; Winssinger, N.; Chem. - Eur. J.2019, 25, 6661.

54 Roundhill, D. M. In Photochemistry and Photophysics of Metal Complexes; Springer: Boston, USA, 1994, p. 165-215.

55 Huynh, M. H. V.; Meyer, T. J.; Chem. Rev. 2007, 107, 5004.

56 Kalyanasundaram, K.; Coord. Chem. Rev. 1982, 46, 159.

57 Bock, C. R.; Meyer, T. J.; Whitten, D. G.; J. Am. Chem. Soc. 1974, 96, 4710.
-5858 Thompson, D. W.; Ito, A.; Meyer, T. J.; Pure Appl. Chem. 2013, 85, 1257. The 3MLCTRu⇋NN state of [Ru(NN)3]2+ complexes is a strong oxidizing and a reducing agent5959 Balzani, V.; Bergamini, G.; Marchioni, F.; Ceroni, P.; Coord. Chem. Rev. 2006, 250, 1254. and its phosphorescent deactivation to the singlet ground state occurs at room temperature in microseconds, with a broad non-structured spectrum and emission quantum yields from 10 to 0.1%3939 Evans, R. C.; Douglas, P.; Winscom, C. J.; Coord. Chem. Rev. 2006, 250, 2093. and usually in the orange-red spectral region.6060 Xiang, H.; Cheng, J.; Ma, X.; Zhou, X.; Chruma, J. J.; Chem. Soc. Rev. 2013, 42, 6128.

Our initial investigation on light-emitting devices with ruthenium(II) polypyridinic complexes, Figure 4, to build single-layer LECs, Figure 5, by spin coating on indium tin oxide (ITO) substrate, had the ITO/Ru-1:PMMA/Al architecture (PMMA: poly(methyl methacrylate)).

Figure 4
Ruthenium(II) complexes investigated by LFCE for light-emitting devices.

Figure 5
(a) ITO/Ru-1:PMMA/Al LEC under operation, emitting orange light with CIE color coordinate indicated in diagram (b).

Both the electroluminescence and photoluminescence spectra (and CIE coordinates) of Ru-1 and Ru-2 are similar (with maximum ca. 630 nm). The Comission Internationale d’Eclairage (CIE) quantified the color perceived by humans in three matching functions or spectral sensitivity curves (x(λ), y(λ) and z(λ)) based on trichromatic stimuli of the human virtual cortex (for more details, see literature).4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559. Their CIE coordinates (x, y) is (0.64, 0.36). The best device efficiency was obtained for the Ru-1 device with ca. 10 µW optical output power at the band maximum with a wall-plug efficiency higher than 0.03%.6161 Santos, G.; Fonseca, F. J.; Andrade, A. M.; Patrocínio, A. O. T.; Mizoguchi, S. K.; Murakami Iha, N. Y.; Peres, M.; Simões, W.; Monteiro, T.; Pereira, L.; J. Non-Cryst. Solids 2008, 354, 2571.,6262 Santos, G.; Fonseca, F.; Andrade, A. M.; Patrocínio, A. O. T.; Mizoguchi, S. K.; Murakami Iha, N. Y.; Peres, M.; Monteiro, T.; Pereira, L.; Phys. Status Solidi 2008, 205, 2057.

2.2. Rhenium(I) complexes

Tricarbonyl polypyridinic rhenium(I) complexes can find a great variety of applications in biological sensors,6363 Lo, K. K. W.; Zhang, K. Y.; Li, S. P. Y.; Eur. J. Inorg. Chem. 2011, 3551.

64 Hostachy, S.; Policar, C.; Delsuc, N.; Coord. Chem. Rev. 2017, 172.

65 Lo, K. K.-W.; Choi, A. W.-T.; Law, W. H.-T.; Dalton Trans. 2012, 41, 6021.

66 Lo, K. K.-W.; Louie, M.-W.; Zhang, K. Y.; Coord. Chem. Rev. 2010, 254, 2603.

67 Lo, K. K.-W. W.; Acc. Chem. Res. 2015, 48, 2985.

68 Balasingham, R. G.; Coogan, M. P.; Thorp-Greenwood, F. L.; Dalton Trans. 2011, 40, 11663.
-6969 Lo, K. K.-W.; Top. Organomet. Chem. 2010, 29, 115. photocatalysis of CO2 to CO,7070 Kou, Y.; Nabetani, Y.; Masui, D.; Shimada, T.; Takagi, S.; Tachibana, H.; Inoue, H.; J. Am. Chem. Soc. 2014, 136, 6021.,7171 Ci, C.; Carbó, J. J.; Neumann, R.; de Graaf, C.; Poblet, J. M.; ACS Catal. 2016, 6, 6422. photosensitization of 1O2,7272 Wolcan, E.; Inorg. Chim. Acta 2020, 509, 119650.,7373 Ragone, F.; Saavedra, H. H. M. M.; Gara, P. M. D. D.; Ruiz, G. T.; Wolcan, E.; J. Phys. Chem. A 2013, 117, 4428. polymer sensors7474 Kumar, A.; Sun, S.-S.; Lees, A. J.; Top. Organomet. Chem. 2009, 48, 37. and light-emitting devices.7575 Zhao, G.-W.; Zhao, J.-H.; Hu, Y.-X.; Zhang, D.-Y.; Li, X.; Synth. Met. 2016, 212, 131.

76 Panigati, M.; Mauro, M.; Donghi, D.; Mercandelli, P.; Mussini, P.; de Cola, L.; D’Alfonso, G.; Coord. Chem. Rev. 2012, 256, 1621.
-7777 Mizoguchi, S. K.; Santos, G.; Andrade, A. M.; Fonseca, F. J.; Pereira, L.; Murakami Iha, N. Y.; Synth. Met. 2011, 161, 1972.

Lifetimes as high as ten microseconds are observed in fac-[Re(CO)3(NN)(L)]0/+ complexes (NN = bidentate polypyridinic ligands and L = halogenates, phosphines and pyridine derivates),7474 Kumar, A.; Sun, S.-S.; Lees, A. J.; Top. Organomet. Chem. 2009, 48, 37.,7878 Wrighton, M.; Morse, D. L.; David, L.; J. Am. Chem. Soc. 1974, 96, 998.

79 Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. In Photochemistry and Photophysics of Coordination Compounds I; Springer: Heidelberg, Berlin, 2007, p. 117-214.
-8080 Rohacova, J.; Ishitani, O.; Dalton Trans. 2017, 46, 8899. due to the strong spin-orbit coupling (SOC) exerted by the ReI metal center (with an estimated SOC constant ξRe between 700 and 900 cm-1)8181 Kayanuma, M.; Daniel, C.; Köppel, H.; Gindensperger, E.; Coord. Chem. Rev. 2011, 255, 2693. facilitating an efficient population of the emissive 3MLCTRe⇋NN excited state. The strong π back-bonding between the carbonyl ligands and the metal center usually leads to a restricted-energy gap between ReI d orbitals and π* ligand orbitals involved in the MLCT transition, therefore emission wavelengths lie predominantly in the green-yellow to orange-red spectral region.6060 Xiang, H.; Cheng, J.; Ma, X.; Zhou, X.; Chruma, J. J.; Chem. Soc. Rev. 2013, 42, 6128.

The LFCE investigated photophysical behaviors of fac-[Re(CO)3(NN)(L)]0/+ complexes, Figure 6, and application in OLEDs.7777 Mizoguchi, S. K.; Santos, G.; Andrade, A. M.; Fonseca, F. J.; Pereira, L.; Murakami Iha, N. Y.; Synth. Met. 2011, 161, 1972.,8282 Murakami Iha, N.; Ferraudi, G.; J. Chem. Soc., Dalton Trans. 1994, 2565.,8383 Mizoguchi, S. K.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2315. The emission of these complexes is ascribed to 3MLCTRe⇋NN (3MLCTRe⇋bpy, 3MLCTRe⇋quin and 3MLCTRe⇋isoquin for Re-1, Re-2 and Re-3, respectively) with strong rigidochromic effects, highly sensitive to the media rigidity, as exemplified in Figure 7 for Re-1.8383 Mizoguchi, S. K.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2315.,8484 Amaral, R. C.; Matos, L. S.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Phys. Chem. A 2018, 122, 6071.

Figure 6
Luminescent rhenium(I) complexes investigated by the LFCE for light-emitting devices.

Figure 7
Emission spectra for Re-1 in fluid acetonitrile at 298 K (___), in rigid PMMA (poly(methyl methacrylate)) at 298 K (─•─•─) and in rigid EPA (5:5:2 diethylether:isopentane:ethanol) at 77 K (─ ─ ─), with λexcitation = 300 nm.

The electroluminescence spectrum of OLED using Re-1 as a dopant in a thin film of polyvinylcarbazole (PVK), an organic semiconductor,8383 Mizoguchi, S. K.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2315. is ascribed solely to the very intense 3MLCT emission of the guest complex at 580 nm, due to an efficient energy transfer from the host to the dopant.7777 Mizoguchi, S. K.; Santos, G.; Andrade, A. M.; Fonseca, F. J.; Pereira, L.; Murakami Iha, N. Y.; Synth. Met. 2011, 161, 1972.,8383 Mizoguchi, S. K.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2315. The electroluminescence spectrum of spin-coated films of PVK without Re-1 complex in the ITO/PEDOT:PSS/PVK/butyl-PBD/Al OLED (PEDOT: poly(3,4-ethylenedioxythiophene), PSS: poly(styrenesulfonate), butyl-PBD: 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, Al: aluminum) exhibits a characteristic blue emission, λmax = 420 nm, assigned to the PVK excimer (CIE coordinates: 0.19, 0.12), Figure 8a, while ITO/PEDOT:PSS/PVK:Re-1/butylPBD/Al architecture device, resulted in an eye-observed apparent white emitter device (CIE coordinates: 0.42, 0.45), Figure 8b.

Figure 8
(a) ITO/PEDOT:PSS/PVK/butyl-PBD/Al and (b) ITO/PEDOT:PSS/PVK:Re-1/butyl-PBD/Al OLEDs under operation, with their CIE color coordinates indicated in diagram (c).

2.3. Iridium(III) complexes

The mer-[Ir(NC)2(LX)]+ complexes (NC = 2-phenyl pyridine or similar bidentate ligands, organometallated to IrIII through NC in a 5-membered metallacycle, and LX = diimines, picolinates, acetylacetonates or similar bidentate ligands) usually present excellent thermal and photochemical stabilities with a variety of ligands and find applications in biological phosphorescent labels and sensors,8585 Ma, D.-L.; Wong, S.-Y.; Kang, T.-S.; Ng, H.-P.; Han, Q.-B.; Leung, C.-H.; Methods 2019, 168, 3.,8686 Abbas, S.; Din, I.-D.; Raheel, A.; ud Din, A. T.; Appl. Organomet. Chem. 2020, 34, e5413. photodynamic therapy,8787 Lan, M.; Zhao, S.; Liu, W.; Lee, C. S.; Zhang, W.; Wang, P.; Adv. Healthcare Mater. 2019, 8, 1900132.,8888 Huang, H.; Banerjee, S.; Sadler, P. J.; ChemBioChem 2018, 19, 1574. metallopharmaceuticals with antitumoral activities,8989 Ma, D.; Wu, C.; Wu, K.; Leung, C.; Molecules 2019, 24, 2739.,9090 Konkankit, C. C.; Marker, S. C.; Knopf, K. M.; Wilson, J. J.; Dalton Trans. 2018, 47, 9934. dye-sensitized solar cells9191 Baranoff, E.; Yum, J. H.; Graetzel, M.; Nazeeruddin, M. K.; J. Organomet. Chem. 2009, 694, 2661.,9292 Mayo, E. I.; Kilså, K.; Tirrell, T.; Djurovich, P. I.; Tamayo, A.; Thompson, M. E.; Lewis, N. S.; Gray, H. B.; Photochem. Photobiol. Sci. 2006, 5, 871. and catalysis.9393 Hopmann, K. H.; Bayer, A.; Coord. Chem. Rev. 2014, 268, 59.,9494 Schultz, D. M.; Yoon, T. P.; Science 2014, 343, 1239176.

These complexes exhibit microsecond-lived excited states with impressive emission quantum yields (close to 100%) as a consequence of iridium’s very-strong SOC (with estimated SOC constant ξIr around 4430 cm-1).9595 Zanoni, K. P. S.; Kariyazaki, B. K.; Ito, A.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; Inorg. Chem. 2014, 53, 4089. They also undergo color and efficiency tuning through judicious molecular engineering by controlled changes in the ligands, allowing emission in all three primary colors-blue, green and red.4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559.,9696 Nazeeruddin, M. K.; Grätzel, M.; Struct. Bonding 2007, 123, 113.,9797 Rota Martir, D.; Zysman-Colman, E.; Coord. Chem. Rev. 2018, 364, 86.

mer-[Ir(NC)2(LX)]+ complexes present overlapped excited states in the visible with strong SOC-induced mixing of electronic characters, leading to hybrid excited states (see more information in the literature).4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559. The weak lowest-energy band in most mer-[Ir(NC)2(LX)]+ complexes is ascribed to a SOC-induced direct absorption to the normally spin-forbidden lowest-lying triplet excited state, T1.3838 Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T.; Coord. Chem. Rev. 2011, 255, 2622. After excitation at any wavelength, SOC facilitates rapid population of T1 via a series of intersystem crossings and internal conversions and deactivation from T1 usually occurs through intense phosphorescence.9898 Li, T. Y.; Wu, J.; Wu, Z. G.; Zheng, Y. X.; Zuo, J. L.; Pan, Y.; Coord. Chem. Rev. 2018, 374, 55.

The emission color can be judiciously tuned by addition of electron-donating or -withdrawing groups to one of the ligands, which, respectively, lead to destabilization or stabilization of the energies of the ligand orbitals.9999 Tsuboi, T.; Huang, W.; Isr. J. Chem. 2014, 54, 885. More specifically, modifications in NC ligands modulate the energy of HOMO while those in a LX ligand affect the energy of LUMO.100100 Cortés-Arriagada, D.; Sanhueza, L.; González, I.; Dreyse, P.; Toro-Labbé, A.; Phys. Chem. Chem. Phys. 2015, 18, 726.,101101 Deaton, J. C.; Castellano, F. N. In Iridium(III) in Optoelectronic and Photonics Applications; Zysman-Colman, E., ed.; John Wiley & Sons Ltd.: Chichester, UK, 2017, p. 1-69

These investigations started in 2010 and, since then, many complexes, Figure 9, had their photophysics detailly elucidated.3939 Evans, R. C.; Douglas, P.; Winscom, C. J.; Coord. Chem. Rev. 2006, 250, 2093.,102102 Ulbricht, C.; Beyer, B.; Friebe, C.; Winter, A.; Schubert, U. S.; Adv. Mater. 2009, 21, 4418. The LFCE was one of the first groups to propose that the degree of SOC-induced mixings in T1’s excited-state character can also be rationally tuned towards enhancements in the radiative rate constant.9595 Zanoni, K. P. S.; Kariyazaki, B. K.; Ito, A.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; Inorg. Chem. 2014, 53, 4089. By this approach, improved emission quantum yields can be reached, as thoroughly discussed and revised.4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559.

Figure 9
Luminescent IrIII complexes investigated by the LFCE for light-emitting systems.

The emission of complexes Ir-1 to Ir-4 varies systematically from blue-green to orange with variations in electron-donating or -withdrawing substituents on both the NN and the NC ligands, Figure 10.9595 Zanoni, K. P. S.; Kariyazaki, B. K.; Ito, A.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; Inorg. Chem. 2014, 53, 4089. Time-dependent density functional theory (TD-DFT) calculations and Franck-Condon band shape analyses indicated a SOC-induced mixed MLCT/LC character for the emission of Ir-1, which resulted in an emission quantum yield (ϕ) = 96%, at least four times higher than that observed for the similar complex Ir-2, with ϕ = 23%. Later, complex Ir-5 was synthesized to exhibit blue-sky emission using the strong electron-donating 3-methylpyridine-2-carboxylate (Mepic) ligand, coordinated to IrIII through NO instead of NN.103103 Zanoni, K. P. S.; Ito, A.; Murakumi Iha, N. Y.; New J. Chem. 2015, 39, 6367. Ir-5 was inspired in the archetypal blue emitter FIrPic (see Figure 9),104104 Baranoff, E.; Curchod, B. F. E.; Dalton Trans. 2015, 44, 8318. yet with an additional methyl group in the picolinate ligand to enhance the mixing character in T1 hence increasing ϕ from 80% in FIrPic to 98% in Ir-5. On the other hand, changing the electron-donating methyl group to the electron-withdrawing CF3 group, as in the Ir-6 to Ir-8 series, increased the non-radiative rate constant in detriment to the radiative one, decreasing their ϕ (< 13%).105105 Coppo, R. L.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Polyhedron 2019, 163, 161.

Figure 10
(a) Emission spectra and (b) CIE color coordinates for Ir-1 to Ir-5 in 298 K fluid acetonitrile.

The photophysical properties of the series Ir-9 to Ir-11, with 2-phenylquinoline as cyclometalated NC ligand, were also investigated.106106 Zanoni, K. P. S.; Ito, A.; Grüner, M.; Murakami Iha, N. Y.; de Camargo, A. S. S.; Dalton Trans. 2018, 47, 1179. These complexes exhibit high ϕ and high efficiency of singlet oxygen photosensitization, showing that they can find use in many applications, from the active layer of electroluminescent devices4343 Xu, H.; Huang, W.; Liu, X.; Chem. Soc. Rev. 2014, 43, 3259.,4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559.,4848 Su, H.; Chen, Y.; Wong, K.; Adv. Funct. Mater. 2019, 1906898.,5050 Gao, J.; ChemPlusChem 2018, 83, 183.,5252 Kong, S. H.; Lee, J. I.; Kim, S.; Kang, M. S.; ACS Photonics 2018, 5, 267.,9191 Baranoff, E.; Yum, J. H.; Graetzel, M.; Nazeeruddin, M. K.; J. Organomet. Chem. 2009, 694, 2661.,9797 Rota Martir, D.; Zysman-Colman, E.; Coord. Chem. Rev. 2018, 364, 86.,9898 Li, T. Y.; Wu, J.; Wu, Z. G.; Zheng, Y. X.; Zuo, J. L.; Pan, Y.; Coord. Chem. Rev. 2018, 374, 55.,107107 Chi, Y.; Tong, B.; Chou, P.-T. T.; Coord. Chem. Rev. 2014, 281, 1.,108108 Housecroft, C. E.; Constable, E. C.; Coord. Chem. Rev. 2017, 350, 155. to photosensitizers for photodynamic therapy and theranostics.8888 Huang, H.; Banerjee, S.; Sadler, P. J.; ChemBioChem 2018, 19, 1574.,9090 Konkankit, C. C.; Marker, S. C.; Knopf, K. M.; Wilson, J. J.; Dalton Trans. 2018, 47, 9934.,109109 Lee, L. C. C.; Leung, K. K.; Lo, K. K. W.; Dalton Trans. 2017, 46, 16357.

110 Chen, M.; Wu, Y.; Liu, Y.; Yang, H.; Zhao, Q.; Li, F.; Biomaterials 2014, 35, 8748.
-111111 Jiang, W.; Gao, Y.; Sun, Y.; Ding, F.; Xu, Y.; Bian, Z.; Li, F.; Bian, J.; Huango, C.; Inorg. Chem. 2010, 49, 3252.

Complexes Ir-12 to Ir-14 have the ability to produce micelles combining the photophysical properties of Ir-2 to Ir-4.112112 Zanoni, K. P. S.; Vilela, R. R. C.; Silva, I. D. A.; Murakami Iha, N. Y.; Eckert, H.; de Camargo, A. S.; Inorg. Chem. 2019, 58, 4962. These complexes were mixed with an appropriate surfactant to result in micelles that served as templates for the synthesis of highly-emissive mesoporous silica host supramolecular materials.

LEC devices were fabricated by employing complexes Ir-1 and Ir-2 as emissive active layers, exhibiting green and yellow light, respectively, Figure 11.113113 Zanoni, K. P. S.; Murakami Iha, N. Y.; Synth. Met. 2016, 222, 393.

114 Zanoni, K. P. S.; Sanematsu, M. S.; Murakami Iha, N. Y.; Inorg. Chem. Commun. 2014, 43, 162.
-115115 Zanoni, K. P. S.: Compostos de Coordenação de Ir(III), Re(I) e Ru(II) para Aplicações em Dispositivos Moleculares, PhD thesis, University of São Paulo, São Paulo, Brazil, 2016, available at https://www.teses.usp.br/teses/disponiveis/46/46136/tde-27042018-081643/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...
The FTO/PEDOT:PSS/Ir-2/Al device was sealed using a treatment developed by the LFCE,116116 Murakami Iha, N. Y.; Mizoguchi, S. K.; BR pat. 018090056741, 2013. which allowed the optoelectronic characterization to be carried out in air, outside of a glovebox.114114 Zanoni, K. P. S.; Sanematsu, M. S.; Murakami Iha, N. Y.; Inorg. Chem. Commun. 2014, 43, 162. A blue-emissive FTO/PEDOT:PSS/PVK:Ir-5/Al OLED was fabricated using Ir-5-doped PVK as the emissive layer.113113 Zanoni, K. P. S.; Murakami Iha, N. Y.; Synth. Met. 2016, 222, 393. The PVK:Ir-5 films are subjected to an intense energy transfer from the polymer to the complex, resulting in a complete quenching of the PVK emission. These works are a successful proof of concept for feasible low-cost light-emitting devices with simple architectures and fabrication methods that require non-specific instruments.

Figure 11
(a) ITO/PEDOT:PSS/Ir-1/Al and (b) ITO/PEDOT:PSS/Ir-2/Al LECs and (c) ITO/PEDOT:PSS/PVK:Ir-5/Al OLED under operation, with their CIE color coordinates indicated in diagram (d).

3. Molecular Machines and Photosensors

3.1. Photochemical and photophysical properties of ReI complexes

Those fac-[Re(CO)3(NN)(L)]0/+ complexes mentioned in sub-section 2.2 are also effective in sensitizing the transcis photoisomerization of stilbene-like molecules (which can coordinate to ReI as a monodentate L ligand), Figure 12.66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.,7979 Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. In Photochemistry and Photophysics of Coordination Compounds I; Springer: Heidelberg, Berlin, 2007, p. 117-214.,117117 Patrocinio, A. O. T.; Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chem. 2013, 52, 5889.

118 Lewis, J. D.; Perutz, R. N.; Moore, J. N.; Chem. Commun. 2000, 1, 1865.

119 Kayanuma, M.; Daniel, C.; Gindensperger, E.; Can. J. Chem. 2014, 92, 979.

120 Itokazu, M. K.; Sarto Polo, A.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 27.

121 Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294.

122 Wenger, O. S.; Henling, L. M.; Day, M. W.; Winkler, J. R.; Gray, H. B.; Polyhedron 2004, 23, 2955.

123 Itokazu, M. K.; Polo, A. S.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 143.

124 Dattelbaum, D. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Meyer, T. J.; J. Phys. Chem. A 2003, 107, 4092.

125 Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2006, 181, 73.

126 Argazzi, R.; Bertolasi, E.; Chiorboli, C.; Bignozzi, C. A.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chem. 2001, 40, 6885.

127 Patrocinio, A. O. T.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; J. Phys. Chem. A 2010, 114, 12129.

128 Frin, K. M.; Murakami Iha, N. Y.; J. Braz. Chem. Soc. 2006, 17, 1664.

129 Patrocínio, A. O. T.; Murakami Iha, N. Y.; Inorg. Chem. 2008, 47, 10851.

130 Busby, M.; Hartl, F.; Matousek, P.; Towrie, M.; Vlček, A.; Chem. - Eur. J. 2008, 14, 6912.

131 Itokazu, M. K.; Polo, A. S.; de Faria, D. L. A.; Bignozzi, C. A.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2001, 313, 149.

132 Yam, V. W.; Lau, V. C.; Wu, L.; J. Chem. Soc. Dalton Trans. 1998, 1461.

133 Bossert, J.; Daniel, C.; Chem. - Eur. J. 2006, 12, 4835.

134 Kayanuma, M.; Gindensperger, E.; Daniel, C.; Dalton Trans. 2012, 41, 13191.

135 Busby, M.; Matousek, P.; Towrie, M.; Vlček, A.; J. Phys. Chem. A 2005, 13, 3000.

136 Vlček, A.; Busby, M.; Coord. Chem. Rev. 2006, 250, 1755.

137 Frin, K. P. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Inorg. Chem. Commun. 2012, 20, 105.

138 Gindensperger, E.; Köppel, H.; Daniel, C.; Chem. Commun. 2010, 46, 8225.

139 Daniel, C.; Coord. Chem. Rev. 2015, 282-283, 19.

140 Sathish, V.; Babu, E.; Ramdass, A.; Lu, Z.-Z. Z.; Chang, T.-T. T.; Velayudham, M.; Thanasekaran, P.; Lu, K.-L. L.; Li, W.-S. S.; Rajagopal, S.; RSC Adv. 2013, 3, 18557.

141 Zanoni, K. P. S.; Murakami Iha, N. Y.; Dalton Trans. 2017, 46, 9951.
-142142 Wrighton, M. S.; Morse, D. L.; Pdungsap, L.; J. Am. Chem. Soc. 1975, 97, 2073. This photochemical reaction is appealing for allowing molecular geometry control by means of light absorption,55 Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L.; Chem. Rev. 2015, 115, 10081.,143143 Merino, E.; Ribagorda, M.; Beilstein J. Org. Chem. 2012, 8, 1071. which can be conveniently exploited in molecular machines, gears and motors with yes-no or on-off logical responses for applications in sensors and biological systems, such as deoxyribonucleic acid (DNA) transcription144144 Kamiya, Y.; Asanuma, H.; Acc. Chem. Res. 2014, 47, 1663. and regulation of cations in membranes.145145 Kassem, S.; Van Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.; Leigh, D. A.; Chem. Soc. Rev. 2017, 46, 2592.

146 Bianchi, A.; Delgado-Pinar, E.; García-España, E.; Giorgi, C.; Pina, F.; Coord. Chem. Rev. 2014, 260, 156.
-147147 Hampp, N.; Chem. Rev. 2000, 100, 1755. The main advantage of using coordination complexes is to improve and/or sensitize the photoreaction to the visible region.66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.

Figure 12
trans⇋cis photoisomerization for (a) free stilbene-like molecules or (b) as a ligand in fac-[Re(CO)3(NN)(L)]+ complexes.

Absorption of light is restricted to the UV region for the non-coordinated stilbene molecules while the coordination to the fac-[Re(CO)3(NN)]+ moiety overcomes this limitation, sensitizing the transcis photoisomerization process toward visible light.66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.,8181 Kayanuma, M.; Daniel, C.; Köppel, H.; Gindensperger, E.; Coord. Chem. Rev. 2011, 255, 2693.,139139 Daniel, C.; Coord. Chem. Rev. 2015, 282-283, 19. The photoisomerization mechanism of fac-[Re(CO)3(NN)(trans-L)]+ is not straightforward being subject of many investigations. It depends not only on the L stilbene-like molecule but also on electronic interactions with the NN ligand and the ReI center (spin-orbit coupling inducer).124124 Dattelbaum, D. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Meyer, T. J.; J. Phys. Chem. A 2003, 107, 4092.,127127 Patrocinio, A. O. T.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; J. Phys. Chem. A 2010, 114, 12129.,129129 Patrocínio, A. O. T.; Murakami Iha, N. Y.; Inorg. Chem. 2008, 47, 10851.,134134 Kayanuma, M.; Gindensperger, E.; Daniel, C.; Dalton Trans. 2012, 41, 13191.,138138 Gindensperger, E.; Köppel, H.; Daniel, C.; Chem. Commun. 2010, 46, 8225.,148148 Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2011, 376, 531. In summary, the absorption of light occurs through singlet excited states, either a ligand-centered 1LCL transition (equivalent to the S1 state in the free organic molecule) in the UV region or a 1MLCTRe→NN toward visible. Then, the excited molecule relaxes (by intersystem crossings and/or internal conversions) to the lowest-lying triplet ligand centered state 3LCL (equivalent to the T1 state in the free organic molecule), which is now less spin-forbidden due to the influence exerted by the ReI core.

transcis photoisomerization of fac-[Re(CO)3(NN)(L)]+ can be properly monitored by UV-Vis and 1H nuclear magnetic resonance (NMR) spectral changes as a function of photolysis time, as exemplified in Figure 13. Upon irradiation, absorption spectral changes usually lead to well-defined isosbestic points, which indicate no competitive photoreactions.66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.,8484 Amaral, R. C.; Matos, L. S.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Phys. Chem. A 2018, 122, 6071.,117117 Patrocinio, A. O. T.; Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chem. 2013, 52, 5889.,121121 Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294.,127127 Patrocinio, A. O. T.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; J. Phys. Chem. A 2010, 114, 12129.,141141 Zanoni, K. P. S.; Murakami Iha, N. Y.; Dalton Trans. 2017, 46, 9951.,149149 Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2018, 47, 13081.,150150 Matos, L. S.; Amaral, R. C.; Murakami Iha, N. Y.; Inorg. Chem. 2018, 57, 9316. Also, 1H NMR signals for the trans-isomer decrease gradually, while new signals ascribed to the cis-isomer build up in intensity. It is noteworthy that the hydrogen coupling constant between Hc and Hd of the trans-isomer is J3 ca. 16 Hz121121 Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294.,123123 Itokazu, M. K.; Polo, A. S.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 143. while for Hc’ and Hd’ in the cis-isomer is J3 ca. 12 Hz,66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669. which confirm a successful photoisomerization.

Figure 13
(a) Absorption (CH3CN) and (b) 1H NMR (800 MHz, CD3CN) spectral changes for Re-15 as a function of photolysis time (λirradiation = 436 nm, Δt = 30 s, T = 298 K).

Usually, trans- and cis-isomers absorb in the same region, Figure 13, thus the the photoisomerization quantum yield (Φ) values determined by UV-Vis spectral change are just apparent. On the other hand, 1H NMR spectroscopy has been successfully proven by the LFCE121121 Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294.,151151 Frin, K. P. M.: Propriedades Fotoquímicas de alguns Complexos de Ferro(II) e Rênio(I), PhD thesis, University of São Paulo, São Paulo, Brazil, 2008, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-17052016-143939/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...
to be an important tool to determine accurate quantum yields since the hydrogen signals for photoproducts and reactants appear in very distinct regions, Figure 13. As a consequence, quantum yields so determined are the true ones while those determined by variations in absorption spectra are apparent.

The LFCE has proven that 1H NMR spectroscopy is an important tool to determine accurate quantum yields, since the hydrogen signals for photoproducts and reactants appear in very distinct regions, Figure 13.8484 Amaral, R. C.; Matos, L. S.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Phys. Chem. A 2018, 122, 6071.,141141 Zanoni, K. P. S.; Murakami Iha, N. Y.; Dalton Trans. 2017, 46, 9951.,150150 Matos, L. S.; Amaral, R. C.; Murakami Iha, N. Y.; Inorg. Chem. 2018, 57, 9316.

The cis-isomer complex is usually emissive while the trans-isomer is non-emissive, Figure 14, and emission spectral changes can also monitor the photoisomerization process. The gradual increase in emission (ascribed to the lowest-lying 3MLCTcis-L(Re→NN) state) via transcis photoisomerization can be exploited in the development of optoelectronic devices for photosensors, emission on-off photoswitches and polymerization sensors.117117 Patrocinio, A. O. T.; Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chem. 2013, 52, 5889.,122122 Wenger, O. S.; Henling, L. M.; Day, M. W.; Winkler, J. R.; Gray, H. B.; Polyhedron 2004, 23, 2955.,123123 Itokazu, M. K.; Polo, A. S.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 143.,125125 Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2006, 181, 73.,128128 Frin, K. M.; Murakami Iha, N. Y.; J. Braz. Chem. Soc. 2006, 17, 1664.,129129 Patrocínio, A. O. T.; Murakami Iha, N. Y.; Inorg. Chem. 2008, 47, 10851.

Figure 14
(a) trans-to-cis photosiomerization reaction for Re-14 and (b) changes in its emission (λexc = 420 nm) spectra as a function of photolysis time in acetonitrile (λirr = 436 nm, Δt = 30 s, T = 298 K). The inset graph in (b) exhibits the increase in the emission intensity at 620 nm as a function of photolysis time.

Figure 15 and Table 2 show fac-[Re(CO)3(NN)(trans-L)]+ complexes investigated by the LFCE. The Re-4 to Re-7 bpe series (bpe = 1,2-bis(4-pyridyl)ethylene) typically exhibits higher trans-to-cis photoisomerization quantum yields (Φtranscis) than the non-coordinated ligand, independent on irradiation wavelenghts.66 Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.,121121 Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294.,127127 Patrocinio, A. O. T.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; J. Phys. Chem. A 2010, 114, 12129.,148148 Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2011, 376, 531.,151151 Frin, K. P. M.: Propriedades Fotoquímicas de alguns Complexos de Ferro(II) e Rênio(I), PhD thesis, University of São Paulo, São Paulo, Brazil, 2008, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-17052016-143939/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...

152 Polo, A. S.: Sistemas Químicos Integrados via Complexos de Rênio(I) e Rutênio(II) na Conversão de Energia, PhD thesis, University of São Paulo, São Paulo, Brazil, 2007, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-26042007-112045/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...
-153153 Itokazu, M. K.: Reações Fotoinduzidas em alguns Complexos de Rênio e Desenvolvimento de Dispositivos Moleculares, PhD thesis, University of São Paulo, São Paulo, Brazil, 2005, available at https://teses.usp.br/teses/disponiveis/46/46134/tde-28062016-112017/en.php, accessed in May 2020.
https://teses.usp.br/teses/disponiveis/4...
For example, for complex Re-4 the bpe ligand photoisomerizes under blue light irradiation with outstanding Φtranscis313 nm= 0.81 ± 0.07, Φ365 nm= 0.80 ± 0.07 and F404 nm= 0.77 ± 0.09),121121 Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294.,148148 Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2011, 376, 531. more efficient than the UV restricted non-coordinated bpe (Φ313 nm= 0.26 ± 0.04).121121 Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294. Also, an increasing luminescence centered at 570 nm is observed at room temperature as the cis-isomer is formed.123123 Itokazu, M. K.; Polo, A. S.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 143.,131131 Itokazu, M. K.; Polo, A. S.; de Faria, D. L. A.; Bignozzi, C. A.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2001, 313, 149.

Table 2
trans-cis photoisomerization quantum yields for the fac-[Re(CO)3(NN)(trans-L)]+ complexes investigated by LFCE

Figure 15
transcis L photoisomerizable rhenium(I) complexes investigated by the LFCE for photosensors and molecular machines.

The photoisomerization process was also observed for rhenium(I) binuclear complexes, in which bpe was used as a bridge photoisomerizable ligand attaching both bulk units. Similarly to mononuclear complexes, irradiation of Re-8 led to spectral changes with clear and well defined isosbestic points ascribed to the transcis photoisomerization.153153 Itokazu, M. K.: Reações Fotoinduzidas em alguns Complexos de Rênio e Desenvolvimento de Dispositivos Moleculares, PhD thesis, University of São Paulo, São Paulo, Brazil, 2005, available at https://teses.usp.br/teses/disponiveis/46/46134/tde-28062016-112017/en.php, accessed in May 2020.
https://teses.usp.br/teses/disponiveis/4...
On the other hand, no photoisomerization was observed for rhenium(II)-iron(II) (Re-9) and rhenium(II)-osmium(I) (Re-10) bimetallic complexes,126126 Argazzi, R.; Bertolasi, E.; Chiorboli, C.; Bignozzi, C. A.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chem. 2001, 40, 6885.,154154 Murakami Iha, N. Y.; An. Acad. Bras. Cienc. 2000, 72, 67. due to the presence of the lower-lying 3MLCT state of iron (3MLCTFe→bpe)154154 Murakami Iha, N. Y.; An. Acad. Bras. Cienc. 2000, 72, 67. or osmium (3MLCTOs→bpe)126126 Argazzi, R.; Bertolasi, E.; Chiorboli, C.; Bignozzi, C. A.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chem. 2001, 40, 6885. that quenches the photoisomerization channel.

Differently than the Re-4 to Re-7 bpe series, the Re-16 to Re-19 stpy series (stpy = 4-styrylpyridine) exhibit irradiation-wavelength dependent Φtranscis , suggesting different photoisomerization mechanisms, subject of several studies.8181 Kayanuma, M.; Daniel, C.; Köppel, H.; Gindensperger, E.; Coord. Chem. Rev. 2011, 255, 2693.,133133 Bossert, J.; Daniel, C.; Chem. - Eur. J. 2006, 12, 4835.,134134 Kayanuma, M.; Gindensperger, E.; Daniel, C.; Dalton Trans. 2012, 41, 13191.,138138 Gindensperger, E.; Köppel, H.; Daniel, C.; Chem. Commun. 2010, 46, 8225. The progress of these studies led to the fac-[Re(CO)3(NN)(trans-stpyCN)]+ series (Re-20-24) achieving the first ReI series to present a truly reversible (transcis and cistrans) photoresponsive molecular motion.8484 Amaral, R. C.; Matos, L. S.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Phys. Chem. A 2018, 122, 6071.,115115 Zanoni, K. P. S.: Compostos de Coordenação de Ir(III), Re(I) e Ru(II) para Aplicações em Dispositivos Moleculares, PhD thesis, University of São Paulo, São Paulo, Brazil, 2016, available at https://www.teses.usp.br/teses/disponiveis/46/46136/tde-27042018-081643/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...
,137137 Frin, K. P. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Inorg. Chem. Commun. 2012, 20, 105.,141141 Zanoni, K. P. S.; Murakami Iha, N. Y.; Dalton Trans. 2017, 46, 9951.,149149 Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2018, 47, 13081. This impressive photoreversibility of fac-[Re(CO)3(NN)(trans-stpyCN)]+ opens new perspective for application in molecular machines as molecular motors and geometry regulators for switch on/off devices.

Re-11 and Re-15 complexes were engineered for device applications taking advantage of carboxylic acid as anchoring group. The photochemistry had been investigated both in fluid solution and adsorbed on TiO2 surface with detection of photoisomerization for both complexes independent on the media. The Re-11 cis-photoproduct, emissive in solution, had its emission quenched in favor of electron injection into TiO2, with increasing photocurrent as the concentration of cis-isomers increases.117117 Patrocinio, A. O. T.; Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chem. 2013, 52, 5889. The breakthrough of Re-15 is the effective sensitization to the visible with photoisomerization occurring even at 436 nm; in particular, Re-15 exhibits characteristics for solar energy conversion devices.150150 Matos, L. S.; Amaral, R. C.; Murakami Iha, N. Y.; Inorg. Chem. 2018, 57, 9316. The undergoing investigation revealed that it adsorbs more efficiently on the TiO2 surface. Furthermore, it is successfully photoisomerized under 436 nm irradiation, Figure 16. These systems exemplify their use as a proof of concept for molecular devices.

Figure 16
trans-to-cis photoisomerization of Re-15 adsorbed on the TiO2 surface (complex and nanoparticle are out of scale).

4. Dye-Sensitized Energy Conversion Devices

The abundant and potentially infinite energy generated by the sun is one of the most promising sources to supply and complement the world energy matrix,155155 Nunes, B. N.; Paula, L. F.; Costa, Í. A.; Machado, A. E. H.; Paterno, L. G.; Patrocinio, A. O. T.; J. Photochem. Photobiol., C 2017, 32, 1.,156156 Balzani, V.; Credi, A.; Venturi, M.; ChemSusChem 2008, 1, 26. in special in Brazil, where the solar irradiation index is high practically throughout the whole year.157157 Ferreira, A.; Kunh, S. S.; Fagnani, K. C.; de Souza, T. A.; Tonezer, C.; dos Santos, G. R.; Coimbra-Araújo, C. H.; Renewable Sustainable Energy Rev. 2018, 81, 181. Therefore, there is a great interest in developing devices capable of converting solar energy efficiently, as perspectives for sustainable and renewable sources of clean energy.158158 Saxena, V.; Aswal, D. K.; Semicond. Sci. Technol. 2015, 30, 064005. The LFCE extended investigations on the solar energy field in 1995, with researches on DSCs emerged in collaboration with Prof Carlo A. Bignozzi.

4.1. Dye-sensitized solar cells

DSCs belong to the third generation of photovoltaics and their working mechanism makes use of supramolecular approaches for device concepts.158158 Saxena, V.; Aswal, D. K.; Semicond. Sci. Technol. 2015, 30, 064005.

159 Ragoussi, M.-E.; Torres, T.; Chem. Commun. 2015, 51, 3957.

160 Sugathan, V.; John, E.; Sudhakar, K.; Renewable Sustainable Energy Rev. 2015, 52, 54.
-161161 Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z.; Mater. Today 2015, 18, 155. Differently from other photovoltaic technologies, DSCs are photoelectrochemical cells in which light-to-electricity conversion occurs via dyes chemically adsorbed on the electrode surface and the separation of charge carriers is kinetically controlled by the chemical reaction involved.162162 Grätzel, M.; J. Photochem. Photobiol., C 2003, 4, 145.,163163 Pazoki, M.; Cappel, U. B.; Johansson, E. M. J.; Hagfeldt, A.; Boschloo, G.; Energy Environ. Sci. 2017, 10, 672.

The typical DSC is composed by a photoanode and a counter electrode in a sandwich-type arrangement, Figure 17. The photoanode consists in a glass substrate with a transparent conductive oxide (TCO, usually fluorine-doped tin oxide, FTO) on which a mesoporous thin film of a wide bandgap semiconductor oxide (commonly TiO2) is deposited. Sensitizers (dyes, e.g., cis-[Ru(dcbH2)2(NCS)2], N3, or cis-[Ru(dcbH2)2(NCS)2][TBA]2, N719) are adsorbed on the semiconductor nanoparticles surface to absorb the visible light. The counter electrode consists of a TCO substrate with a thin layer of a catalyzer (usually transparent Pt film). A mediator electrolyte solution is inserted between both electrodes (usually, a concentrated I-/I3- solution) to complete the regenerative circuit.164164 Sharifi, N.; Tajabadi, F.; Taghavinia, N.; ChemPhysChem 2014, 15, 3902.,165165 Yu, Z.; Vlachopoulos, N.; Gorlov, M.; Kloo, L.; Dalton Trans. 2011, 40, 10289.

Figure 17
Simplified working mechanism of DSCs (more details in the main text).

Under sun shining, the sensitizer dye (S) absorbs solar irradiation to result in excited state (S*), which injects electrons to the semiconductor conduction band (CB). The oxidized sensitizer (S+) is then reduced by the mediator I-, regenerating S. Meanwhile, photoinjected electron percolate through the semiconductor film and is collected at the counter electrode, where a catalyzer reduces I3- to I-, closing the cycle.159159 Ragoussi, M.-E.; Torres, T.; Chem. Commun. 2015, 51, 3957.,164164 Sharifi, N.; Tajabadi, F.; Taghavinia, N.; ChemPhysChem 2014, 15, 3902. Therefore, in this regenerative electrochemical device, visible light is efficiently converted into electricity without any permanent chemical change. The highest efficiencies reported so far is around 14.3%166166 Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M.; Chem. Commun. 2015, 51, 15894.,167167 Lee, C. P.; Li, C. T.; Ho, K. C.; Mater. Today 2017, 20, 267. and have proven to be commercially feasible and several products had been released.168168 Baxter, J. B.; J. Vac. Sci. Technol., A 2012, 30, 020801.,169169 Fakharuddin, A.; Jose, R.; Brown, T. M.; Fabregat-Santiago, F.; Bisquert, J.; Energy Environ. Sci. 2014, 7, 3952.

The LFCE developed several aspects related to the DSC technology, including the pathway from fundamental academic scientific knowledge acquired from research to technological innovation and intellectual protection by patents.170170 Murukami Iha, N. Y.; Bignozzi, C. A.; Garcia, C. G.; Argazzi, R.; BR pat. PI 0104993-3, 2001.

171 Murakami Iha, N. Y.; Garcia, C. G.; Argazi, R.; Bignozzi, C. A.; BR pat. PI0101629-6, 2001.

172 Murakami Iha, N. Y.; Garcia, C. G.; Polo, A. S.; BR pat. PI0203334-1, 2002.

173 Murakami Iha, N. Y.; Garcia, C. G.; Polo, A. S.; BR pat. PI0203234-1, 2002.

174 Murakami Iha, N. Y.; Polo, A. S.; Garcia, C. G.; BR pat. PI0701973-4, 2007.
-175175 Murakami Iha, N. Y.; Patrocínio, A. O. T.; Paterno, L. G.; BR pat. PI0802589-4, 2008.

These activities included the preparation of colloidal TiO2 using distinct methods and different deposition techniques, such as spin-coating, painting and screen-printing.176176 Muhammad, N.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Ahmed, S.; ChemistrySelect 2018, 3, 10475.,177177 Muhammad, N.; Zanoni, K. P. S.; Coppo, R. L.; Ahmed, S.; Murukami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 332, 432. Homogeneous semiconductor films with controlled transparency had been obtained with the proper colloidal TiO2 for automated process. Conducting plastic materials were also tested as the electrode substrate in association with a polymeric gel as an electrolyte medium resulting in wholly flexible solar cells. The electron transfer from the excited dye to semiconductor and the charge recombination/quenching processes were further investigated by transient UV-Vis absorption spectra on dye-sensitized TiO2 films deposited onto glass substrates. A fast quenching of the oxidized complex in the presence of iodide emphasized the importance of a proper concentration of donor species in the redox mediator for the effective regeneration of the oxidized sensitizer.178178 Garcia, C. G.; Kleverlaan, C. J.; Bignozzi, C. A.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2002, 147, 143.,179179 Garcia, C. G.; Nakano, A. K.; Kleverlaan, C. J.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2002, 151, 165.

Molecular engineering of cis-[Ru(dcbH2)2LL’] compounds (dcbH2 = 4,4’-dicarboxylic acid-2,2’- bipyridyl and LL’ = ancillary ligands) that act as panchromatic charge transfer sensitizers of TiO2 is still in continuous study, Figure 18. Our investigation efforts now progress toward device improvements through new synthetic and natural dyes.

Figure 18
Ruthenium(II) complexes investigated by the LFCE as sensitizers in DSCs.

Ruthenium-based dyes are the most-commonly used sensitizers due to their intense (high molar absorptivity) and broad absorption bands in the visible region ascribed to the 1MLCTRu→NN transition. They also present high chemical and thermal stability in both ground and oxidized states and have favorable redox potentials for electron injection into CB of TiO2.180180 Qin, Y.; Peng, Q.; Int. J. Photoenergy 2012, 2012, 291579.

181 Pashaei, B.; Shahroosvand, H.; Graetzel, M.; Nazeeruddin, M. K.; Chem. Rev. 2016, 116, 9485.
-182182 Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2004, 248, 1343.

The proper selection of ancillary ligands provides the suitable energetic control of the overall properties of these complexes. This approach was successfully applied to improve the incident photon-to-current efficiency (IPCE) and consequent the electron injection into TiO2-CB sensitized by complexes Ru-3 to Ru-6.

The incident photon-to-current efficiency obtained for Ru-3 (56%, Table 3) is higher than that for Ru-4 (ca. 40%).178178 Garcia, C. G.; Kleverlaan, C. J.; Bignozzi, C. A.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2002, 147, 143.,183183 Garcia, C. G.; Murakami Iha, N. Y.; Argazzi, R.; Bignozzi, C. A.; J. Photochem. Photobiol., A 1998, 115, 239.,184184 Garcia, C. G.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 130. The Ru-3 complex, with two different ancillary ligands, presented a broader spectral response at longer wavelengths when compared to the bis-coordinated 4-phenylpyridine (ppy) derivative Ru-4, showing an important role in the characteristic of the donor ligand in tuning photoelectrochemical properties. The Ru-6 complex exhibited higher IPCE (ca. 60%)184184 Garcia, C. G.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 130. when compared with its analogous ppy- (Ru-3 and 4) and isoquinoline-derivatives (Ru-5).185185 Garcia, C. G.; Murakami Iha, N. Y.; Argazzi, R.; Bignozzi, C. A.; J. Braz. Chem. Soc. 1998, 9, 13.

Table 3
Photoelectrochemical parameters for DSCs sensitized with the ruthenium(II) dyes investigated by the LFCE

DSCs sensitized by Ru-10 exhibited a fair short-circuit photocurrent density (JSC) of 8.00 mA cm-2, open-circuit potential (VOC) of 0.66 V and fill factor (ff) of 0.51.152152 Polo, A. S.: Sistemas Químicos Integrados via Complexos de Rênio(I) e Rutênio(II) na Conversão de Energia, PhD thesis, University of São Paulo, São Paulo, Brazil, 2007, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-26042007-112045/pt-br.php, accessed in May 2020.
https://www.teses.usp.br/teses/disponive...
Variations in photoelectrochemical parameters obtained for DSCs with Ru-11 and Ru-12 sensitizers were ascribed to the different properties of the ancillary ligands.186186 Silva, M. D. S. P.; Diógenes, I. C. N.; de Carvalho, I. M. M.; Zanoni, K. P. S.; Amaral, R. C.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2016, 314, 75.

Synthetic dyes, such as coordination compounds and organic molecules, usually lead to the best photon conversion efficiencies in DSCs.182182 Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2004, 248, 1343.,187187 Chaurasia, S.; Lin, J. T.; Chem. Rec. 2016, 16, 1311.

188 Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M.; Sol. Energy 2011, 85, 1172.
-189189 Bignozzi, C. A.; Argazzi, R.; Boaretto, R.; Busatto, E.; Carli, S.; Ronconi, F.; Caramori, S.; Coord. Chem. Rev. 2013, 257, 1472. However, the use of certain natural dyes as sensitizers is an advantageous environmental-friendly alternative, for their low toxicity, easy obtention and preparation of low-cost devices.190190 Shalini, S.; Prabhu, R. B.; Prasanna, S.; Mallick, T. K.; Senthilarasu, S.; Renewable Sustainable Energy Rev. 2015, 51, 1306.

191 Calogero, G.; Bartolotta, A.; Di Marco, G.; Di Carlo, A.; Bonaccorso, F.; Chem. Soc. Rev. 2015, 44, 3244.

192 Ludin, N. A.; Mahmoud, A. M. A.-A.; Mohamad, A. B.; Kadhum, A. A. H.; Sopian, K.; Karim, N. S. A.; Renewable Sustainable Energy Rev. 2014, 31, 386.

193 Hug, H.; Bader, M.; Mair, P.; Glatzel, T.; Appl. Energy 2014, 115, 216.

194 Al-Alwani, M. A. M.; Mohamad, A. B.; Ludin, N. A.; Kadhum, A. A. H.; Sopian, K.; Renewable Sustainable Energy Rev. 2016, 65, 183.

195 Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B.; Renewable Sustainable Energy Rev. 2017, 69, 705.
-196196 Zhou, H.; Wu, L.; Gao, Y.; Ma, T.; J. Photochem. Photobiol., A 2011, 219, 188. Natural dyes are obtained from different parts of plants, such as fruits, flowers, leaves and roots.197197 Iqbal, M. Z.; Ali, S. R.; Khan, S.; Sol. Energy 2019, 181, 490. Those used in DSCs usually present an intense blue/violet color ascribed to the presence of anthocyanins with anchoring groups to promote an effective adsorption on TiO2, Figure 19, similarly to the RuII-based dyes.182182 Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2004, 248, 1343. The LFCE investigated DSCs sensitized by many anthocyanin-based fruit-extract: blueberry (Vaccinium myrtillusLam.),198198 Patrocínio, A. O. T.; Mizoguchi, S. K.; Paterno, L. G.; Garcia, C. G.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2342.,199199 Patrocínio, A. O. T.; Murakami Iha, N. Y.; Quim. Nova 2010, 33, 574. cabbage-palm fruit (Euterpe oleracea Mart.),200200 Garcia, C. G.; Polo, A. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 87. calafate (Berberis buxifoliaLam.),201201 Polo, A. S.; Murakami Iha, N. Y.; Sol. Energy Mater. Sol. Cells 2006, 90, 1936. chaste tree fruit (Solanum americanum Mill.),200200 Garcia, C. G.; Polo, A. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 87. jaboticaba’s skin (Myrtus cauliflora Mart),198198 Patrocínio, A. O. T.; Mizoguchi, S. K.; Paterno, L. G.; Garcia, C. G.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2342.,201201 Polo, A. S.; Murakami Iha, N. Y.; Sol. Energy Mater. Sol. Cells 2006, 90, 1936.,202202 Amaral, R. C.; Barbosa, D. R. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 346, 144. java plum (Eugenia jambolana Lam),202202 Amaral, R. C.; Barbosa, D. R. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 346, 144.,203203 Murakami Iha, N. Y.; Garcia, C. G.; Bignozzi, C. A. In Handbook of Photochemistry and Photobiology; American Scientific Publishers: Stevenson Ranch, California, USA, 2003, p. 49-82. mulberry (Morus albaL.),198198 Patrocínio, A. O. T.; Mizoguchi, S. K.; Paterno, L. G.; Garcia, C. G.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2342.

199 Patrocínio, A. O. T.; Murakami Iha, N. Y.; Quim. Nova 2010, 33, 574.
-200200 Garcia, C. G.; Polo, A. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 87.,202202 Amaral, R. C.; Barbosa, D. R. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 346, 144. pomegranate (Punica granatum)202202 Amaral, R. C.; Barbosa, D. R. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 346, 144. and raspberry (Rubus idaeus L.),199199 Patrocínio, A. O. T.; Murakami Iha, N. Y.; Quim. Nova 2010, 33, 574. as summarized in Figure 19.

Figure 19
Schematic adsorption of anthocyanin on TiO2 and the fruits investigated by the LFCE.

The strategies exploited by the LFCE to enhance the efficiencies of DSCs sensitized by mulberry, jaboticaba’s skin, java plum and pomegranate have focused mainly in variating the extraction medium or pH control. For instance, DSCs sensitized with jaboticaba’s skin showed an improvement when water was substituted by ethanol as extraction medium, enhancing the device efficiency up to 115% (h from 0.47 to 1.15%).201201 Polo, A. S.; Murakami Iha, N. Y.; Sol. Energy Mater. Sol. Cells 2006, 90, 1936.

Adding pyridine in mediators for DSCs sensitized by anthocyanins resulted in a considerable JSC loss. For mulberry, for example, this led to a 79% decrease in photoconversion efficiency (h from 4.31 to 0.92%).200200 Garcia, C. G.; Polo, A. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 87. The current drop was due to a decrease in the medium pH, leading to deprotonation of anthocyanin and consequent desorption from the TiO2 surface, as previously observed by Calogeroet al.204204 Calogero, G.; Yum, J.-H. H.; Sinopoli, A.; Di Marco, G.; Grätzel, M.; Nazeeruddin, M. K.; Sol. Energy 2012, 86, 1563. Therefore, pyridine-free electrolytes are more appropriate for anthocyanin-sensitized DSCs.

The stability of natural-dye-sensitized DSC was also investigated with mulberry, jaboticaba’s skin and blueberry.199199 Patrocínio, A. O. T.; Murakami Iha, N. Y.; Quim. Nova 2010, 33, 574.

200 Garcia, C. G.; Polo, A. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 87.
-201201 Polo, A. S.; Murakami Iha, N. Y.; Sol. Energy Mater. Sol. Cells 2006, 90, 1936. DSCs sensitized by mulberry exhibited constant photoelectrochemical parameters after 14 weeks of continuous evaluation, remaining stable even after 36 weeks with a fairly good efficiency when sealed under proper condition.198198 Patrocínio, A. O. T.; Mizoguchi, S. K.; Paterno, L. G.; Garcia, C. G.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2342.

4.2. Dye-sensitized photoelectrosynthesis cells

Dye-sensitized photoelectrosynthesis cells (DSPECs) use the concepts of DSCs for energy storage.205205 Grätzel, M.; Nature 2001, 414, 338.,206206 House, R. L.; Murakami Iha, N. Y.; Coppo, R. L.; Alibabaei, L.; Sherman, B. D.; Kang, P.; Brennaman, M. K.; Hoertz, P. G.; Meyer, T. J.; J. Photochem. Photobiol., C 2015, 25, 32. They have been investigated toward the production of solar fuels inspired in natural photosynthesis and referred as artificial photosynthesis.207207 Meyer, T. J.; Sheridan, M. V.; Sherman, B. D.; Chem. Soc. Rev. 2017, 46, 6148.,208208 Brennaman, M. K.; Dillon, R. J.; Alibabaei, L.; Gish, M. K.; Dares, C. J.; Ashford, D. L.; House, R. L.; Meyer, G. J.; Papanikolas, J. M.; Meyer, T. J.; J. Am. Chem. Soc. 2016, 138, 13085. DSPECs can have lower-cost production in comparison to other crystalline-semiconductor-based systems for photooxidation of water.209209 Song, W.; Chen, Z.; Glasson, C. R. K.; Hanson, K.; Luo, H.; Norris, M. R.; Ashford, D. L.; Concepcion, J. J.; Brennaman, M. K.; Meyer, T. J.; ChemPhysChem 2012, 13, 2882. Although a promising strategy, some parallel reactions in their interfaces decrease considerably their efficiency.210210 Gibson, E. A.; Chem. Soc. Rev. 2017, 46, 6194. Researches on this field are usually focused on new materials and understanding of these phenomena for decreasing electronic recombination from the mesoporous semiconductor to the oxidized dye and diminishing the time the photoinjected electrons take to reach the TCO substrate.211211 Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E.; Chem. Rev. 2019, 119, 2752.

The operation mechanism of a DSPEC is similar to a DSC, in which a sensitizer molecule is excited to a higher-energy state that injects electrons in the conduction band of a semiconductor oxide (usually TiO2), initiating a series of molecular and interfacial electron transfer processes to lead to the production of the photoproducts (solar fuels), with higher chemical energy content,206206 House, R. L.; Murakami Iha, N. Y.; Coppo, R. L.; Alibabaei, L.; Sherman, B. D.; Kang, P.; Brennaman, M. K.; Hoertz, P. G.; Meyer, T. J.; J. Photochem. Photobiol., C 2015, 25, 32.,208208 Brennaman, M. K.; Dillon, R. J.; Alibabaei, L.; Gish, M. K.; Dares, C. J.; Ashford, D. L.; House, R. L.; Meyer, G. J.; Papanikolas, J. M.; Meyer, T. J.; J. Am. Chem. Soc. 2016, 138, 13085.,212212 Song, W.; Chen, Z.; Brennaman, M. K.; Concepcion, J. J.; Patrocinio, A. O. T.; Murakami Iha, N. Y.; Meyer, T. J.; Pure Appl. Chem. 2011, 83, 749. Figure 20.

Figure 20
Main components, device architecture and simplified mechanism of a DSPEC for light-driven water oxidation and proton reduction under operation (more details in the main text). PEM is a proton exchange membrane.

The LFCE, in collaboration with Prof Thomas J. Meyer and his research group from the University of North Carolina at Chapel Hill, investigated reactivity toward water oxidation in a class of molecules whose properties can be systematically tuned by synthetic variations based on mechanistic insights.213213 Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer, T. J.; Acc. Chem. Res. 2009, 42, 1954. These molecules work as catalyst for the water oxidation driven either electrochemically or by CeIV. The first two, [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+ (bpm = 2,2’- bipyrimidine and tpy = 2,2’:6’,2’’-terpyridine), undergo hundreds of turnovers without decomposition using CeIV as oxidant. Detailed mechanistic studies and DFT calculations revealed a stepwise mechanism, addressed in our previous work.213213 Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer, T. J.; Acc. Chem. Res. 2009, 42, 1954. In a brief summary, there is an initial 2e-/2H+ oxidation of the RuIV-H2O center leading to RuIV=O2+ followed by oxidation to RuV=O3+. A nucleophilic attack by H2O gives RuIII-OOH2+ with further oxidation to RuIV(O2)2+ leading to oxygen loss followed by coordination of another water molecule, regenerating the initial RuIV-H2O center. An extended family of the catalyst series based on tpy and Mebimpy (Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) ligands shares a common mechanism.213213 Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer, T. J.; Acc. Chem. Res. 2009, 42, 1954. Interfacial dynamics at the derivatized TiO2 (TiO2-RuII) were also investigated under appropriate condition to water oxidation, by means of nanosecond laser flash photolysis.214214 Brennaman, M. K.; Patrocinio, A. O. T.; Song, W.; Jurss, J. W.; Concepcion, J. J.; Hoertz, P. G.; Traub, M. C.; Murakami Iha, N. Y.; Meyer, T. J.; ChemSusChem 2011, 4, 216.

The water oxidation catalyst [Ru(bda)(4-O(CH2)3P-(O3H2)2-py)2], (py = pyridine and bda = 2,2’-bipyridine-6,6’-dicarboxylate) in a series of chromophore-catalyst assemblies has been investigated as light-driven water splitter in DSPECs.215215 Sheridan, M. V.; Sherman, B. D.; Coppo, R. L.; Wang, D.; Marquard, S. L.; Wee, K.-R.; Murakami Iha, N. Y.; Meyer, T. J.; ACS Energy Lett. 2016, 1, 231. Device performance for both coloaded and layer-by-layer assemblies with phosphonate-ZrIV bridging on SnO2/TiO2 core-shell electrodes was evaluated by both photocurrent and direct O2 measurements in collector-generator cells. The photoelectrodes displayed favorable photocurrents (0.72-1.5 mA cm-2) and Faradaic efficiencies for O2 generation (71-97%), providing important mechanistic insights into the microscopic details for DSPEC water splitting.215215 Sheridan, M. V.; Sherman, B. D.; Coppo, R. L.; Wang, D.; Marquard, S. L.; Wee, K.-R.; Murakami Iha, N. Y.; Meyer, T. J.; ACS Energy Lett. 2016, 1, 231.

4.3. Photoanode engineering

DSCs based on nanocrystalline mesoporous semiconductors, in special TiO2, have been extensively investigated since 1991216216 O’Regan, B.; Grätzel, M.; Nature 1991, 353, 737. with continuous improvement. For high performance DSCs, the desired characteristics of mesoporous films are a high specific surface area with good porosity, long electron diffusion length and a pronounced light scattering effect.217217 Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.; Chem. Rev. 2010, 110, 6595.

One of approaches of photoanode engineering is integrating small nanocrystallites into one single bifunctional film with advantages of increased light scattering and dye-loading, by using mesoporous microspherical titania particles comprised of small nanocrystallites.218218 Nakata, K.; Fujishima, A.; J. Photochem. Photobiol., C 2012, 13, 169.

219 Yang, W.-G.; Wan, F.-R.; Chen, Q.-W.; Li, J.-J.; Xu, D.-S.; J. Mater. Chem. 2010, 20, 2870.

220 Ye, M.; Zheng, D.; Wang, M.; Chen, C.; Liao, W.; Lin, C.; Lin, Z.; ACS Appl. Mater. Interfaces 2014, 6, 2893.
-221221 Sun, X.; Liu, Y.; Tai, Q.; Chen, B.; Peng, T.; Huang, N.; Xu, S.; Peng, T.; Zhao, X.; J. Phys. Chem. C 2012, 116, 11859. The development of a screen-printable paste with improved morphological and optical characteristics for the automated deposition of submicrometer TiO2 resulted in 32% enhanced conversion efficiency.176176 Muhammad, N.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Ahmed, S.; ChemistrySelect 2018, 3, 10475.,177177 Muhammad, N.; Zanoni, K. P. S.; Coppo, R. L.; Ahmed, S.; Murukami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 332, 432.

Another successful approach is the photoanode engineering to minimize recombination effects by treating the TiO2 or FTO surface with a thin cover layer of compact semiconductor oxide222222 Raj, C. C.; Prasanth, R.; J. Power Sources 2016, 317, 120. or even insulating oxide223223 Concina, I.; Vomiero, A.; Small 2015, 11, 1744. that efficiently blocks charge recombination decreasing power conversion efficiencies.224224 Ameri, M.; Samavat, F.; Mohajerani, E.; Fathollahi, M.-R.; J. Phys. D: Appl. Phys. 2016, 49, 225601.

The recombination at FTO/electrolyte interface occurs through the direct physical contact between the FTO and the mediator that percolates through the mesoporous TiO2 semiconductor film. This can be decreased with the use of a compact layer obtainable by many deposition techniques, such as spray-pyrolysis,225225 Sudhagar, P.; Asokan, K.; Jung, J. H.; Lee, Y. G.; Park, S.; Kang, Y. S.; Nanoscale Res. Lett. 2011, 6, 30. sputtering,226226 Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S.; J. Phys. Chem. B 2006, 110, 25222. dip-coating,227227 Sangiorgi, A.; Bendoni, R.; Sangiorgi, N.; Sanson, A.; Ballarin, B.; Ceram. Int. 2014, 40, 10727.

228 Hart, J. N.; Menzies, D.; Cheng, Y. B.; Simon, G. P.; Spiccia, L.; C. R. Chim. 2006, 9, 622.
-229229 Grosso, D.; J. Mater. Chem. 2011, 21, 17033. spin-coating,230230 Al-Juaid, F.; Merazga, A.; Abdel-Wahab, F.; Al-Amoudi, M.; World J. Condens. Matter Phys. 2012, 02, 192. atomic-layer deposition231231 Kim, D. H.; Woodroof, M.; Lee, K.; Parsons, G. N.; ChemSusChem 2013, 6, 1014.,232232 Niu, W.; Li, X.; Karuturi, S. K.; Fam, D. W.; Fan, H.; Shrestha, S.; Wong, L. H.; Tok, A. I. Y.; Nanotechnology 2015, 26, 064001. and layer-by-layer (LbL).233233 Agrios, A. G.; Cesar, I.; Comte, P.; Nazeeruddin, M. K.; Grätzel, M.; Chem. Mater. 2006, 18, 5395. In particular, the LbL technique is a low-cost procedure for a thin film deposition that offers rigorous control of morphology with possibility of scaling up and applications in different areas.234234 Mártire, A. P.; Segovia, G. M.; Azzaroni, O.; Rafti, M.; Marmisollé, W.; Mol. Syst. Des. Eng. 2019, 4, 893.

235 Gross, M. A.; Sales, M. J. A.; Soler, M. A. G.; Pereira-da-Silva, M. A.; da Silva, M. F. P.; Paterno, L. G.; RSC Adv. 2014, 4, 17917.

236 Akiba, U.; Minaki, D.; Anzai, J. I.; Polymers 2017, 9, 1.
-237237 Zeng, J.; Matsusaki, M.; Polym. Chem. 2019, 10, 2960. This technique is based on the electrostatic interactions between oppositely charged materials; therefore a chosen substrate, as FTO, is immersed into cationic and anionic solutions (or suspensions) in a cyclic procedure,238238 Paterno, L. G.; Soler, M. A. G.; JOM 2013, 65, 709. as shown in Figure 21.

Figure 21
Transparent DSC improved with compact layers assembled using opposite charged nanoparticle by the LbL technique.

Our first approach using LbL assemblages started with TiO2 nanoparticles as cations pairing with polyelectrolytes, such as sodium sulfonated polystyrene (PSS), sulfonated lignin (SL) and poly(acrylic acid) (PAA), as anions.239239 Patrocínio, A. O. T.; Paterno, L. G.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2009, 205, 23.,240240 Patrocinio, A. O. T. T.; Paterno, L. G.; Iha, N. Y. M.; Murakami Iha, N. Y.; J. Phys. Chem., C 2010, 114, 17954. The nature of polyelectrolyte had a key role on the efficiency of N3-sensitized DSCs, with the best performance achieved by the use of the TiO2/PSS compact layer, that increased the overall efficiency of DSCs in 30%, Table 4.240240 Patrocinio, A. O. T. T.; Paterno, L. G.; Iha, N. Y. M.; Murakami Iha, N. Y.; J. Phys. Chem., C 2010, 114, 17954. The lower thermal stability of PAA resulted in a more porous film and, therefore, unable to block the contact of electrolyte and the FTO substrate.

Table 4
Photoelectrochemical parameters for LbL-compact film improved DSCs investigated by the LFCE

A nanostructured thin film consisted of TiO2/ZnO bilayers from acid TiO2 and basic ZnO had also been successfully applied as a blocking and contact layer. This film revealed a significant improvement in the JSC and VOC, leading to a remarkable 67% improvement in the conversion efficiency of N3-sensitized DSCs.242242 Matos, L. S.; Amaral, R. C.; Murakami Iha, N. Y.; ChemistrySelect 2019, 4, 265.

The innovative ultrathin LbL all-nano-TiO2 film as an interfacial layer created excellent adhesion of the TiO2 layer on the FTO substrate245245 Patrocinio, A. O. T.; El-Bachá, A. S.; Paniago, E. B.; Paniago, R. M.; Murakami Iha, N. Y.; Int. J. Photoenergy 2012, 2012, 1. leading to an efficient electronic transport from TiO2 to FTO and consequent impressive enhancement up to 62% in performances of N719-sensitized DSCs.243243 Zanoni, K. P. S.; Amaral, R. C.; Murakami Iha, N. Y.; ACS Appl. Mater. Interfaces 2014, 6, 10421. This nano-TiO2 compact layer when employed in DSCs sensitized by mulberry, jaboticaba’s skin, java plum and pomegranate fruit led to enhanced global efficiencies up to 66%.202202 Amaral, R. C.; Barbosa, D. R. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 346, 144.

The LbL deposition of nano-TiO2 compact layers on the underlying mesoporous oxide had been successfully employed in DSPECs leading to an impressive improvement of 53% for photocurrent with additional enhancements of sustainable currents over time photolysis with characteristics favoring O2 evolution at the photoanode. This innovative approach in DSPECs with a significant impact on the device performance provided a suitable platform to decrease back electron reactions and/or improve the electron collection at the photoanode due to an improved insulation at the back contact, opening up new possibilities of gathering suitable molecular assemblies using a low-cost deposition method for thin films to enhance the performance of water-splitting devices.246246 Coppo, R. L.; Farnum, B. H.; Sherman, B. D.; Murakami Iha, N. Y.; Meyer, T. J.; Sustainable Energy Fuels 2017, 1, 112.

5. Technological Innovation and Closing Remarks

The development within the framework of supramolecular chemistry gives rise to the possibility of designing organized systems and components of molecular level devices. This organization is particularly interesting for building molecular assemblies capable of performing useful functions, such as energy conversion/storage, information purpose and lightning-devices.

The multidisciplinary but fundamental research outlined herein resulted in innovation and technological developments, as well as proof of concept for several applications, such as luminescence-based sensors and displays, photoresponsive polymers, visible sensitization of solar cells and photoelectrosynthesis devices.

Contacts with industries/companies led to the first trademark (Dye-Cell®) of the University of São Paulo in 2001247247 Murakami Iha, N. Y.; Garcia, C. G.; Registro de Marca - Dye-cell, dirma 823895718, 2001, available at http://revistas.inpi.gov.br/pdf/marcas1893.pdf, accessed in May 2020.
http://revistas.inpi.gov.br/pdf/marcas18...
and some patents for intellectual protection. In this occasion, the project developed at the LFCE had been selected by the Brazilian Ministry of Science and Technology (MCT) as an innovative project/product in the energy sector, and took part during the whole year of 2002 in a series of events entitled “Exhibition of Innovative Technological Products for Energy Production”. In 2002, one of the patents received São Paulo State Governor honorable mention award. From 2006 to 2008, the development of dye-sensitized solar cells was supported by Petrobras/CNPES till the end of the company renewable program. During these 2 years, several prototypes had been assembled and the feasibility of the device proven.

The development of solar cells became the main subject of a special program called CIUPE (Interinstitutional Collaborative Program for Strategic Researches), which was supported by the University of São Paulo and attracted researchers from several areas in the development of photovoltaics and had provided encouragement for cooperative efforts among different laboratories.248248 Garcia, C. G.; Murakumi Iha, N. Y.; Int. J. Photoenergy 2001, 3, 137.

Research on OLEDs and LECs focused on multicolor, highly-emissive complexes and new techniques for device fabrication. For this purpose, many phosphorescent coordination compounds have played a prominent role in several applications. Recent breakthroughs and the state of the art on highly-efficient emissive complexes elucidating the role of molecular and electronic structures to control photophysics in light-emitting systems had been reported in the pursuit of smart white-emitting devices.4444 Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559.

A successful molecular engineering of coordination complexes and supramolecular assemblies in many applications of systems cited here is inspiring and illustrates the fascinating strategies to conceive and understand artificial photoresponsive or highly emissive compounds. Future molecular design strategies must head beyond energy and color control.

  • Dedicated to Prof Henrique Eisi Toma on the occasion of his 70th birthday.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - finance code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/CTEnerg).

References

  • 1
    Lehn, J.-M.; Angew. Chem., Int. Ed. 1985, 24, 799.
  • 2
    Lehn, J.-M.; Chem. Soc. Rev. 2007, 36, 151.
  • 3
    Toma, H. E.; An. Acad. Bras. Cienc. 2000, 72, 5.
  • 4
    Toma, H. E.; J. Braz. Chem. Soc. 2003, 14, 845.
  • 5
    Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L.; Chem. Rev. 2015, 115, 10081.
  • 6
    Polo, A. S.; Itokazu, M. K.; Frin, K. M.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2006, 250, 1669.
  • 7
    Vogler, A.; Kunely, H. In Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds; Kalyanasundaram, K.; Grätzel, M., eds.; Springer: Netherlands, 1993, p. 71-111.
  • 8
    Vogler, A.; Kunkely, H.; Coord. Chem. Rev. 1998, 177, 81.
  • 9
    Vogler, A.; Kunkely, H.; Coord. Chem. Rev. 2004, 248, 273.
  • 10
    Vos, J. G.; Pryce, M. T.; Coord. Chem. Rev. 2010, 254, 2519.
  • 11
    Balzani, V.; Bergamini, G.; Campagna, S.; Puntoriero, F.; Top. Curr. Chem. 2007, 280, 1.
  • 12
    Balzani, V.; Credi, A.; Venturi, M.; Coord. Chem. Rev. 1998, 171, 3.
  • 13
    Murakami Iha, N. Y.; Toma, H. E.; An. Acad. Bras. Cienc. 1982, 54, 491.
  • 14
    Murakami Iha, N. Y.; Toma, H. E.; Inorg. Chim. Acta 1984, 71, 181.
  • 15
    Murakumi Iha, N. Y.; Ferreira, A. M. C.; Toma, H. E.; Gallotti, M.; Proc. Annu. Meet. Coord. Chem. 1984, 34, 386.
  • 16
    Toma, H. E.; Ferreira, A. M. C.; Murakami Iha, N. Y.; Nouv. J. Chim. 1985, 9, 473.
  • 17
    Murakami Iha, N. Y.; Chum, H. L.; Inorg. Chim. Acta 1985, 97, 151.
  • 18
    Murakami Iha, N. Y.; Toma, H. E.; Rev. Latinoam. Quim. 1984, 15, 20.
  • 19
    Murakami Iha, N. Y.: Reatividade de Ligantes na Química dos Cianoferratos; PhD Thesis, University of São Paulo, São Paulo, Brazil, 1981, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-28112014-153806/pt-br.php, accessed in May 2020.
    » https://www.teses.usp.br/teses/disponiveis/46/46134/tde-28112014-153806/pt-br.php
  • 20
    Toma, H. E.; Murakami Iha, N. Y.; Inorg. Chem. 1982, 21, 3573.
  • 21
    Murakami Iha, N. Y.; Lima, J. F.; Toma, H. E.; Proc. Annu. Meet. Coord. Chem. 1984, 34, 116.
  • 22
    Murakami Iha, N. Y.; Toma, H. E.; Lima, J. F.; Polyhedron 1988, 7, 1687.
  • 23
    Toma, H.; Moroi, N. M.; Murakami Iha, N. Y.; An. Acad. Bras. Cienc. 1982, 54, 315.
  • 24
    Lima, J. F.: Reações de Fotossubstituição em Complexos Pentacianoferrato(II ), Master dissertation, University of São Paulo, São Paulo, Brazil, 1990, available at https://repositorio.usp.br/single.php?_id=000733870 accessed in May 2020.
    » https://repositorio.usp.br/single.php?_id=000733870
  • 25
    Garcia, C. G.; de Lima, J. F.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2000, 196, 219.
  • 26
    Murakami Iha, N. Y.; Lima, J. F.; J. Photochem. Photobiol., A 1994, 84, 177.
  • 27
    Lima, J. F.; Murakami Iha, N. Y.; Can. J. Chem. 1996, 476480
  • 28
    Lima, J. F.: Reatividade Fotoquimica dos Cianocomplexos de Ferro(II) e de Sistemas Multicomponentes, PhD thesis, University of São Paulo, São Paulo, Brazil, 1996, available at https://repositorio.usp.br/item/000747325 accessed in May 2020.
    » https://repositorio.usp.br/item/000747325
  • 29
    McCleverty, J. A.; Meyer, T. J.; Comprehensive Coordination Chemistry II, Vol. 2: Fundamentals: Physical Methods, Theoretical Analysis, and Case Studies; Elsevier: Amsterdam, North-Holland, 2003, p. 785-796.
  • 30
    Lees, A. J.; Chem. Rev. 1987, 87, 711.
  • 31
    Chen, P.; Meyer, T. J.; Chem. Rev. 1998, 98, 1439.
  • 32
    Schubert, E. F.; Science 2005, 308, 1274.
  • 33
    Chang, M. H.; Das, D.; Varde, P. V.; Pecht, M.; Microelectron. Reliab. 2012, 52, 762.
  • 34
    Steranka, F. M.; Bhat, J.; Collins, D.; Cook, L.; Craford, M. G.; Fletcher, R.; Gardner, N.; Grillot, P.; Goetz, W.; Keuper, M.; Khare, R.; Kim, A.; Krames, M.; Harbers, G.; Ludowise, M.; Martin, P. S.; Misra, M.; Mueller, G.; Mueller-Mach, R.; Rudaz, S.; Shen, Y.-C.; Steigerwald, D.; Stockman, S.; Subramanya, S.; Trottier, T.; Wierer, J. J.; Phys. Status Solidi 2002, 194, 380.
  • 35
    Schubert, E. F.; Kim, J. K.; Luo, H.; Xi, J.-Q.; Rep. Prog. Phys. 2006, 69, 3069.
  • 36
    Wasisto, H. S.; Prades, J. D.; Gülink, J.; Waag, A.; Appl. Phys. Rev. 2019, 6, 041315.
  • 37
    Wang, Q.; Tian, Q. S.; Zhang, Y. L.; Tang, X.; Liao, L. S.; J. Mater. Chem. C 2019, 7, 11329.
  • 38
    Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T.; Coord. Chem. Rev. 2011, 255, 2622.
  • 39
    Evans, R. C.; Douglas, P.; Winscom, C. J.; Coord. Chem. Rev. 2006, 250, 2093.
  • 40
    Shahnawaz, S.; Swayamprabha, S. S.; Nagar, M. R.; Yadav, R. A. K.; Gull, S.; Dubey, D. K.; Jou, J. H.; J. Mater. Chem. C 2019, 7, 7144.
  • 41
    Salehi, A.; Fu, X.; Shin, D. H.; So, F.; Adv. Funct. Mater. 2019, 29, 1808803.
  • 42
    Minaev, B.; Baryshnikov, G.; Agren, H.; Phys. Chem. Chem. Phys. 2014, 16, 1719.
  • 43
    Xu, H.; Huang, W.; Liu, X.; Chem. Soc. Rev. 2014, 43, 3259.
  • 44
    Zanoni, K. P. S.; Coppo, R. L.; Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2015, 44, 14559.
  • 45
    Slinker, J.; Bernards, D.; Houston, P. L.; Abruña, H. D.; Bernhard, S.; Malliaras, G. G.; Chem. Commun. 2003, 2003, 2392.
  • 46
    Rudmann, H.; Shimada, S.; Rubner, M. F.; J. Appl. Phys. 2003, 94, 115.
  • 47
    Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A.; Suter, A.; Nieuwenhuys, G. J.; Prokscha, T.; Morenzoni, E.; Gillin, W. P.; Drew, A. J.; Nat. Mater. 2011, 10, 39.
  • 48
    Su, H.; Chen, Y.; Wong, K.; Adv. Funct. Mater. 2019, 1906898.
  • 49
    Zhao, J.; Chi, Z. Z.; Yang, Z.; Chen, X.; Arnold, M. S.; Zhang, Y.; Xu, J.; Chi, Z. Z.; Aldred, M. P.; Aldreda, M. P.; Nanoscale 2018, 10, 5764.
  • 50
    Gao, J.; ChemPlusChem 2018, 83, 183.
  • 51
    Su, H. C.; ChemPlusChem 2018, 83, 197.
  • 52
    Kong, S. H.; Lee, J. I.; Kim, S.; Kang, M. S.; ACS Photonics 2018, 5, 267.
  • 53
    Angerani, S.; Winssinger, N.; Chem. - Eur. J.2019, 25, 6661.
  • 54
    Roundhill, D. M. In Photochemistry and Photophysics of Metal Complexes; Springer: Boston, USA, 1994, p. 165-215.
  • 55
    Huynh, M. H. V.; Meyer, T. J.; Chem. Rev. 2007, 107, 5004.
  • 56
    Kalyanasundaram, K.; Coord. Chem. Rev. 1982, 46, 159.
  • 57
    Bock, C. R.; Meyer, T. J.; Whitten, D. G.; J. Am. Chem. Soc. 1974, 96, 4710.
  • 58
    Thompson, D. W.; Ito, A.; Meyer, T. J.; Pure Appl. Chem. 2013, 85, 1257.
  • 59
    Balzani, V.; Bergamini, G.; Marchioni, F.; Ceroni, P.; Coord. Chem. Rev. 2006, 250, 1254.
  • 60
    Xiang, H.; Cheng, J.; Ma, X.; Zhou, X.; Chruma, J. J.; Chem. Soc. Rev. 2013, 42, 6128.
  • 61
    Santos, G.; Fonseca, F. J.; Andrade, A. M.; Patrocínio, A. O. T.; Mizoguchi, S. K.; Murakami Iha, N. Y.; Peres, M.; Simões, W.; Monteiro, T.; Pereira, L.; J. Non-Cryst. Solids 2008, 354, 2571.
  • 62
    Santos, G.; Fonseca, F.; Andrade, A. M.; Patrocínio, A. O. T.; Mizoguchi, S. K.; Murakami Iha, N. Y.; Peres, M.; Monteiro, T.; Pereira, L.; Phys. Status Solidi 2008, 205, 2057.
  • 63
    Lo, K. K. W.; Zhang, K. Y.; Li, S. P. Y.; Eur. J. Inorg. Chem. 2011, 3551.
  • 64
    Hostachy, S.; Policar, C.; Delsuc, N.; Coord. Chem. Rev. 2017, 172.
  • 65
    Lo, K. K.-W.; Choi, A. W.-T.; Law, W. H.-T.; Dalton Trans. 2012, 41, 6021.
  • 66
    Lo, K. K.-W.; Louie, M.-W.; Zhang, K. Y.; Coord. Chem. Rev. 2010, 254, 2603.
  • 67
    Lo, K. K.-W. W.; Acc. Chem. Res. 2015, 48, 2985.
  • 68
    Balasingham, R. G.; Coogan, M. P.; Thorp-Greenwood, F. L.; Dalton Trans. 2011, 40, 11663.
  • 69
    Lo, K. K.-W.; Top. Organomet. Chem. 2010, 29, 115.
  • 70
    Kou, Y.; Nabetani, Y.; Masui, D.; Shimada, T.; Takagi, S.; Tachibana, H.; Inoue, H.; J. Am. Chem. Soc. 2014, 136, 6021.
  • 71
    Ci, C.; Carbó, J. J.; Neumann, R.; de Graaf, C.; Poblet, J. M.; ACS Catal. 2016, 6, 6422.
  • 72
    Wolcan, E.; Inorg. Chim. Acta 2020, 509, 119650.
  • 73
    Ragone, F.; Saavedra, H. H. M. M.; Gara, P. M. D. D.; Ruiz, G. T.; Wolcan, E.; J. Phys. Chem. A 2013, 117, 4428.
  • 74
    Kumar, A.; Sun, S.-S.; Lees, A. J.; Top. Organomet. Chem. 2009, 48, 37.
  • 75
    Zhao, G.-W.; Zhao, J.-H.; Hu, Y.-X.; Zhang, D.-Y.; Li, X.; Synth. Met. 2016, 212, 131.
  • 76
    Panigati, M.; Mauro, M.; Donghi, D.; Mercandelli, P.; Mussini, P.; de Cola, L.; D’Alfonso, G.; Coord. Chem. Rev. 2012, 256, 1621.
  • 77
    Mizoguchi, S. K.; Santos, G.; Andrade, A. M.; Fonseca, F. J.; Pereira, L.; Murakami Iha, N. Y.; Synth. Met. 2011, 161, 1972.
  • 78
    Wrighton, M.; Morse, D. L.; David, L.; J. Am. Chem. Soc. 1974, 96, 998.
  • 79
    Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. In Photochemistry and Photophysics of Coordination Compounds I; Springer: Heidelberg, Berlin, 2007, p. 117-214.
  • 80
    Rohacova, J.; Ishitani, O.; Dalton Trans. 2017, 46, 8899.
  • 81
    Kayanuma, M.; Daniel, C.; Köppel, H.; Gindensperger, E.; Coord. Chem. Rev. 2011, 255, 2693.
  • 82
    Murakami Iha, N.; Ferraudi, G.; J. Chem. Soc., Dalton Trans. 1994, 2565.
  • 83
    Mizoguchi, S. K.; Patrocínio, A. O. T.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2315.
  • 84
    Amaral, R. C.; Matos, L. S.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Phys. Chem. A 2018, 122, 6071.
  • 85
    Ma, D.-L.; Wong, S.-Y.; Kang, T.-S.; Ng, H.-P.; Han, Q.-B.; Leung, C.-H.; Methods 2019, 168, 3.
  • 86
    Abbas, S.; Din, I.-D.; Raheel, A.; ud Din, A. T.; Appl. Organomet. Chem. 2020, 34, e5413.
  • 87
    Lan, M.; Zhao, S.; Liu, W.; Lee, C. S.; Zhang, W.; Wang, P.; Adv. Healthcare Mater. 2019, 8, 1900132.
  • 88
    Huang, H.; Banerjee, S.; Sadler, P. J.; ChemBioChem 2018, 19, 1574.
  • 89
    Ma, D.; Wu, C.; Wu, K.; Leung, C.; Molecules 2019, 24, 2739.
  • 90
    Konkankit, C. C.; Marker, S. C.; Knopf, K. M.; Wilson, J. J.; Dalton Trans. 2018, 47, 9934.
  • 91
    Baranoff, E.; Yum, J. H.; Graetzel, M.; Nazeeruddin, M. K.; J. Organomet. Chem. 2009, 694, 2661.
  • 92
    Mayo, E. I.; Kilså, K.; Tirrell, T.; Djurovich, P. I.; Tamayo, A.; Thompson, M. E.; Lewis, N. S.; Gray, H. B.; Photochem. Photobiol. Sci. 2006, 5, 871.
  • 93
    Hopmann, K. H.; Bayer, A.; Coord. Chem. Rev. 2014, 268, 59.
  • 94
    Schultz, D. M.; Yoon, T. P.; Science 2014, 343, 1239176.
  • 95
    Zanoni, K. P. S.; Kariyazaki, B. K.; Ito, A.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; Inorg. Chem. 2014, 53, 4089.
  • 96
    Nazeeruddin, M. K.; Grätzel, M.; Struct. Bonding 2007, 123, 113.
  • 97
    Rota Martir, D.; Zysman-Colman, E.; Coord. Chem. Rev. 2018, 364, 86.
  • 98
    Li, T. Y.; Wu, J.; Wu, Z. G.; Zheng, Y. X.; Zuo, J. L.; Pan, Y.; Coord. Chem. Rev. 2018, 374, 55.
  • 99
    Tsuboi, T.; Huang, W.; Isr. J. Chem. 2014, 54, 885.
  • 100
    Cortés-Arriagada, D.; Sanhueza, L.; González, I.; Dreyse, P.; Toro-Labbé, A.; Phys. Chem. Chem. Phys. 2015, 18, 726.
  • 101
    Deaton, J. C.; Castellano, F. N. In Iridium(III) in Optoelectronic and Photonics Applications; Zysman-Colman, E., ed.; John Wiley & Sons Ltd.: Chichester, UK, 2017, p. 1-69
  • 102
    Ulbricht, C.; Beyer, B.; Friebe, C.; Winter, A.; Schubert, U. S.; Adv. Mater. 2009, 21, 4418.
  • 103
    Zanoni, K. P. S.; Ito, A.; Murakumi Iha, N. Y.; New J. Chem. 2015, 39, 6367.
  • 104
    Baranoff, E.; Curchod, B. F. E.; Dalton Trans. 2015, 44, 8318.
  • 105
    Coppo, R. L.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Polyhedron 2019, 163, 161.
  • 106
    Zanoni, K. P. S.; Ito, A.; Grüner, M.; Murakami Iha, N. Y.; de Camargo, A. S. S.; Dalton Trans. 2018, 47, 1179.
  • 107
    Chi, Y.; Tong, B.; Chou, P.-T. T.; Coord. Chem. Rev. 2014, 281, 1.
  • 108
    Housecroft, C. E.; Constable, E. C.; Coord. Chem. Rev. 2017, 350, 155.
  • 109
    Lee, L. C. C.; Leung, K. K.; Lo, K. K. W.; Dalton Trans. 2017, 46, 16357.
  • 110
    Chen, M.; Wu, Y.; Liu, Y.; Yang, H.; Zhao, Q.; Li, F.; Biomaterials 2014, 35, 8748.
  • 111
    Jiang, W.; Gao, Y.; Sun, Y.; Ding, F.; Xu, Y.; Bian, Z.; Li, F.; Bian, J.; Huango, C.; Inorg. Chem. 2010, 49, 3252.
  • 112
    Zanoni, K. P. S.; Vilela, R. R. C.; Silva, I. D. A.; Murakami Iha, N. Y.; Eckert, H.; de Camargo, A. S.; Inorg. Chem. 2019, 58, 4962.
  • 113
    Zanoni, K. P. S.; Murakami Iha, N. Y.; Synth. Met. 2016, 222, 393.
  • 114
    Zanoni, K. P. S.; Sanematsu, M. S.; Murakami Iha, N. Y.; Inorg. Chem. Commun. 2014, 43, 162.
  • 115
    Zanoni, K. P. S.: Compostos de Coordenação de Ir(III), Re(I) e Ru(II) para Aplicações em Dispositivos Moleculares, PhD thesis, University of São Paulo, São Paulo, Brazil, 2016, available at https://www.teses.usp.br/teses/disponiveis/46/46136/tde-27042018-081643/pt-br.php, accessed in May 2020.
    » https://www.teses.usp.br/teses/disponiveis/46/46136/tde-27042018-081643/pt-br.php
  • 116
    Murakami Iha, N. Y.; Mizoguchi, S. K.; BR pat. 018090056741, 2013
  • 117
    Patrocinio, A. O. T.; Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chem. 2013, 52, 5889.
  • 118
    Lewis, J. D.; Perutz, R. N.; Moore, J. N.; Chem. Commun. 2000, 1, 1865.
  • 119
    Kayanuma, M.; Daniel, C.; Gindensperger, E.; Can. J. Chem. 2014, 92, 979.
  • 120
    Itokazu, M. K.; Sarto Polo, A.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 27.
  • 121
    Frin, K. P. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2010, 363, 294.
  • 122
    Wenger, O. S.; Henling, L. M.; Day, M. W.; Winkler, J. R.; Gray, H. B.; Polyhedron 2004, 23, 2955.
  • 123
    Itokazu, M. K.; Polo, A. S.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 143.
  • 124
    Dattelbaum, D. M.; Itokazu, M. K.; Murakami Iha, N. Y.; Meyer, T. J.; J. Phys. Chem. A 2003, 107, 4092.
  • 125
    Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2006, 181, 73.
  • 126
    Argazzi, R.; Bertolasi, E.; Chiorboli, C.; Bignozzi, C. A.; Itokazu, M. K.; Murakami Iha, N. Y.; Inorg. Chem. 2001, 40, 6885.
  • 127
    Patrocinio, A. O. T.; Brennaman, M. K.; Meyer, T. J.; Murakami Iha, N. Y.; J. Phys. Chem. A 2010, 114, 12129.
  • 128
    Frin, K. M.; Murakami Iha, N. Y.; J. Braz. Chem. Soc. 2006, 17, 1664.
  • 129
    Patrocínio, A. O. T.; Murakami Iha, N. Y.; Inorg. Chem. 2008, 47, 10851.
  • 130
    Busby, M.; Hartl, F.; Matousek, P.; Towrie, M.; Vlček, A.; Chem. - Eur. J. 2008, 14, 6912.
  • 131
    Itokazu, M. K.; Polo, A. S.; de Faria, D. L. A.; Bignozzi, C. A.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2001, 313, 149.
  • 132
    Yam, V. W.; Lau, V. C.; Wu, L.; J. Chem. Soc. Dalton Trans. 1998, 1461.
  • 133
    Bossert, J.; Daniel, C.; Chem. - Eur. J. 2006, 12, 4835.
  • 134
    Kayanuma, M.; Gindensperger, E.; Daniel, C.; Dalton Trans. 2012, 41, 13191.
  • 135
    Busby, M.; Matousek, P.; Towrie, M.; Vlček, A.; J. Phys. Chem. A 2005, 13, 3000.
  • 136
    Vlček, A.; Busby, M.; Coord. Chem. Rev. 2006, 250, 1755.
  • 137
    Frin, K. P. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Inorg. Chem. Commun. 2012, 20, 105.
  • 138
    Gindensperger, E.; Köppel, H.; Daniel, C.; Chem. Commun. 2010, 46, 8225.
  • 139
    Daniel, C.; Coord. Chem. Rev. 2015, 282-283, 19.
  • 140
    Sathish, V.; Babu, E.; Ramdass, A.; Lu, Z.-Z. Z.; Chang, T.-T. T.; Velayudham, M.; Thanasekaran, P.; Lu, K.-L. L.; Li, W.-S. S.; Rajagopal, S.; RSC Adv. 2013, 3, 18557.
  • 141
    Zanoni, K. P. S.; Murakami Iha, N. Y.; Dalton Trans. 2017, 46, 9951.
  • 142
    Wrighton, M. S.; Morse, D. L.; Pdungsap, L.; J. Am. Chem. Soc. 1975, 97, 2073.
  • 143
    Merino, E.; Ribagorda, M.; Beilstein J. Org. Chem. 2012, 8, 1071.
  • 144
    Kamiya, Y.; Asanuma, H.; Acc. Chem. Res. 2014, 47, 1663.
  • 145
    Kassem, S.; Van Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.; Leigh, D. A.; Chem. Soc. Rev. 2017, 46, 2592.
  • 146
    Bianchi, A.; Delgado-Pinar, E.; García-España, E.; Giorgi, C.; Pina, F.; Coord. Chem. Rev. 2014, 260, 156.
  • 147
    Hampp, N.; Chem. Rev. 2000, 100, 1755.
  • 148
    Frin, K. P. M.; Murakami Iha, N. Y.; Inorg. Chim. Acta 2011, 376, 531.
  • 149
    Amaral, R. C.; Murakami Iha, N. Y.; Dalton Trans. 2018, 47, 13081.
  • 150
    Matos, L. S.; Amaral, R. C.; Murakami Iha, N. Y.; Inorg. Chem. 2018, 57, 9316.
  • 151
    Frin, K. P. M.: Propriedades Fotoquímicas de alguns Complexos de Ferro(II) e Rênio(I), PhD thesis, University of São Paulo, São Paulo, Brazil, 2008, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-17052016-143939/pt-br.php, accessed in May 2020.
    » https://www.teses.usp.br/teses/disponiveis/46/46134/tde-17052016-143939/pt-br.php
  • 152
    Polo, A. S.: Sistemas Químicos Integrados via Complexos de Rênio(I) e Rutênio(II) na Conversão de Energia, PhD thesis, University of São Paulo, São Paulo, Brazil, 2007, available at https://www.teses.usp.br/teses/disponiveis/46/46134/tde-26042007-112045/pt-br.php, accessed in May 2020.
    » https://www.teses.usp.br/teses/disponiveis/46/46134/tde-26042007-112045/pt-br.php
  • 153
    Itokazu, M. K.: Reações Fotoinduzidas em alguns Complexos de Rênio e Desenvolvimento de Dispositivos Moleculares, PhD thesis, University of São Paulo, São Paulo, Brazil, 2005, available at https://teses.usp.br/teses/disponiveis/46/46134/tde-28062016-112017/en.php, accessed in May 2020.
    » https://teses.usp.br/teses/disponiveis/46/46134/tde-28062016-112017/en.php
  • 154
    Murakami Iha, N. Y.; An. Acad. Bras. Cienc. 2000, 72, 67.
  • 155
    Nunes, B. N.; Paula, L. F.; Costa, Í. A.; Machado, A. E. H.; Paterno, L. G.; Patrocinio, A. O. T.; J. Photochem. Photobiol., C 2017, 32, 1.
  • 156
    Balzani, V.; Credi, A.; Venturi, M.; ChemSusChem 2008, 1, 26.
  • 157
    Ferreira, A.; Kunh, S. S.; Fagnani, K. C.; de Souza, T. A.; Tonezer, C.; dos Santos, G. R.; Coimbra-Araújo, C. H.; Renewable Sustainable Energy Rev. 2018, 81, 181.
  • 158
    Saxena, V.; Aswal, D. K.; Semicond. Sci. Technol. 2015, 30, 064005.
  • 159
    Ragoussi, M.-E.; Torres, T.; Chem. Commun. 2015, 51, 3957.
  • 160
    Sugathan, V.; John, E.; Sudhakar, K.; Renewable Sustainable Energy Rev. 2015, 52, 54.
  • 161
    Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z.; Mater. Today 2015, 18, 155.
  • 162
    Grätzel, M.; J. Photochem. Photobiol., C 2003, 4, 145.
  • 163
    Pazoki, M.; Cappel, U. B.; Johansson, E. M. J.; Hagfeldt, A.; Boschloo, G.; Energy Environ. Sci. 2017, 10, 672.
  • 164
    Sharifi, N.; Tajabadi, F.; Taghavinia, N.; ChemPhysChem 2014, 15, 3902.
  • 165
    Yu, Z.; Vlachopoulos, N.; Gorlov, M.; Kloo, L.; Dalton Trans. 2011, 40, 10289.
  • 166
    Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M.; Chem. Commun. 2015, 51, 15894.
  • 167
    Lee, C. P.; Li, C. T.; Ho, K. C.; Mater. Today 2017, 20, 267.
  • 168
    Baxter, J. B.; J. Vac. Sci. Technol., A 2012, 30, 020801.
  • 169
    Fakharuddin, A.; Jose, R.; Brown, T. M.; Fabregat-Santiago, F.; Bisquert, J.; Energy Environ. Sci. 2014, 7, 3952.
  • 170
    Murukami Iha, N. Y.; Bignozzi, C. A.; Garcia, C. G.; Argazzi, R.; BR pat. PI 0104993-3, 2001
  • 171
    Murakami Iha, N. Y.; Garcia, C. G.; Argazi, R.; Bignozzi, C. A.; BR pat. PI0101629-6, 2001
  • 172
    Murakami Iha, N. Y.; Garcia, C. G.; Polo, A. S.; BR pat. PI0203334-1, 2002
  • 173
    Murakami Iha, N. Y.; Garcia, C. G.; Polo, A. S.; BR pat. PI0203234-1, 2002
  • 174
    Murakami Iha, N. Y.; Polo, A. S.; Garcia, C. G.; BR pat. PI0701973-4, 2007
  • 175
    Murakami Iha, N. Y.; Patrocínio, A. O. T.; Paterno, L. G.; BR pat. PI0802589-4, 2008
  • 176
    Muhammad, N.; Zanoni, K. P. S.; Murakami Iha, N. Y.; Ahmed, S.; ChemistrySelect 2018, 3, 10475.
  • 177
    Muhammad, N.; Zanoni, K. P. S.; Coppo, R. L.; Ahmed, S.; Murukami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 332, 432.
  • 178
    Garcia, C. G.; Kleverlaan, C. J.; Bignozzi, C. A.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2002, 147, 143.
  • 179
    Garcia, C. G.; Nakano, A. K.; Kleverlaan, C. J.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2002, 151, 165.
  • 180
    Qin, Y.; Peng, Q.; Int. J. Photoenergy 2012, 2012, 291579.
  • 181
    Pashaei, B.; Shahroosvand, H.; Graetzel, M.; Nazeeruddin, M. K.; Chem. Rev. 2016, 116, 9485.
  • 182
    Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y.; Coord. Chem. Rev. 2004, 248, 1343.
  • 183
    Garcia, C. G.; Murakami Iha, N. Y.; Argazzi, R.; Bignozzi, C. A.; J. Photochem. Photobiol., A 1998, 115, 239.
  • 184
    Garcia, C. G.; Murakami Iha, N. Y.; Int. J. Photoenergy 2001, 3, 130.
  • 185
    Garcia, C. G.; Murakami Iha, N. Y.; Argazzi, R.; Bignozzi, C. A.; J. Braz. Chem. Soc. 1998, 9, 13.
  • 186
    Silva, M. D. S. P.; Diógenes, I. C. N.; de Carvalho, I. M. M.; Zanoni, K. P. S.; Amaral, R. C.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2016, 314, 75.
  • 187
    Chaurasia, S.; Lin, J. T.; Chem. Rec. 2016, 16, 1311.
  • 188
    Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M.; Sol. Energy 2011, 85, 1172.
  • 189
    Bignozzi, C. A.; Argazzi, R.; Boaretto, R.; Busatto, E.; Carli, S.; Ronconi, F.; Caramori, S.; Coord. Chem. Rev. 2013, 257, 1472.
  • 190
    Shalini, S.; Prabhu, R. B.; Prasanna, S.; Mallick, T. K.; Senthilarasu, S.; Renewable Sustainable Energy Rev. 2015, 51, 1306.
  • 191
    Calogero, G.; Bartolotta, A.; Di Marco, G.; Di Carlo, A.; Bonaccorso, F.; Chem. Soc. Rev. 2015, 44, 3244.
  • 192
    Ludin, N. A.; Mahmoud, A. M. A.-A.; Mohamad, A. B.; Kadhum, A. A. H.; Sopian, K.; Karim, N. S. A.; Renewable Sustainable Energy Rev. 2014, 31, 386.
  • 193
    Hug, H.; Bader, M.; Mair, P.; Glatzel, T.; Appl. Energy 2014, 115, 216.
  • 194
    Al-Alwani, M. A. M.; Mohamad, A. B.; Ludin, N. A.; Kadhum, A. A. H.; Sopian, K.; Renewable Sustainable Energy Rev. 2016, 65, 183.
  • 195
    Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B.; Renewable Sustainable Energy Rev. 2017, 69, 705.
  • 196
    Zhou, H.; Wu, L.; Gao, Y.; Ma, T.; J. Photochem. Photobiol., A 2011, 219, 188.
  • 197
    Iqbal, M. Z.; Ali, S. R.; Khan, S.; Sol. Energy 2019, 181, 490.
  • 198
    Patrocínio, A. O. T.; Mizoguchi, S. K.; Paterno, L. G.; Garcia, C. G.; Murakami Iha, N. Y.; Synth. Met. 2009, 159, 2342.
  • 199
    Patrocínio, A. O. T.; Murakami Iha, N. Y.; Quim. Nova 2010, 33, 574.
  • 200
    Garcia, C. G.; Polo, A. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2003, 160, 87.
  • 201
    Polo, A. S.; Murakami Iha, N. Y.; Sol. Energy Mater. Sol. Cells 2006, 90, 1936.
  • 202
    Amaral, R. C.; Barbosa, D. R. M.; Zanoni, K. P. S.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2017, 346, 144.
  • 203
    Murakami Iha, N. Y.; Garcia, C. G.; Bignozzi, C. A. In Handbook of Photochemistry and Photobiology; American Scientific Publishers: Stevenson Ranch, California, USA, 2003, p. 49-82.
  • 204
    Calogero, G.; Yum, J.-H. H.; Sinopoli, A.; Di Marco, G.; Grätzel, M.; Nazeeruddin, M. K.; Sol. Energy 2012, 86, 1563.
  • 205
    Grätzel, M.; Nature 2001, 414, 338.
  • 206
    House, R. L.; Murakami Iha, N. Y.; Coppo, R. L.; Alibabaei, L.; Sherman, B. D.; Kang, P.; Brennaman, M. K.; Hoertz, P. G.; Meyer, T. J.; J. Photochem. Photobiol., C 2015, 25, 32.
  • 207
    Meyer, T. J.; Sheridan, M. V.; Sherman, B. D.; Chem. Soc. Rev. 2017, 46, 6148.
  • 208
    Brennaman, M. K.; Dillon, R. J.; Alibabaei, L.; Gish, M. K.; Dares, C. J.; Ashford, D. L.; House, R. L.; Meyer, G. J.; Papanikolas, J. M.; Meyer, T. J.; J. Am. Chem. Soc. 2016, 138, 13085.
  • 209
    Song, W.; Chen, Z.; Glasson, C. R. K.; Hanson, K.; Luo, H.; Norris, M. R.; Ashford, D. L.; Concepcion, J. J.; Brennaman, M. K.; Meyer, T. J.; ChemPhysChem 2012, 13, 2882.
  • 210
    Gibson, E. A.; Chem. Soc. Rev. 2017, 46, 6194.
  • 211
    Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E.; Chem. Rev. 2019, 119, 2752.
  • 212
    Song, W.; Chen, Z.; Brennaman, M. K.; Concepcion, J. J.; Patrocinio, A. O. T.; Murakami Iha, N. Y.; Meyer, T. J.; Pure Appl. Chem. 2011, 83, 749.
  • 213
    Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer, T. J.; Acc. Chem. Res. 2009, 42, 1954.
  • 214
    Brennaman, M. K.; Patrocinio, A. O. T.; Song, W.; Jurss, J. W.; Concepcion, J. J.; Hoertz, P. G.; Traub, M. C.; Murakami Iha, N. Y.; Meyer, T. J.; ChemSusChem 2011, 4, 216.
  • 215
    Sheridan, M. V.; Sherman, B. D.; Coppo, R. L.; Wang, D.; Marquard, S. L.; Wee, K.-R.; Murakami Iha, N. Y.; Meyer, T. J.; ACS Energy Lett. 2016, 1, 231.
  • 216
    O’Regan, B.; Grätzel, M.; Nature 1991, 353, 737.
  • 217
    Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.; Chem. Rev. 2010, 110, 6595.
  • 218
    Nakata, K.; Fujishima, A.; J. Photochem. Photobiol., C 2012, 13, 169.
  • 219
    Yang, W.-G.; Wan, F.-R.; Chen, Q.-W.; Li, J.-J.; Xu, D.-S.; J. Mater. Chem. 2010, 20, 2870.
  • 220
    Ye, M.; Zheng, D.; Wang, M.; Chen, C.; Liao, W.; Lin, C.; Lin, Z.; ACS Appl. Mater. Interfaces 2014, 6, 2893.
  • 221
    Sun, X.; Liu, Y.; Tai, Q.; Chen, B.; Peng, T.; Huang, N.; Xu, S.; Peng, T.; Zhao, X.; J. Phys. Chem. C 2012, 116, 11859.
  • 222
    Raj, C. C.; Prasanth, R.; J. Power Sources 2016, 317, 120.
  • 223
    Concina, I.; Vomiero, A.; Small 2015, 11, 1744.
  • 224
    Ameri, M.; Samavat, F.; Mohajerani, E.; Fathollahi, M.-R.; J. Phys. D: Appl. Phys. 2016, 49, 225601.
  • 225
    Sudhagar, P.; Asokan, K.; Jung, J. H.; Lee, Y. G.; Park, S.; Kang, Y. S.; Nanoscale Res. Lett. 2011, 6, 30.
  • 226
    Xia, J.; Masaki, N.; Jiang, K.; Yanagida, S.; J. Phys. Chem. B 2006, 110, 25222.
  • 227
    Sangiorgi, A.; Bendoni, R.; Sangiorgi, N.; Sanson, A.; Ballarin, B.; Ceram. Int. 2014, 40, 10727.
  • 228
    Hart, J. N.; Menzies, D.; Cheng, Y. B.; Simon, G. P.; Spiccia, L.; C. R. Chim. 2006, 9, 622.
  • 229
    Grosso, D.; J. Mater. Chem. 2011, 21, 17033.
  • 230
    Al-Juaid, F.; Merazga, A.; Abdel-Wahab, F.; Al-Amoudi, M.; World J. Condens. Matter Phys. 2012, 02, 192.
  • 231
    Kim, D. H.; Woodroof, M.; Lee, K.; Parsons, G. N.; ChemSusChem 2013, 6, 1014.
  • 232
    Niu, W.; Li, X.; Karuturi, S. K.; Fam, D. W.; Fan, H.; Shrestha, S.; Wong, L. H.; Tok, A. I. Y.; Nanotechnology 2015, 26, 064001.
  • 233
    Agrios, A. G.; Cesar, I.; Comte, P.; Nazeeruddin, M. K.; Grätzel, M.; Chem. Mater. 2006, 18, 5395.
  • 234
    Mártire, A. P.; Segovia, G. M.; Azzaroni, O.; Rafti, M.; Marmisollé, W.; Mol. Syst. Des. Eng. 2019, 4, 893.
  • 235
    Gross, M. A.; Sales, M. J. A.; Soler, M. A. G.; Pereira-da-Silva, M. A.; da Silva, M. F. P.; Paterno, L. G.; RSC Adv. 2014, 4, 17917.
  • 236
    Akiba, U.; Minaki, D.; Anzai, J. I.; Polymers 2017, 9, 1.
  • 237
    Zeng, J.; Matsusaki, M.; Polym. Chem. 2019, 10, 2960.
  • 238
    Paterno, L. G.; Soler, M. A. G.; JOM 2013, 65, 709.
  • 239
    Patrocínio, A. O. T.; Paterno, L. G.; Murakami Iha, N. Y.; J. Photochem. Photobiol., A 2009, 205, 23.
  • 240
    Patrocinio, A. O. T. T.; Paterno, L. G.; Iha, N. Y. M.; Murakami Iha, N. Y.; J. Phys. Chem., C 2010, 114, 17954.
  • 241
    Paula, L. F.; Amaral, R. C.; Murakami Iha, N. Y.; Paniago, R. M.; Machado, E. H.; Patrocinio, A. O. T.; RSC Adv. 2014, 4, 10310.
  • 242
    Matos, L. S.; Amaral, R. C.; Murakami Iha, N. Y.; ChemistrySelect 2019, 4, 265.
  • 243
    Zanoni, K. P. S.; Amaral, R. C.; Murakami Iha, N. Y.; ACS Appl. Mater. Interfaces 2014, 6, 10421.
  • 244
    Zanoni, K. P. S.; Amaral, R. C.; Murakami Iha, N. Y.; Abreu, F. D.; de Carvalho, I. M. M.; Spectrochim. Acta, Part A 2018, 198, 331.
  • 245
    Patrocinio, A. O. T.; El-Bachá, A. S.; Paniago, E. B.; Paniago, R. M.; Murakami Iha, N. Y.; Int. J. Photoenergy 2012, 2012, 1.
  • 246
    Coppo, R. L.; Farnum, B. H.; Sherman, B. D.; Murakami Iha, N. Y.; Meyer, T. J.; Sustainable Energy Fuels 2017, 1, 112.
  • 247
    Murakami Iha, N. Y.; Garcia, C. G.; Registro de Marca - Dye-cell, dirma 823895718, 2001, available at http://revistas.inpi.gov.br/pdf/marcas1893.pdf, accessed in May 2020.
    » http://revistas.inpi.gov.br/pdf/marcas1893.pdf
  • 248
    Garcia, C. G.; Murakumi Iha, N. Y.; Int. J. Photoenergy 2001, 3, 137.

Publication Dates

  • Publication in this collection
    30 Oct 2020
  • Date of issue
    Nov 2020

History

  • Received
    02 Feb 2020
  • Accepted
    20 May 2020
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br