Acessibilidade / Reportar erro

N-Acetyl-cysteine Increases Chemical Stability of Hydroquinone in Pharmaceutical Formulations: a Theoretical and Experimental Approach

In this study, the chemistry stability of hydroquinone (HQ) was evaluated according to its effects in redox properties and compared to kojic acid (KA). The HQ oxidation was more inhibited by N-acetylcysteine (NAC) than ascorbic acid (AA). These results were elucidated using theoretical methods at the DFT/B3LYP level of theory. All electronic parameters were related between antioxidant performance and highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO value gap (GAP), ionization potential (IP), and phenol or enol bond dissociation energy (BDEOH) values. However, the interactions between HQ and NAC cannot be related by changing of these electronic parameters. Therefore the high calculated values for electron transfer can be associated to NAC due to polarizability or chelation properties of sulfur moiety.

Keywords:
hydroquinone; N-acetylcysteine; stability; antioxidant; molecular modeling


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br