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Activin-like kinase 5 (ALK-5) receptor represents an attractive object to treat cancer. Analyses 
on the quantitative structure-activity relationship were performed to explore the relationship 
between the molecular structure of 1,5-naphthyridine, pyrazole and quinazoline derivatives 
and the inhibition of the activin-like kinase 5. From a data set containing 59 compounds, 
various electronic descriptors were calculated using density functional theory (DFT) method; 
stereochemical descriptors (as molecular volume and area), polar surface area (PSA), log P and 
dragon descriptors were also calculated. The ordered predictor selection (OPS) algorithm, weighted 
principal component analysis (PCA) and Fisher’s weights (FW), combined with sequential forward 
selection, were employed to select the most relevant descriptors to be employed in all partial 
least square regressions. Using this procedure, we selected the most informative descriptors and 
significant correlation coefficients were achieved (r2 = 0.74, q2 = 0.83). Additional validation tests 
were carried out, indicating that the obtained model is robust and reliable and, consequently, it 
can be used to predict the biological activity of new compounds.
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Introduction

Cancer is a global problem and is cause of death in all 
countries. It is estimate that the number of cancer cases 
will increase worldwide due to the growth and aging of 
the population, particularly in less developed countries, 
in which about 82% of the world’s population resides. 
In Brazil, an estimate performed by National Institute of 
Cancer in Brazil (INCA) for 2014, also valid for 2015, 
predicted an increase of 75% in new events of cancer.1,2 
Already, Global Cancer Statistics indicated that in 2014, 
about 580,350 Americans were expected to die of cancer, 
almost 1,600 people per day.1-4 Cancer is the second most 
common cause of death in the United States, exceeded only 
by heart diseases, accounting for nearly one of every four 
deaths. There are many cases of cancer in population and 
the mortality level is expected to rise globally.3,4 The global 
estimates are very concern because cancer is generally 
caused by genetic mutations, which provide some specific 
characteristics to the affected cell such as, high levels of 

proliferation, including neighboring tissues (metastasis) 
and evasion to apoptosis. Thus, it is extremely important 
to find out new drug candidates that target the cancer 
progression, invasion and metastasis.1,2

In this scenario, there is an interesting target protein 
known as transforming growth factor β (TGF-β).3 The role 
of TGF-β in the cancer biology was described in the literature 
recently.5-8 The complex function of TGF-β depends on the 
activation of two highly conserved single trans-membrane 
serine/threonine kinases: type I (TβRI or ALK-5 activin-like 
kinase 5) and type II receptors (TβRII). The mechanism 
related to the TGF-β binding involves the following steps: 
TβRII phosphorylates the threonine residues in the GS 
(repeated series of serine-glycine) domain of the ligand-
occupied ALK-5 (or TβRI). The ALK-5 receptor, on the 
other hand, phosphorylates the cytoplasmic proteins SMAD2 
and SMAD3 at two carboxyl terminals of serine residues. 
The phosphorylated SMAD proteins form heteromeric 
complexes with SMAD4; this complex translocates inside 
the nucleus to affect the gene transcription. It is known that 
changes in the DNA expression are important to evolution 
and adaptation of living organisms. Thus, TGF-β and its 
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receptors (ALK-5 and TβRII) are able to control the cellular 
growth and to promote several biological responses. In 
summary, these receptors can be considered as important 
targets to treat complex diseases such as cancer and fibrosis. 
Furthermore, considering the incidence of a large number 
of side effects in the cancer treatment, the discovery of new 
small-molecule inhibitors against the kinase activity of the 
ALK-5 receptor represents an attractive way to the combat of 
cancer.6,7,9-12 Some compounds targeting ALK-5 receptor are 
in the preclinical evaluation, such as LY364947/HTS‑466284 
(4-[3-(2-pyridinyl)-1H-pyrazol-4-yl]-quinoline)13 and 
LY2157299 (4-[2-(6-methyl-pyridin-2-yl)-5,6-dihydro-4H-
pyrrolo[1,2-b]pyrazol-3-yl]-quinoline-6-carboxylic acid 
amide),14 which are developed by the company Eli Lilly, 
perform the main interactions in the important hinge region 
for the inhibitory activity.15-17

In vitro assays on the activity of ALK5 inhibitors 
remain an intensive labor and time consuming operation. 
In this context, more efficient and economical alternative 
methods should be employed, such as in silico molecular 
modeling approaches, which are used in virtual screenings 
to predict and prioritize chemicals for subsequent in vitro 
and in vivo screenings. 

Quantitative Structure-Activity Relationship (QSAR) 
studies have been widely used to help in predicting and 
designing new bioactive compounds. In this way, QSAR 
methodology was employed in this study to explain how the 
molecular properties of a compound series are associated 
to biological activity. So, QSAR models can be used to 
understand the possible mechanisms of interaction between 
ligands and receptors, as well as helping the development 
of new lead-like drugs.18-20 There are some QSAR 
models of ALK-5 inhibitors such as benzimidazoles,21 
4-(quinolone-4-yl)-substituted, 1,5-naphthyridine, 
pyrazole and quinazoline derivative series reported on 
literature.22,23 These models were statistically validated and 
showed common physicochemical features, for example, 
the importance of interaction with HIS283 at the hinge 
region.21-23 However, these previous studies did not take into 
account all compound classes analyzed here and the authors 
employed other QSAR techniques. This study presents a 
different point of view on the main interactions that can 
be occurring between the compound classes selected and 
the biological target (ALK-5). 

QSAR studies, along with the extracted information 
from the available X-ray crystallographic structure of 
ALK-5, have shown to be useful tools in the lead compound 
optimization in order to obtain potential therapeutic agents 
for the treatment of cancer and to understand the role of 
ALK-5 in the pathology of this disease. For this, our study 
constructed a series of models in order to elucidate the most 

relevant relationship between the molecular properties of the 
ALK-5 inhibitors studied in this work and their biological 
activity. Another objective of this study is evaluating the 
ability of various methodologies used for an efficient 
variable selection and, consequently, constructing a statistical 
model independent of the molecular alignment aiming the 
construction of a simple, effective and innovative model that 
could be employed in further virtual screening protocols.

Experimental

Data set

It was selected a dataset of 59 compounds, synthesized 
and tested at the same experimental conditions by 
Gellibert  et al.,24-26 to construct robust and reliable 
statistical models. The biological activity (IC50 values) of 
all compounds was tested by using a transcriptional assay 
in HepG2 (hepatocellular cells).24-26 These compounds 
comprised three different classes of diverse structures: 
1,5-naphthyridine, pyrazole and quinazoline derivatives, 
whose IC50 values were converted in pIC50 (−logIC50, see 
Figure 1 and Table S1).

Generation of 3D structures

In order to generate a bioactive conformation of all 
compounds, we performed several docking analyses 
employing the GOLD 5.0 software,27 which uses genetic 
algorithm to generate the ligand conformation and 
GOLDScore as scoring function. All steps and details of 
the docking protocol, as well as the pose generation were 
shown in previous study.23 The good quality of the selected 

Figure 1. The most and the least active compounds of the data set.
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poses/conformations can be noted from the analyses of all 
statistical parameters for the 3D model, which is highly 
affected by the tridimensional alignment of the data set.28 
In addition, the docking analyses of the most and the least 
active compounds corroborate the binding mode proposed 
in the literature. Therefore, the docking poses could be 
considered a good model for the bioactive conformations 
of the studied ALK-5 inhibitors. 

Physicochemical properties and calculation of descriptors

After the generation of all 3D conformations from 
the docking analyses, it was calculated several electronic 
properties (for example, molecular orbital energies, dipole 
moment and atomic charges), as well as other descriptors 
obtained from density functional theory (DFT) method with 
B3LYP functional24 and 6-311g(d) basis set,29,30 implemented 
in Gaussian09 package.27 Stereochemical descriptors (such 
as molecular volume and area), polar surface area (PSA), 
log P, molecular weight and others were calculated using 
the software Spartan’08,31 HyperChem 8.132 and Sybyl 8.1.33 
Topological descriptors were calculated employing E-dragon 
2.1 available at Virtual Computational Chemistry Laboratory 
(VCCLAB),34 which are considered valuable information 
about several aspects of the molecular structure.35,36

Feature selection

The selection of features that mathematically represent 
the compound set and the relationships with the biological 
activity are not a trivial task. The methods employed to 
generate the molecular descriptors are able to provide a 
large number of variables (some of them may have up to 
thousands of descriptors). Furthermore, there is an ideal 
condition in QSAR studies: in general, each descriptor 
can explain five chemical compounds.18,36 This proportion 
(one descriptor for each five compounds), called parsimony 
principle or Occam’s razor, was proposed to facilitate the 
physicochemical interpretation of QSAR model and also to 
avoid the overfitting in QSAR modeling (a condition when 
the excess of information improves randomly the quality of 
the model).37 For this reason, we tested the ability of various 
methods used for an efficient variable selection with the 
aim to select only chemical descriptors able to generate a 
robust model. All methods employed in this study for the 
variable selection will be described below.

Fisher’s weight (FW)

Fisher’s weight (FW) is a very used method in pattern 
recognition studies. It selects the variables that characterize 

or separate in two or more groups a given data set.38,39 
The main idea of FW is finding a subset of variables such 
that on the data space generated by the selected variables, 
the distances between observations in different classes 
are as large as possible, while the distances between the 
observations in the same class are minimal as possible. 
The variable selection occurs by maximizing the trace 
criterion, an optimization function that can be applied to 
several methods of dimensionality reduction because it 
directly holds the distance between the observations within 
or between the classes of data. To simplify this problem, the 
most used heuristic is computing a weight for each variable 
of the set X(xj, j = 1,…,n) according to the criterion F.40 
Considering µj

k the average of the kth class corresponding jth 
variable and that sj the standard deviation of the jth variable, 
it is computed the weight of each variable by equation 1:

	 (1)

After the calculation of the Fisher’s weight for each 
variable, variables with the highest weight are selected.

Ordered predictor selection (OPS)

Ordered predictor selection (OPS) is an algorithm 
employed to select the most relevant descriptors that will 
be employed in regression analyses.41 The OPS method 
generates a vector (informative vector) that contains 
information about the location of the best chemical 
descriptors for prediction. The vectors can be directly 
obtained from calculations performed with information 
about responses and dependent variables or combinations 
of different vectors obtained with the same purpose. 
Afterwards, the original variables are differentiated 
according to the corresponding absolute values of the 
informative vector obtained in the previous step. The 
higher the absolute value, more important is the response 
variable, which enables its sorting in descending order 
of magnitude.42 The multivariate regression models are 
built and evaluated using a cross validation strategy. An 
initial subset of variables (window) is selected to build 
and evaluate the model. Then, this matrix is expanded by 
the addition of a fixed number of variables (increment) 
and a new model is built and evaluated. New increments 
are added until all or some percentage of variables are 
taken into account. Quality parameters of the models 
are obtained for every evaluation and stored for a future 
comparison. The evaluated variable sets (initial window and 
its extensions) are compared using the quality parameters 
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calculated during the validations. The model with the best 
quality parameters should contain the variables with the 
best predictive capability and so these will be the selected 
variables.

Weighted principal components analysis (WPCA)

Weighted principal components analysis (WPCA) is 
a method that uses the matrix of loadings obtained by 
PCA technique to perform the variable selection.43 In 
WPCA, there are combinations of the weighted principal 
components with a threshold algorithm. Specifically, the 
contribution of each feature is represented by a loading 
value in a weighted principal component, and a threshold 
algorithm based on a moving range-based control chart 
evaluates the significance of its contribution.43

In WPCA, the weight of each variable is obtained from 
the sum of the loading values that represent the importance 
of each feature in the formation of a PC (for example, aij 
indicates the degree of importance of jth feature for the ith 
PC). For the case where a loading value of the jth original 
feature is initially computed m PC’s, the importance of 
the jth feature can be represented by equation 2, where 
aij  (i,j  =  1,2,…,n) represents the loading values of each 
variable in each PC after the application of PCA44 and bi 
represents the weight of the ith PC. A way to determine bi 
is computing the total variance explained by the ith PC; wj 
is called a weighted PC loading for the feature j. 

	 (2)

After obtaining the weighted PC’s, it is performed 
the moving range-based threshold algorithm as a way to 
identify the significant features from the weighted PC 
loadings. The threshold algorithm comes from a moving 
average control chart widely used in quality control.41 A 
feature is considered as significant if the corresponding 
weighted PC loading exceeds the threshold g.

Sequential forward selection (SFS)

Sequential forward selection (SFS) is another method 
used for variable selection, which selects a subset of 
variables that have the best result in the generation of a 
regression or classification model. This search is carried out 
as following: (i) the algorithm starts its execution looking 
for a single variable that generates a regression model that 
satisfies a certain value (i.e., low calibration error), (ii) after, 
these new variables are sequentially grouped to the initial 
selected variable, since the value obtained will be better 
than the value obtained from the previous subset, or until 

a certain number of variables is reached. More information 
about this method can be found in other studies.45 All 
described methods (OPS, WPCA and FW) were employed 
in combination to sequential forward selection to achieve 
a defined final number of descriptors that better describe 
our system.

Splitting of training and test sets

Training and test sets are important to determine the 
quality of the statistical models obtained from regression 
methods. The composition of training and test sets is 
important to obtain an internally consistent model and 
to test its external ability of prediction using an equally 
representative set. Kennard-Stone is a rational method 
that is very employed to split training and test sets.46,47 
This method was developed to produce a division when 
no standard experimental design can be applied.44 The 
Kennard-Stone algorithm selects the objects so that they 
are divided evenly throughout the descriptor space of the 
original data set. This technique is applied as follows: (i) 
initially, select the first two molecules of the dataset are 
selected by choosing the two ones that are farthest apart 
in terms of Euclidean distance; (ii) to select the compound 
that has the maximum dissimilarity from each one of the 
previously selected molecules and place this molecule in 
the training set; (iii) to repeat the step (ii) until the desired 
number of molecules has been added to the training set. 

Outlier detection and applicability domain

Other two important aspects that should be checked in 
the generation of QSAR models are the outlier detection 
and the analysis of the applicability domain. These two 
properties are robustness measures of QSAR models that 
will be used for predicting compounds with unknown 
activity. In this study, for outlier detection, it was applied 
a method proposed by Filzmoser et al.48 that combines 
the ordered squared robust Mahalanobis distances (MD) 
of the observations and the distribution of chi-squared. 
Initially, the MD values for each observation are calculated. 
Afterwards, to perform the search for outliers, observations 
that exceed a certain value of the chi-squared distribution 
are marked. More details about this method can be found 
in Filzmoser et al.48 

The applicability domain is widely used to express the 
scope and limitations of a QSAR model, i.e., the range of 
chemical structures for which the model is considered to 
be applicable.49 In our study, we used the leverage value 
and Studentized residuals to determine the applicability 
domain of the compounds. The leverage method provides 
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a distance measure of the compounds from the centroid of 
the data set (i.e., vector mean of the dataset). Compounds 
near to centroid are less influential in QSAR model than 
that in extreme points. More details about these techniques 
can be found in references.50,51

Construction of QSAR models

The generation of QSAR models was performed 
using Partial Least Squares (PLS) method, implemented 
in Pirouette3.11 software.52 The PLS method can handle 
data with numerous independent variables by constructing 
principal components (PCs) from a non-linear combination 
of all X variables used to construct the QSAR model. A 
short description of PLS technique involves the following 
idea: the X matrix of independent variables (containing the 
descriptors) is correlated with the Y vector (representing 
the biological data, in this case) in such a way that the 
projected coordinates (T) are good predictors of Y.53 An 
important feature of PLS is the fact of the biological data 
is included in the decomposition procedure. Besides, 
the loading matrix (W) is defined in such a way that the 
product (variance in X) times (the correlation XW to Y) is 
maximized.53 A detailed description of PLS can be found 
in other references.54,55 The quality model was evaluated 
according to its internal consistency (q2, values of leave-
one-out and leave-N-out methods), external predictive 
ability (r2 of the test set and residual values), sensitivity 
of randomization (Y-scrambling) and external predictive 
ability potential (r2

m). 

Results and Discussion

In order to define the best model, there was specified 
a flow chart as shown in Figure 2. Initially, from 1719 
calculated descriptors, we applied an intermediary filter 
using WPCA, OPS and two forms of Fisher’s weight. After 
the application of these techniques, the SFS algorithm was 
used aiming to achieve models with 8 variables, according 
to the rule of 1 descriptor for each 5 compounds, since 
the training set of our study contains 46 compounds. To 
carry out the selection of variables with WPCA, it was 
used the software MATLAB.56 As parameters to WPCA, 
we applied the error range equals a 0.01 (b = 0.01). The 
number of variables obtained with this method was equal 
to 42. To perform the variable selection with OPS, it was 
used the package OPS developed by Teofilo et al.,42 also 
implemented in MATLAB software. As parameters to the 
variable selection, it was employed the minimal value of root 
mean squared error, obtained after the application of PLS 
technique. From this procedure, 256 variables were selected.

The initial version of FW was applied separating the 
molecules in two classes of biological activity: (i) a class 
with the biological range between 4.95 and 7.32; (ii) a class 
with the range between 7.33 and 7.92. The choice for the 
splitting of the dataset using a non-uniform distribution of 
biological ranges is due to this threshold (pIC50 ca. 7.33) 
separates the compounds in two balanced subsets, 
biologically and structurally, with about 23 compounds 
each. Finally, the weight higher than 5.00 were selected, 
resulting in 357 variables selected with this methodology.

To the application of the second version of Fisher’s 
weight (MFW), initially, the dataset was divided in six 
classes, according to the following ranges of biological 
activity: (i) class 1 (4.95-5.49); (ii) class 2 (5.50-5.99); 
(iii)  class 3 (6.00-6.49); class 4 (6.50-6.99); class 5 
(7.00‑7.49) and class 6 (7.50-7.99). The main idea of MFW 
is to select the descriptors that are important to discriminate 
between the most active compounds and the least ones. In 
other words, MFW is designed to discriminate the most 
active compounds (class 6) in each other class individually.

After the definition of the classes, various comparisons 
between the most activity class (class 6) and the five 
remaining classes were carried out using the FW and the 
weights for each comparison were determined. Finally, for 
each variable, we calculated the sum of the weights found 
in each comparison from equation 3.

MFW = 0.35FW6–1 + 0.30FW6–2 + 0.20FW6–3 +  
0.10FW6–4 + 0.05FW6–5	 (3)

In the last step employed in the application of MFW, we 
selected the variables with weight higher than 5.0, as done 
in the selection with FW. The major difference between 
FW and MFW is that the initial method can provide the 
variables related to the split of the data set in two classes 
(the most and the least potent compounds) and the second 
one provides the X variables that discriminate gradually the 
most active compounds (class 6) from the least active class. 

Figure 2. Scheme used to select chemical descriptors.
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The application of MFW returned 646 variables. After the 
initial step of the variable selection, applying WPCA, FW, 
MFW and OPS, it was used the SFS technique to select 
eight variables from each subset of the variables cited 
previously, as shown in Figure 2. The SFS technique was 
combined with the PLS method and eight variables were 
selected, which resulted in a best value of q2. The main 
results are summarized in Table 1.

From Table 1, we selected the variables indicated by the 
MFW method, since these variables returned the best values 
of q2 and the lowest value of standard error of estimation. 
The difference between the models generated with MFW 
and FW methods is not significant, then we employed the 
MFW model to perform a physicochemical interpretation of 
the selected variables but we also analyzed the other models. 

After choosing the best set of variables using MFW, we 
performed several analyses of outliers and also different 
splitting of training and test sets. For the analysis of outliers, 
the technique described by Filzmoser et al.48 was applied, 
making the search for outliers in a chi-squared (Figure 3) 
distribution with limit value equals to 0.95. Moreover, the 
values of leverage obtained after the variable selection 
were calculated. Among all compounds, it was observed 
that the compound 3 was identified as an outlier by the 
Filzmoser’s technique, as well as the coefficient of leverage. 
Thus, this compound was removed from the data set in the 
further analysis.

The splitting of training and test sets was performed 
in two steps: (i) the data was divided in two subsets 
according to the levels of biological activity: 4.95-7.32 and 
7:33‑7.92; (ii) after this initial splitting, the Kennard-Stone 
method was applied in each subset, separating 80% for 
the training set and 20% for the test set. As a final result, 
46 molecules were selected for the training and 12 for the 
test set (Supplementary Material, Table S2).

Statistical analysis of model 3

In comparison with the other models, the model 3 
displays satisfactory internal and external correlation 

coefficients (q2
LOO and q2

LNO = 0.74; r2 = 0.83 and 
r2

test  set = 0.87) and the Y-scrambling results (the average 
values of q2 and r2 for the scrambled models) indicate 
that the model was not obtained by chance (Table 2). 
Finally, the best quality of the model 3 can be observed by 
comparison of r2

m of all models. Only the MFW and OPS 
models (models 3 and 4, respectively) showed acceptable 

Table 1. Results of PLS regression combined with SFS technique

Model
Feature selection 

method
q2a SEVb r2c SECd PCse

1 WPCAf 0.73 0.44 0.81 0.40 6

2 FWg 0.80 0.38 0.85 0.35 5

3 MFWh 0.80 0.38 0.86 0.34 6

4 OPSi 0.73 0.45 0.84 0.37 6
aq2: validation coefficient; bSEV: standard error of validation; cr2: calibration coefficient; dSEC: standard error of calibration; ePCs: number of principal 
components; fweighted principal components analysis (WPCA); gFisher’s weight (FW); hsecond version of Fisher’s weight (MFW); iordered predictor 
selection (OPS).

Figure 3. (a) Analysis of outliers and (b) plot of leverage versus 
Studentized residuals.
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external predictive ability, but clearly the external predictive 
ability of the model 3 was strongly superior to the model 4. 
However, the model obtained with the combination of 
MFW and SFS presented the lowest SEV and SEC values.

To evaluate the robustness and the stability of the 
selected model, leave-N-out and y-scrambling tests were 
carried out (Table 2). In fact, a good QSAR model must 
have an average value of q2 close to the q2 obtained with 
the leave-one-out procedure, while the standard deviation 
for each N should not exceed 0.1.51 The model obtained 
with the variable selection using MFW and SFS was stable 
with deviations from q2 for each N being lower than 0.020. 
These findings confirm the stability and robustness of the 
model 3 (Figure 4).

The predictive power of the model 3 was also evaluated 
by predicting the biological activity of the compounds 
from the test set (external validation). Experimental and 
predicted pIC50 values are listed in Table 3. The obtained 
results indicate that the obtained model is very predictive 

since the residual values of external predictions were lower 
than 0.80 log unities.

A plot of the experimental versus predicted pIC50 
for the compounds in training and test sets is shown in 
Figure 5. The good agreement between the experimental 
and calculated values indicates that a predictive MFW 
model was obtained and can be used to accurately predict 
the biological activity of other compounds within this 
structural class.

The y-scrambling validation was also employed to 
verify the possibility of chance correlations between the 
dependent variable and the selected descriptors. In this 
study, the pIC50 values were scrambled and the r2 and q2 
values were calculated (Figure 6). In the 100 y-scrambling 
experiments performed in our data, only low values of r2 

Table 2. Others statistical parameters for all obtained models

WPCAa FWb MFWc OPSd

q2
LOO

e 0.66 0.74 0.74 0.74

SEVf 0.46 0.40 0.40 0.40

q2
LNO

e 0.65 0.74 0.74 0.73

r2g 0.77 0.83 0.83 0.84

SECh 0.40 0.35 0.35 0.34

r2
test set

g 0.67 0.92 0.87 0.70

r2
m

g 0.42 0.47 0.57 0.54

PCsi 6 5 6 6

q2
Y-scrambling

e 0.17 0.18 0.18 0.18

r2
Y-scrambling

g −0.34 −0.33 −0.31 −0.33

aWeighted principal components analysis (WPCA); bFisher’s weight (FW); 
cordered predictor selection (OPS); dsecond version of Fisher’s weight 
(MFW); eq2: validation coefficient; fSEV: standard error of validation; gr2: 
calibration coefficient; hSEC: standard error of calibration; iPCs: number 
of principal components.

Table 3. Experimental and predicted pIC50 values for the test set 
compounds

Compound
pIC50 

experimental
pIC50 

predicted
Residual

1 6.97 7.04 −0.07

4 6.72 7.14 −0.42

7 7.55 7.41 0.14

14 6.97 6.94 0.03

21 7.92 7.72 0.20

23 7.72 7.36 0.36

31 7.31 7.30 0.01

38 7.03 7.56 −0.53

43 5.40 6.19 −0.79

44 5.93 5.76 0.17

46 5.00 5.63 −0.63

47 5.75 5.79 −0.04

Figure 4. Plot of the results obtained for the leave-N-out validation.

Figure 5. Experimental versus predicted pIC50 of the training and test 
set compounds.



Araujo et al. 1943Vol. 26, No. 9, 2015

and q2 were obtained, with average of −0.31 and 0.18, 
respectively. If low values were found for both parameters, 
then one can be sure that a true correlation between the 
selected descriptors and the response variable exists in 
our data set. 

In summary, all internal and external validations 
indicate that the model 3 is suitable for the prediction 
of the biological activity of new ALK-5 inhibitors and, 
consequently, this model contain statistically relevant 
information in the relationships between the calculated 
descriptors and the biological activity.

Physicochemical interpretation of the best model

For the model obtained using the MFW and SFS 
algorithms (variable selection), 8 descriptors were selected: 
MATS4v, EEig04x, ESpm12r, BELp5, SPH, Mor26e, 
R8m+ and R5e+. Table 4 displays the description of each 
variable employed in the construction of the model 3. 

The calculated values for the 8 selected descriptors are 
shown in Supplementary Information (Table S2) and the 
contributions of each descriptor to the regression vector, 
in the model 3, are displayed in Figure 7.

Regarding the selected descriptors used to build the 
model presented in this study, some considerations can be 
pointed out (Figure 7): 
(i)	 SPH is a geometrical descriptor and refers to the 

spherical format of the molecule. This variable 
suggests that the spherical shape of the compounds 
is an important parameter in the ALK-5 inhibition 
since this descriptor showed the highest contribution 
to PC. Compounds with values of SPH nearest to 1 
indicate higher spherical shape while values nearest 
to 0 indicate compounds not spherical.57 In this study, 
the SPH descriptor presented important contribution 
(Figure 7) indicating a better complementarity 
between spherical compounds and the active site. 
Indeed, the three more potent compounds (21, 19 
and 39) have values of SPH equal to 0.937, 0.949 
and 0.853, respectively, while the three least potent 
ones (50, 46 and 49) have SPH values equal to 0.732, 
0.783 and 0.802, respectively. These results indicate 
that the most potent compounds have higher values 
of SPH and, consequently, they are more spherical 
and can be performed more interactions in the active 
site of the biological target.

(ii)	 EEig04x is the second descriptor with high positive 
contribution and represents the eigenvalue 04 from 
the edge-adjacency matrix weighted by edge degrees, 
which belongs to edge-adjacency indices. The 
adjacency matrix also provides some generalized 
descriptors of network connectivity like the average 
vertex degree and connectivity.58,59

(iii)	 MATS4v represents the distribution mode of the 
atomic van der Waals volumes along the topological 
structure of the compounds.60,65 Therefore, the 

Table 4. Symbols, types and definitions of the selected descriptors

Descriptor Type Definition

SPH geometrical spherosity57

EEig04x edge  
adjacency 

indices

eigenvalue 04 from the edge-adjacency 
matrix weighted by edge degrees58

ESpm12r
spectral moment 12 from edge adjacent 
matrix weighted by resonance integrals59

MATS4v
2D 

autocorrelation
Moran autocorrelation, lag 4 weighted by 

atomic van der Waals volumes60

Mor26e
3D-MoRSE 
descriptor

3D-MoRSE, signal 26 weighted by 
atomic Sanderson electronegativity61

R8m+

GETAWAY 
descriptor

R maximal autocorrelation of lag 8 
weighted by atomic masses62

R5e+
R maximal autocorrelation of lag 
5 weighted by atomic Sanderson 

electronegativities63

BELp5
Burden 

eigenvalue 
descriptor

lowest eigenvalue n = 5 of Burden  
matrix / weighted by atomic 

polarizabilities64

Figure 6. Plot of the results obtained in the y-scrambling tests. Figure 7. Contribution of all selected descriptors.
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positive contribution of this descriptor indicates 
the relationship between the topological structure 
weighted by van der Waals volume and the biological 
activity.

(iv)	 MorSE descriptors have structural information 
by means of 3D atomic coordinates. In this case, 
the Mor26e descriptor represents a 3D-MorSE 
descriptor weighted by atomic electronegativity and 
this descriptor has the fourth positive contribution. 
Thus, the atomic electronegativity of the compounds 
showed high statistical importance for the protein-
ligand interaction.35,61

(v)	 R8m+ and R5e+ are GETAWAY descriptors 
that mean geometry, topology and atom-weights 
assembly descriptors derived from the leverage 
matrix, which is deduced by the centering of all 
atomic coordinates.62,63 Thereby, R8m+ is weighted 
by atomic masses with a positive contribution 
for the dataset and R5e+ is weighted by atomic 
electronegativities with negative contribution (see 
Figure 7). Therefore, these descriptors can contribute 
for the size (R8m+) and the shape (R5e+) of the 
ALK-5 inhibitor weighted by the properties of the 
data set from pIC50 values.

(vi)	 ESpm12r represents the resonance effects or 
resonance integrals between atoms twelve bonds 
apart.59,66 As its contribution to the model was 
negative, the resonance effects could inversely be 
related to the biological activity.

(vii)	 BELp5 is a 2D Burden eigenvalue descriptor 
that has the lowest contribution (Figure 7). This 
descriptor is weighted by the atomic polarizabilities, 
encoding molecular branching, position and 
length. This topological descriptor is designed to 
encode atomic properties that drive intramolecular  
interactions.64,67

Based on the results obtained in this study and in 
the face of the continuous search for new anti-cancer 
compounds, statistical models can play an important role 
in the discovery and optimization of new drug candidates. 
In this work, WPCA, FW, MFW and OPS-PLS models 
were developed to provide insights on relevant molecular 
features for the ALK-5 inhibition. A set of 8 descriptors 
selected by MFW and SFS techniques has demonstrated 
to be suitable for the construction of reliable models. The 
good statistical parameters, stability and robustness of the 
models obtained here, as assured by the validation tests 
applied over our data, indicate that these models can be 
used to design other inhibitors with improved anti-cancer 
activity, i.e., using this model as virtual screening filter. 

Therefore, the selected descriptors could be employed to 
construct focused chemical libraries to find out new ALK‑5 
inhibitors. 

Conclusions

In this study, four models were investigated with the 
aim to describe the relationships between the chemical 
structure of a series containing bioactive ligands and 
the ALK-5 receptor. WPCA, FW, MFW and OPS-PLS 
algorithms were employed to select the most relevant 
descriptors. MFW was the best algorithm for the variable 
selection, because it resulted in significant correlation 
coefficients (q2 = 0.83, r2 = 0.74 and r2

Test = 0.87). The 
strategy employed in this work has provided a reliable 
model for the ALK-5 inhibition regarding the class of 
the studied ligands. Our findings suggest the importance 
of topological, geometrical, edge adjacency indices, 2D 
autocorrelation and 3D features for the anti-cancer activity 
presented by the studied compounds. The descriptors 
selected using the MFW method describe molecular 
features as the geometry (SPH) and connectivity 
(EEig04x), which are defined as dragon descriptors. 
Additionally, the influence of the distribution mode of 
atomic van der Waals volume (MATS4v) is indicated by 
2D autocorrelations descriptor, as well as Mor26e and 
atomic electronegativity. Therefore, these results can be 
used to design other ALK5 inhibitors with anti-cancer 
activity. 

Supplementary Information

Supplementary information (structure and pIC50 
values of the studied compounds, as well as the values of 
the selected descriptors for the training and test sets) are 
available free of charge at http://jbcs.sbq.org.br as PDF file.
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