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The objective of this work was to carry out a bibliographic survey of secondary metabolites 
isolated from the Velloziaceae family, creating a bank of compounds. After the bank was created, 
four prediction models for potentially active compounds against pathogenic microorganisms 
(Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Salmonella sp.) were obtained 
trying to identify which metabolites would be more active against the strains. Four sets of 
compounds with known activity for microorganisms were selected for the construction of predictive 
models from the CHEMBL database. Another bank with 163 unique molecules isolated from the 
Velloziaceae family was built. The Volsurf+ v.1.0.7 software obtained the molecular descriptors 
and Knime 3.5 generated the in silico model. The performances of the internal and external tests 
were also analyzed. The study contributed through the virtual screening of a bank of metabolites 
to select several compounds with potential antimicrobial activity, highlighting the biflavonoid 
amentoflavone which showed potential activity against the four strains.
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Introduction

Natural products have been used historically for the 
treatment of various diseases, where medicinal plants 
act as an important resource for the recovery, cure and 
prevention of numerous diseases.1 Thus, their use as a 
target for the discovery and/or obtaining of new drugs, 
whether in their entire form or in isolated compounds, 
is currently emphasized and, in data, it is observed that 
more than 70% of a total of 1562 new drugs approved by 
the Food and Drug Administration (FDA, 1981-2014) are 
of natural origin.2,3

The Velloziaceae family is native and not endemic 
to Brazil, where it currently comprises five genera 
(Acanthochlamys ,  Barbacenia ,  Barbaceniopsis , 
Vellozia  and Xerophyta) and about 274 species,4,5 
inhabiting arid, rocky and elevated places.6 The vast 
majority of species are distributed in Neotropical America 

(Barbacenia, Barbaceniopsis and Vellozia), others occur in 
Africa, Madagascar and the Arabian Peninsula (Xerophyta 
and Vellozia) and one in China (Acanthochlamys).7 As 
for ethnopharmacological use, the aerial parts of some 
species of the family are used as anti-inflammatory, anti-
rheumatic, treatment of bruises and bone fractures (topical 
use) and infections.8,9 Besides this information, studies 
of phytochemicals of several species of the family are 
observed in the literature, as well as limited in silico and 
pharmacological studies of compounds used.

Bacterial resistance to more traditional antimicrobials is 
one of the biggest and most considerable obstacles to public 
health, where, according to the World Health Organization 
(WHO), Escherichia coli, Klebsiella pneumoniae, 
Staphylococcus aureus ,  Neisseria gonorrhoeae , 
Chlamydia  trachomatis and Treponema pallidum, are 
notorious examples of microorganisms that have been 
showing resistance to antimicrobials. Thus, there is a need 
for governments to encourage the development of new 
low‑cost antibiotics adapted to the global need.10-12

Virtual Screening of Secondary Metabolites of the Family Velloziaceae J. Agardh 
with Potential Antimicrobial Activity

Anderson A. V. Pinheiro, a Renata P. C. Barros,a Edileuza B. de Assis,a 
Mayara S. Maia,a Diego I. A. F. de Araújo,a Kaio A. Sales,a Luciana Scotti, a,b 

Josean F. Tavares, a Marcus T. Scotti a and Marcelo S. da Silva *,a

https://orcid.org/0000-0002-9389-4992
https://orcid.org/0000-0003-1866-4107
https://orcid.org/0000-0003-0293-2605
https://orcid.org/0000-0003-4863-8057
https://orcid.org/0000-0003-3451-8468


Pinheiro et al. 2115Vol. 31, No. 10, 2020

In this perspective of obtaining compounds and 
envisioning their pharmacological potential, the use of 
computational methods in order to carry out the virtual 
screening of bioactive substances has been widely used. The 
search consists in selecting compounds with the computer 
axis from data in a database with a large number of 
molecules for diseases and contributing to the advancement 
in the planning of medicines, reduction of time, costs and 
animals in research.13-15

Thus, in this study a bibliographic survey of 
secondary metabolites isolated from the Velloziaceae 
family was carried out, creating a bank of compounds. 
After the bank was created, four prediction models 
for potentially active compounds against pathogenic 
microorganisms (Candida  albicans, Escherichia coli, 
Pseudomonas  aeruginosa and Salmonella sp.) were 
obtained trying to identify which metabolites would be 
more active against the strains.

Methodology

Computational chemistry

Database
From the ChEMBL database, four sets of chemical 

structures with known activity for microorganisms 
were selected: Candida albicans, Escherichia coli, 
Pseudomonas aeruginosa and Salmonella sp., for building 
predictive models. The details of each set are described 
in Table 1. The compounds were classified from pMIC50 
(−logMIC50) (where pMIC50 is the planktonic minimum 
inhibitory concentration or 50%); emphasizing that the 
MIC50 represents the minimum concentration necessary for 
a 50% inhibition of the studied microorganisms. Another 
database of isolated molecules of the Velloziaceae family 
was built from a literature review of this family, with a total 
of 196 botanical occurrences and 163 unique molecules.

SMILES codes were used for all structures as input data 
for Marvin.16 Standardizer software17 was also used, which 
converts the various chemical structures into personalized 
canonical representations. This standardization is of 

paramount importance to create libraries of consistent 
compounds, in addition to obtaining the structures in 
canonical forms, adding hydrogens, flavoring, generating 
the 3D and saving the compounds in SDF format.

Volsurf descriptors
Molecular descriptors were used to predict biological 

and physicochemical properties of the molecules in the four 
databases. The calculation of the descriptors was generated 
when the molecules were transformed into a molecular 
representation that allows mathematical treatment.

The Volsurf+ v.1.0.7 software18 has the ability to 
calculate 128 molecular descriptors, using molecular 
interaction fields (MIFs) through N1 probes (nitrogen-
hydrogen starch hydrogen bond donor), O (hydrogen bond 
acceptor), OH (water) and DRY (hydrophobic probe) and 
also calculation of non-MIF-derived descriptors.

Prediction model
Knime 3.5 software19 was used to perform the analyses 

and generate the model in silico. The banks of molecules 
with the calculated descriptors were imported from the 
Dragon software,20 and for each one, the data were divided 
using a “Partitioning” tool with the option of “Stratified 
sample”, separating in Training and Testing, representing 
80 and 20% of all compounds, respectively, where they were 
randomly selected, but maintaining the same proportion of 
active and inactive substances, in both databases.

For internal validation, cross-validation was used, 
where 10 stratified groups were selected, randomly 
selected, but distributed according to the activity variable 
in all validation groups. With the selected descriptors, the 
model was generated using the training set applying the 
random forest (RF) which is an algorithm for building 
decision trees,21 used in WEKA.22 100 forests and 1 random 
seed were the selected parameters for build the RF models.

The performance of the models’ internal and external 
tests were analyzed for sensitivity (true positive rate, that 
is, the active rate), specificity (true negative rate, that is, 
the inactive rate) and accuracy (general predictability). 
In addition, the sensitivity and specificity of the receiver 

Table 1. ChEMBL databases

Database against 
microorganisms

Total chemical structures Active molecule Inactive molecule ChEMBL ID

Candida albicans 10436 (pMIC50 ≥ 4.46) (pIC50 < 4.46) ChEMBL366

Escherichia coli 982 486 (pIC50 ≥ 5.00) 496 (pIC50 < 5.00) ChEMBL354

Pseudomonas aeruginosa 10693 (pIC50 ≥ 5.00) 143 (pIC50 < 5.00) ChEMBL348

Salmonella enterica 316 129 (pIC50 ≥ 5.00) 187 (pIC50 < 5.00) ChEMBL613762

pMIC50: planktonic minimum inhibitory concentration or 50%; pIC50: planktonic inhibitory concentration or 50%.
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operating characteristic (ROC) curve was used to describe 
the true performance of the model, with more clarity than 
precision.

The model was also analyzed by the Matthews’ 
coefficient,23 a way of globally evaluating the model 
from the results obtained from the confusion matrix. The 
Matthews’ correlation coefficient (MCC) is, in essence, a 
correlation coefficient between observed and predictive 
binary classifications. It results in a value between −1 and 
+1, where a coefficient of +1 represents a perfect forecast, 
0 is nothing more than a random forecast and −1 indicates 
total disagreement between forecast and observation.

Matthews’ correlation coefficient can be calculated from 
the following formula:

	 (1)

In this equation, TP is the number of true positives, 
TN the number of true negatives, FP the number of false 
positives and FN the number of false negatives.

The applicability domain based on Euclidean distances 
was also used in order to signal compounds in the test 
set for which predictions may be unreliable. Similarity 
measurements are used to define the model’s applicability 
domain based on Euclidean distances between all training, 
test and virtual screening compounds. The distance of a 
compound from a test compound to its closest neighbor 
in the training set is compared to the predefined limit of 
applicability domain, if the similarity is beyond that limit, 
the prediction is considered unreliable.24

Results and Discussion

The secondary metabolite data set was composed of 
a total of 196 botanical occurrences and 163 different 
chemical compounds, from 34 species of the Velloziaceae 
family (genera Vellozia, Acanthochlamys and Barbacenia). 
It was identified that although several species make up the 

family, few have phytochemical and/or pharmacological 
studies, predominantly the isolation of diterpenes (109), 
flavonoids (21), triterpenes (21), steroids/glycosylated 
steroids (3), biflavonoids (2), other classes (7). This data 
set is available in SistematX.25

The generated models obtained excellent performances, 
with an accuracy greater than 75%. What also corroborates 
with these data are the high indexes of the MCC, thus 
informing the good prediction rate of the models (Table 2).

Looking at the values of the ROCs curves of the models, 
we see that they all have a high probability of selecting 
truly positive compounds, that is, with a low probability of 
classifying inactive compounds as active. The area under 
the curve is greater than 0.83, remembering that a perfect 
model has an area under the curve equal to 1 (Figure 1).

For the models of C. albicans, E. coli and P. aeruginosa, 
only the flavonoid kaempferol 3-O-(3”,6”-di-O-E-p-
coumaroyl)-β-D-glucopyranoside was outside the scope 
of application. Among the remaining 162 molecules that 
remained within the domain, 86 were classified as likely to 
be active ranging between 51 and 76% in the C. albicans 
model, 26 in the E. coli model with a probability between 
50 and 78% and only 10 molecules in the model of 
P.  aeruginosa with probability varying between 52 and 
62%. The molecules with the greatest potential to be active 
for these models are described in Table 3.

Some studies have reported the use of quantitative 
structure-activity relationship (QSAR) models to select 
molecules with potential antimicrobial activity. Trush et al.26 
used three types of classification models; the random forest 
(WEKA-RF), k-nearest neighbors and associative neural 
networks to select potent inhibitors against C. albicans. 
In cross-validation, the models achieved a corresponding 
predictive rate of 81-90%. The experimental results 
confirmed the predictive power of the models with the 
selection of the compound 1,3-oxazol-4-yl (triphenyl) 
phosphonium. The same predictive ability was also 
observed in the study by Hodyna et al.,27 where they used 
models identical to the previous study. The results of the 

Table 2. Summary of cross-validation results and model tests using the random forest (RF) algorithm

Model Specificity Sensitivity Accuracy PPV NPV MCC

Candida albicans
external test 
validation

0.90 
0.89

0.75 
0.72

0.84 
0.82

0.81 
0.80

0.85 
0.84

0.71 
0.70

Escherichia coli
external test 
validation

0.78 
0.77

0.78 
0.72

0.78 
0.75

0.77 
0.75

0.78 
0.74

0.64 
0.60

Pseudomonas aeruginosa
external test 
validation

0.87 
0.86

0.72 
0.72

0.80 
0.80

0.82 
0.81

0.80 
0.80

0.67 
0.67

Salmonella enterica
external test 
validation

0.87 
0.87

0.75 
0.73

0.82 
0.81

0.80 
0.80

0.83 
0.82

0.70 
0.68

PPV: positive predictive value; NPV: negative predictive value; MCC: Matthews’ correlation coefficient.
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Table 3. Secondary metabolites selected with the highest probability of active potential for the C. albicans, E. coli, P. aeruginosa and S. enterica

Model
Probability of active 

potential
Compound name

C. albicans

0.76
0.75
0.75
0.74
0.72

velloquercetin
betulonic acid

velloquercetin 3,5,3’-trimethyl ether
5,4’-dihydroxy-3,6,7,3’-tetramethoxy-8-C-methylflavone

20(R)-hydroxydammar-24-en-3-one

E. coli

0.78

0.76
0.74
0.73
0.72

(4aR,5S,6R,8aR)-5-[2-(2,5-dihydro-5-methoxy-2-oxofuran-3-yl)ethyl]-3,4,4a,5,6,7,8,8a-octahydro-
5,6,8a‑trimethylnaphthalene-1‑carboxylic acid
3-oxo-17-carboxy-3,18-seco-barbacenic acid

amentoflavone
euscaphic acid

3’,8”-biisokaempferide

P. aeruginosa

0.62
0.61
0.57
0.56
0.55

3-oxo-17-carboxy-3,18-seco-barbacenic acid
3’,8”-biisokaempferide

7β,8,14β-trihydroxy-15-isopimare-18‑oic acid
amentoflavone
betulonic acid

S. enterica

0.71
0.71
0.70
0.67
0.65

5,3’,4’-trihydroxy-3,6,7-trimethoxy-8‑C-methylflavone
3,5,7,30,40-pentahydroxy-6-prenylflavonol

amentoflavone
3’,4’,5,7-tetrahydroxy-3,6-dimethoxy-8-methylflavone

3’,8”-biisokaempferide

Figure 1. ROC curve of each model. True positives versus false positives, generated for the selected RF models for cross-validation and test sets: 
(a)  Candida  albicans; (b) Escherichia coli; (c) Pseudomonas aeruginosa and (d) Salmonella enterica. AUC = value of the area under the curve; 
MCC = Matthews’ correlation coefficient.

5-fold cross-validation resulted in 80% prediction accuracy 
identifying the best compounds based on imidazolium ionic 
liquids and experimentally validated.

Cho et al.28 constructed six models using energy 
relationship descriptors against E. coli, S. aureus and 
C. albicans using the MIC and minimum bactericidal 
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concentration (MBC) values for each species. The 
predictability of the models was estimated by obtaining 
R2 = 0.90 and 0.93 (R2 = determination coefficient) for 
MIC and MBC of E. coli, respectively, R2 = 0.91 and 0.94 
for MIC and MBC of S. aureus, R2 = 0.89 and 0.80 for 
C. albicans. According to the authors,28 the QSAR models 
will support a reliable, economical, fast and safe evaluation 
as a supplementary method of experimental testing.

Although the number of studies with the use of QSAR 
classificatory models is increasing, further studies are 
needed with the application of these methodologies that 
can identify potential molecules and assist experimental 
tests.

In the S. enterica model, five molecules were 
outside the applicability domain, in addition to the 
flavonoid kaempferol 3-O-(3”,6”-di-O-E-p-coumaroyl)-
β-D-glucopyranoside, isorhamnetin 3-O-(3”,6”-di-
O‑E‑p‑coumaroyl)-β-D-glucopyranoside, tetracosanoic 
acid, palmitic acid and heptacosan-1-ol. Of the molecules 
that remained within the domain, 18 obtained a probability 
of active potential greater than 50%, varying up to 71%. 
The chemical compounds with the best probability are also 
described in Table 3.

The flavonoid amentoflavone had a probability of being 
active for all models, despite not being represented in the 
table for the C. albicans model, it had a probability of an 
active potential of 0.65 for this model.

Conclusions

Through the in silico tools used in this work, it was 
possible to generate a model bank to virtually track isolated 
compounds from the Velloziaceae family with probable 
antimicrobial potential. The models for C. albicans and 
E. coli were the ones that presented compounds with the 
highest probability of activity.

For C. albicans, the model selected thirty-one molecules 
with a potential activity greater than 60%, twenty-nine 
molecules with a probability greater than 50% for E. coli, 
eleven molecules with a probability greater than 52% for 
P. aeruginosa and nineteen molecules with a probability 
of 50% for Salmonella sp.

Biflavonoid amentoflavone was the only compound 
to be likely to be active for all four models with a 
considerable percentage, with a potential probability of 
65, 74, 56 and 70% for C. albicans, E. coli, P. aeruginosa 
and Salmonella sp., respectively.

The present study contributed, through the virtual 
screening of a bank of secondary metabolites, to select 
several proposed compounds with potential antimicrobial 
activity, especially biflavonoid amentoflavone and, in the 

future, assist biological testing in discovering potential 
drug candidates.
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