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Nesta contribuição à celebração do octogésimo aniversário de nascimento do Prof. Ricardo 
Ferreira, apresentamos uma breve discussão sobre compostos magnéticos quase-unidimensionais. 
Esta tem sido uma área de pesquisa de intensa atividade, particularmente após a divulgação de 
verificações experimentais de magnetismo em polímeros organometálicos na década de 1980. 
Neste trabalho realizamos uma revisão das contribuições teóricas e experimentais sobre o assunto, 
com foco em sistemas de elétrons correlacionados em cadeias com célula unitária do tipo AB

2

presentes em compostos inorgânicos e orgânicos.

In this contribution on the celebration of the 80th birthday anniversary of Prof. Ricardo Fer-
reira, we present a brief survey on the magnetism of quasi-one-dimensional compounds. This has 
been a research area of intense activity particularly since the first experimental announcements of 
magnetism in organic and organometallic polymers in the mid 80’s. We review experimental and 
theoretical achievements on the field, featuring chain systems of correlated electrons in a special 
AB

2
 unit cell structure present in inorganic and organic compounds. 

Keywords: quasi-one-dimensional systems, ferrimagnetism, Hubbard model, Heisenberg 
model

1. Introduction

The magnetism of organic1–3 and organometallic4

polymers has been a challenging topical field since its 
first experimental announcements. This rapidly growing 
and interdisciplinary research area also includes inorganic 
compounds,5 with ferro- and ferrimagnetic long-range 
order (see Section below). In this work we briefly review 
some attempts to describe the ground state and the low-
temperature thermodynamics of these compounds. In 
particular, we report on analytical and numerical results 
on polymeric chains of correlated electrons in special unit 
cell topologies shown in Figure 1.

2. Quasi-One-Dimensional Magnetic 
Compounds: A Brief Review

Despite many years of experimental and theoretical 
efforts, the complete understanding and precise 

characterization of magnetism and electronic correlations 
in quasi-one-dimensional (quasi-1d) compounds still 
offer great scientific challenges and technical difficulties.3

Regarding, for instance, organic magnetic polymers, it is 
known3 that their magnetic properties are ascribed to the 
correlated p-electrons of light elements, such as C, O, and 
N, in contrast to the magnetism found in transition and rare-
earth metals due to partially filled d or f orbitals. For this 
reason it took many years of efforts on the synthesis and 
characterization of a great variety of compounds before the 
announcement of bulk ferromagnetism (FM) in an organic 
polymer.1 In Figure 1(b) we sketch this material made of 
polyacetilene-based radicals, R*, containing unpaired 
residual electrons, i.e. poly-BIPO or poly[1,4-bis(2,2,6,6-
tetramethyl-4-piperidyl-1-oxyl)-butadiyne]. However, this 
compound presented several problems due to its insolubility 
and poor reproducibility both in the preparation and in 
the magnetic results.3 Later, Nishide and collaborators6

have successfully synthesized polyphenyacetylenes with 
various types of radical groups. These polymers exhibit 
similar band structure schemes7 comprising filled bonding 
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molecular-orbital bands, empty antibonding bands, and 
narrow half-filled nonbonding bands, usually just one at 
the center of the band. A net magnetic moment may appear 
either because the number of itinerant antiferromagnetically 
(AF)-correlated electrons per unit cell is odd and/or due 
to the presence of localized electrons.1,7

A seminal work has also been performed by Takahashi 
and collaborators in order to extensively characterize 
the long-range macroscopic FM behavior found in the 
organic compound p-nitrophenyl nitroxyl nitroxide radical 
(p-NPNN, in the  and  phases).2,8 Actually, the excellent 
fitting of the low-temperature (T) experimental data is 
consistent with predictions from the thermodynamic 
Bethe-ansatz solution of the 1d-quantum FM Heisenberg 
model:8 susceptibility  ~ T−2 and specific heat C ~ T1/2

as T  0. 
Other organic magnets have been synthesized, such as 

polyradicals derived from poly (1,3-phenylenemethylene) 
and polyphenylenevinylene-based radicals.3 In these cases 
the polymer structure is made of benzene rings linked 
by divalent carbon atoms or including pendant radicals 
with oxygen atoms carrying an uncompensated electron.3

Another family of organic magnetic polymers is that of the 
doped poly(m-aniline) compounds, in which the carbon 
atoms responsible for the links between the benzene rings 
are substituted by ionized nitrogen with a H-bond or a 
radical plus a charge acceptor.9 On the other hand, doped 
polypyrrole compounds also exhibit10 interesting magnetic 
properties and Drude metallic response as well.

A distinct class of magnetic polymers combines metal 
ions with organic complexes, displaying a rich variety of 
magnetic behaviors, such as ferro- and ferrimagnetism, 
AF and canted AF and spin glass phase.11,12 In fact, the 
first experimental observation of a magnet with spin 
residing in a p-orbital was performed in the compound 
[Fe(C

5
Me

5
)

2
]+[TCNE]− (TCNE = tetracyanoethylene).4

Some homometallic ferrimagnets with chain structure13,14

involve the compounds15,16 M
2
(EDTA)(H

2
O)

4
·2H

2
O (M = 

Ni, Co; EDTA = ethylenedi-amine tetraacetate = C
10

N
2
O

8
)

and M(R-py)
2
(N

3
)

2
 (M = Cu, Mn; R-py = pyridinic ligand = 

C
5
H

4
N-R with R = Cl, CH

3
, etc.).17–20 Regarding bimetallic 

chain materials, the compound21 MnCu(pbaOH)(H
2
O)

3

[pbaOH = 2-hydroxy-1, 3-propylenebis(oxamato) = 
C

7
H

6
N

2
O

7
] has been one of the first synthesized which 

retains long-range FM or ferrimagnetic order on the 
scale of the crystal lattice, as in the case of isomorphous 
realizations.22–24 Heterometallic chain structures have also 
been object of systematic study.25,26 More recently, the 
metal-radical hybrid strategy, combined with fabrication 
of novel polyradicals,27 has led to the synthesis of a variety 
of heterospin chain compounds.28,29 Several of these 

compounds display 1d ferrimagnetic behavior30,31 modeled 
by alternating spin chains32 such as, for instance, those with 
the structure shown in Figure 1(c).

Of recently growing interest we mention the quasi-1d
chains with AB

2
 and ABB  unit cell structure [henceforth 

referred to as AB
2
 chains; see Figures 1(a) and (b)]. 

Such structures are found both in inorganic and organic 
ferrimagnetic compounds. Regarding inorganic materials, 
we cite the homometallic compounds with a line of trimer 
clusters characteristic of phosphates of formula A

3
Cu

3
(PO

4
)

4
,

where A = Ca,33–36 Sr,34–37 and Pb.35,36,38 The trimers have 
three Cu+2 paramagnetic ions of spin S = 1/2 AF coupled. 
Although the superexchange interaction is much weaker 
than the intratrimer coupling, it proves sufficient to turn 
them into bulk ferrimagnets. Furthermore, compounds of 
formula Ca

3−x
Sr

x
Cu

3
(PO

4
)

4
, 0  x  3,37 hybrid analogous 

to the mentioned phosphates, have also been synthesized 
in an attempt to tune the AF bridges between Cu sites and 
possibly explore how paramagnetic spins grow into bulk 
ferrimagnets. It is also interesting to mention the frustrated 
AB

2
 inorganic compound39 Cu

3
(CO

3
)

2
(OH)

2
, which displays 

low-T short-range magnetic order and has its physical 
properties well described through the distorted diamond 
chain model.40 At last, we observe that the AB

2
 structure 

is also present41 in the organic ferrimagnetic compound 
2-[3’,5’-bis(N-tert-butylaminoxyl)phenyl]-4,4,5,5-
tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide, or 
PNNBNO, consisting of three S = 1/2 paramagnetic radicals 
in its unit cell.

3. Magnetic Chains with AB2 Unit Cell 
Topology: Analytical and Numerical Studies

In this section we model and discuss analytical and 
numerical results on the magnetic chains with AB

2
 and 

ABB  unit cell topologies displayed in Figures 1(a) and 
(b). Eventually, alternate spin chains shown in Figure 
1(c) are also considered. A rigorous theorem by Lieb42

predicts that bipartite AB
2
 chains modeled through a 

Hubbard Hamiltonian [see equation (1) below], with one 
electron per site on average (half-filled limit) and repulsive 
Coulombian interaction, present average ground-state spin 
per unit cell –h/2 and quantum ferrimagnetic long-range 
order at T = 0.42–45 The magnetic excitations on this state 
have been studied in detail both in the weak- and strong-
coupling limits,46 and in the light of the quantum AB

2

Heisenberg model.46–48 Further studies have considered 
the anisotropic49 and isotropic50 critical behavior of the 
quantum AB

2
 Heisenberg model, including its spherical 

version,51 and the statistical mechanics of the classical 
AB

2
 Heisenberg model.48
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Away from half-filling, doped AB
2
 Hubbard chains 

were previously studied through Hartree-Fock, exact 
diagonalization and quantum Monte Carlo techniques both 
in the weak- and strong-coupling limits,43,52 including also 
the t − J model,53 using the density-matrix renormalization 
group and recurrent variational Ansätzes, and the infinite 
Coulombian repulsion limit54 using exact diagonalization. 
In particular, these chains represent an alternative route to 
reaching 2d quantum physics from 1d systems.53,55

3.1 Analytical results

We start considering the AB
2
 chain modelled through 

the one-band Hubbard model, which is the simplest lattice 
model for strongly correlated materials:

(1)

where c+
i ,

(c
i ,

) is the creation (annihilation) operator 
for electrons with spin (= , ) at site  = A, B

1
 or B

2
 of 

the unit cell i, t is the hopping parameter, U is the intrasite 
Coulomb repulsion and, in the first summation, i  and j  are 
nearest neighbor sites. We define N as the total number of 
sites and N

c
(= N/3) as the number of unit cells. We remark 

that in the limit U =  the Hubbard Hamiltonian reduces to 
a hopping term with double site occupancy excluded.52

In the tight-binding description (U = 0), this model 
presents three bands: one flat with N

c
 localized orbitals with 

energy  = 0, and two dispersive with 
±
 = ±2 2cos(q/2),

where q = 2 /N
c
 and l = 0, ..., N

c
 − 1. At half-filling (N

e
 = N,

where N
e
 is the number of electrons) and U = 0 the ground 

state (GS) total spin quantum number S
g
 is degenerate, 

with S
g
 ranging from the minimum value (0 or 1/2) to 

S
g
 = |N

B
 − N

A
|/2 = N

c
/2, where N

A
 (N

B
) is the number of sites 

in the A (B) sublattice. As proved by Lieb42 in the general 
case of any bipartite lattice with N

B
N

A
, the Coulomb 

repulsion lifts this huge degeneracy and selects the state 
with S

g
 = |N

B
 − N

A
|/2 to be the unique GS of the system, apart 

from the trivial (2S
g
 + 1)-fold rotational degeneracy.

In the strong coupling limit (U >> t) and at half-filling 
the AB

2
 Hubbard Hamiltonian, equation (1), is mapped50,56

onto the quantum S = 1/2 Heisenberg model with O(n),
n = 3, rotational symmetry:

(2)

where the localized spins S
i

 interact antiferromagnetically 
through J

ij
 = J = 4t2/U > 0. In fact, Lieb and Mattis have 

shown57 that the Heisenberg model in a bipartite lattice has 
also S

g
 = |N

B
 − N

A
|/2, which indicates that S

g
 = N

c
/2 for the 

AB
2
 Heisenberg model, as in the Hubbard case. Eventually, 

in the presence of an uniform magnetic field H along the 
z direction, a Zeeman energy term, −(gµ

B
H/–h)

i
S

zi
, is 

added to equation (2), where g is the gyromagnetic factor 
and µ

B
 is the Bohr magneton (in what follows we take units 

in which gµ
B

 1). In H = 0 the ground-state of the system 
exhibits42,43 unsaturated FM or ferrimagnetic configurations 
as indicated in Figures 1(a) and (b), with average spin per 
unit cell <Sz

cell
> = –h/2 (Lieb’s theorem42). In addition, we 

can also model the alternate spin chains shown in Figure 
1(c) by considering in equation (2) S

i
 = S

i
 and S

i
 = s

i
, with 

S > s. Such model systems have been used to describe31,32

a number of organometallic compounds in which, e.g., 
S = 5/2 or S = 2 and s = 1/2.

The Euclidean action of the partition function in a 
coherent-state n-field representation,58  = Dn exp(−S

E
/ –h), 

is given by S
E
 = S

exc
 + S

WZ
 + S

Z
, with contributions from 

exchange and Zeeman interactions, and a topological Wess-
Zumino term, which is a Berry’s phase-like term associated 
with the time evolution of the spin due to quantum 
fluctuations.58 The low-lying properties of the quantum 
ferrimagnetic chains in Figure 1 are dominated by infrared 
fluctuations around the Néel configuration. In order to 
obtain their effective low-lying action, we take staggered 
dimensionless unit coherent magnetization fields and 
split the topological term in a FM and an AF contribution, 
S

WZ
 = SAF

WZ
+ SFM

WZ
, following the spin structure of the 

polymer. Then, taking the continuum limit and integrating 
out the rapidly fluctuating field modes, we obtain the 
low-energy effective action, S

eff
 = dx/(2a)

–h
d ,

where L is the length of the chain of lattice parameter 
2a, and  (k

B
T)−1 = it/–h expresses the result of a Wick 

Figure 1. Ferrimagnetic ground-state configurations of (a) bipartite 
lozenge AB

2
 chains, (b) substituted polyacetilene, with lateral radicals 

R* as B sites containing unpaired residual electrons, and (c) alternate 
spin chains.
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rotation to imaginary times it. The Lagrangian density is 
 = 

NL
+ FM

WZ
+

Z
+

irrel
, where

(3)

corresponds to the quantum nonlinear (NL)  model, with 
unit magnetization fields m2 = 1,

(4)

represents the contribution from the FM Wess-Zumino term, 
and

irrel
 are irrelevant terms in the renormalization group 

(RG) context. In equations (3) and (4), 
x
 = 2JS2–h2a2,  = 

1/(8J), and  = S for the AB
2
 chains, whereas 

x
 = JS2–h2a2,

 = s/(4JS), and  = S − s for the alternate spin chains of 
Figure 1. The FM Wess-Zumino term is responsible for the 
ferrimagnetic ground states. Indeed, FM

WZ
 = 0 in either cases 

of AB or S = s chains. Those represent usual quantum AF 
Heisenberg chains, which are known to follow Haldane’s 
conjecture,59 i.e. half-integer spin chains are critical with 
no long-range order and integer spin chains are disordered. 
Moreover, the addition of the relevant Wess-Zumino term to 
the quantum NL  model, equation (3), changes its properties 
dramatically since the critical dynamical exponent assumes 
z = 2 (nonrelativistic feature), in contrast with the value z = 
1 found in the relativistic quantum NL  model, associated 
with the 2d-quantum AF Heisenberg Hamiltonian. In fact, 
equation (4) corresponds to the field-theoretical version of 
the topological constraints imposed by the polymer structure, 
as identified by semi-empirical methods.1,60,61

We now perform a momentum-shell low-T RG study of 
the system (see references 62 and 63 for similar treatments 
of the classical and quantum z = 1 NL  models). First, 
we decompose the magnetization fields into transversal 
and longitudinal components, integrate over the latter one, 
expand the resulting action, S

eff
 = S(2) + S(4) + ..., and Fourier 

transform the terms to the momentum-k and Matsubara 
frequency-

n
 space, with 

n
 = 2 n/u, n = 0, ±1, ±2..., u = ,

and  = 2JS–h2 or  = 2JSs–h2/(S − s) respectively for the AB
2

or alternate spin chains. The quadratic term in the diagonal 
field space { *,  } reads50

(5)

where hg
0

H /–h, the density of degrees of freedom  comes 
from the integration over the longitudinal components, and 
the meaning of 

d
 is discussed below. The bare coupling 

is defined as g
0

/  in d = 1. The quartic contribution is 
given by50

(6)

In the sequence, we require that the fluctuation modes 
in the two-point vertex function scales homogeneously 
through a RG scaling transformation, k bk,

n
bz

n
,

with b el. We also take the fixed point 
d
*  0 for d = 1, as a 

consequence of the irrelevance of the 
n
2-dependent terms in 

the RG context. The one-loop equations for the renormalized 
coupling g, and dimensionless temperature t g/u
and magnetic field 

–
h hg in d = 1 and z = 2 read:50

(7)

We thus obtain the semiclassical fixed point: g* = t*= –h* = 0, 
since g* = 0 implies in , and the quantum critical 
fixed point:63 g* g

c
 = 2 , t* = –h* = 0. The former describes 

a 1d-classical Heisenberg ferromagnet with quantum 
corrections, whereas the latter is identified with a classical 
Heisenberg model in d + z = 3 dimensions. The analysis 
of stability shows that both fixed points are unstable under 
thermal fluctuations, but only the semiclassical fixed point 
is stable under infrared quantum fluctuations, as displayed 
in Figure 2. 

By studying the correlation length  and magnetic 
susceptibility  we identify50 three distinct quantum 
regimes. As T  0 and g > g

c
, the quantum z = 2 NL 

model is in a quantum disordered phase, whereas for g < g
c

its ground state has long-range order, with both quantum 
and thermal fluctuations playing important roles. For g = g

c

and T  0 the system approaches the quantum critical 
fixed point characterized by the extinction of the spin-wave 
modes and the absence of long-range order. As shown 
in Figure 2 the quantum critical region is defined by the 
crossover lines T ~ |g − g

c
| , where  = z

3
, with 

3
 the 
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3d-Heisenberg correlation-length exponent. In particular, 
we find50 the following low-T behavior in the quantum 
critical region:

(8)

with the standard result for the low-T quantum critical 
specific heat C and exponents satisfying scaling relations 
proper of this region.64,65 Similarly, for the T  0, g < g

c

semiclassical region, we find

(9)

where the specific heat is determined by the spin wave 
contribution. In equations (8) and (9) the amplitudes of 
the observables cannot be completely fixed by the RG 
procedure. We thus identify the asymptotic low-T critical
behavior described by equation (9) with that of the quantum 
S = 1/2 AB

2
 and alternate spin ferrimagnetic chains, as well 

as that of the 1d-quantum S = 1/2 Heisenberg ferromagnet, 
such as the organic ferromagnetic compound p-NPNN.8 In 
addition, an interesting question arises regarding the access 
of such AB

2
 chains in the half-filled strong-coupling limit to 

the quantum disordered and quantum critical regimes of the 
quantum z = 2 NL  model. This scenario, if accomplished, 
might involve the presence of extra frustrated couplings 
in the unit cell structure. In any case, we would like to 
mention that our predicted one-loop critical behaviors 
for the renormalized classical and quantum critical fixed 
points are in agreement with those of the FM transition in 
1d itinerant electron systems in the context of a Luttinger 
liquid framework.66 However, while our localized spin 
disordered phase is gapped, the quantum disordered phase 
in reference 66 behaves as an ordinary gapless Luttinger 

liquid. Obviously, further theoretical work is needed in 
order to clarify the physical scenario predicted for the 
critical behavior of the quantum NL  model with a FM 
Wess-Zumino term due to the AB

2
 topology.

In order to improve the understanding of the role of 
the quantum and thermal fluctuations, topology, and spin 
symmetry to the properties of the ferrimagnetic AB

2
 chains, 

we have also performed a number of analytical studies using 
Ising, Heisenberg and spherical Hamiltonians as model 
systems in this unit cell structure.48,51,67

First, by regarding the spin operators in equation (2) as 
Ising variables, S

i
 = ± –h/2, we apply48 the RG decimation of 

B sites and obtain the exact Gibbs free energy as function of 
the effective coupling J* and field H*. At zero field the ground 
state result J* = −2J < 0 for the effective coupling between 
A sites indicates the presence of a ferrimagnetic structure 
with average spins at B sites pointing opposite to those at 
A sites, implying in a unit cell average spin <S z

cell
> = –h/2.

As H increases at T = 0, we notice that J* increases linearly 
with H and vanishes for H J; conversely, H* first decreases 
linearly with H for H < J, and then increases also linearly, 
changing sign at the critical field H

c
 = 2J. At H = H

c

a first order transition occurs with a discontinuous change 
of <S z

cell
> from –h/2 to its saturated value 3–h/2 (see Figure 

3). At finite temperatures the described effects are less 
dramatic, and the unit cell average spin grows continuously 
with the field from 0 at H = 0 (disordered state at finite T)
to the saturated value 3–h/2 as H . The H = 0 results are 
corroborated by the calculation of the two-spin correlation 
function, which is related to the susceptibility through the 
fluctuation-dissipation theorem.

Actually, we have also found that  ~  ~ exp[J/(k
B
T)]/(k

B
T), 

leading to the relation between the corresponding critical 
exponents  =  = 2 − , and from the behavior of the 

Figure 2. Schematic RG (g, t T ) flux diagram for the 1d-quantum
z = 2 NL  model. Semiclassical (g* = T* = 0) and quantum-critical 
(g* = g

c
, T* = 0) fixed points are shown, as well as the flux lines indicating 

their stability with respect to infrared perturbations. The segment T = 0, 
0 g

0
 < g

c
, corresponds to the loci of points in which Lieb’s theorem is 

included, with presence of stable ferrimagnetic states of quantum AB
2

and alternate spin chains.

Figure 3. Average spin per unit cell, <S
 z

cell
>, in units of –h, as function of 

the dimensionless magnetic field, H/J, and dimensionless temperature, t
= k

B
T/J, for the ferrimagnetic S = 1/2 AB

2
 Ising chain.
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correlation function at T = 0 and magnetization at T = 0 and 
H  0 it follows that  = 1 and  = . This set of exponents 
belongs to the same class of universality of decorated 1d
ferromagnetic Ising systems.68

Now, by considering Heisenberg spins in a classical 
context, in which quantum fluctuations are absent, the 
low-T and high-T limits of the H = 0 free energy and 
two-spin correlation functions have been calculated.48 It 
is instructive to compare the T  0 result obtained for the 
classical ferrimagnetic AB

2
 Heisenberg chain,

(10)

with that of the classical ferromagnetic linear Heisenberg 
chain,69

(11)

and that of Takahashi8 for the quantum ferromagnetic 
spin-1/2 linear Heisenberg chain,

(12)

where (1/2)/(2 )1/2  −0.583. At low-T Fisher’s and 
Takahashi’s leading terms coincide and are three times 
larger than that of the AB

2
 chain, due to the unit-cell 

topology effect. Moreover, the second term in equation (12), 
absent in the classical models, is related to the fixing of the 
anomalous entropy and specific heat classical behaviors 
when quantum fluctuations are not present. We notice that 
this  ~ T−2 leading result as T  0 has also been obtained 
for the semiclassical fixed point of the quantum z = 2 NL 
model, related to the quantum AB

2
 Heisenberg chains (see 

above). 
By taking quantum fluctuations into account, we also 

calculate67 the three spin-wave modes of the quantum 
spin-1/2 AB

2
 Heisenberg model using the Holstein-

Primmakov transformation and subsequent diagonalization 
via the Bogoliubov-Tyablikov method, namely, one non-
dispersive optical, a

k
 , one dispersive optical, b

k
 , and one 

acoustical mode, c

k
 :

(13)

Notice in the acoustical mode the presence of a quadratic 
ferromagnetic dispersion relation c

k
 = 2J(ka)2, ka << 1, 

H = 0. From this result, corrections due to quantum 

fluctuations to the average values <Sz

B
 > = −<S z

A
 > = –h/2

are derived, although the result of Lieb’s theorem, 
<Sz

cell
> = –h/2, remains true. In a mean-field approach,48,67

we relate the quantum thermal spin averages at sites A
and B to the respective Weiss molecular fields and find, in 
the simplest case in which they are assumed to be parallel 
to the z direction (Ising-like solution): <S z

B
> = –h/2 for all 

H  0, and <Sz

A
> = − –h/2 for 0 H < H

c
, whereas <S z

A
> = –h/2 

for H > H
c
. We notice that H

c
 = 2J is the critical field below 

which the ferrimagnetic ordering is favoured, in agreement 
with the above result for the spin-1/2 AB

2
 Ising model. 

Indeed, the unit cell spin reads <S z

cell
> = –h/2 for 0 < H < H

c
,

and <Sz

cell
> = 3–h/2 for H > H

c
. On the other hand, in 

the case the x and y components are also considered, a 
quite interesting scenario emerges, with <Sz> = ±–h/2 for 
0 H < H

c
/2 and <Sz> = –h/2 for H > 3H

c
/2, where the plus 

(minus) sign refers to  = B (A) sites; for intermediate fields, 
H

c
/2 H  3H

c
/2 one has that <Sz

A
 > = − –h[3H

c
/(4H) − H/H

c
]/2 

and <Sz

B
> = –h[3H

c
/(8H) + H/(2H

c
)]/2. These results 

imply in the unit cell average spin –h/2 for H < H
c
/2 with 

ferrimagnetism sustained, and the saturated 3–h/2 value for 
H > 3H

c
/2 as in the Ising-like solution. A linear increase 

with H arises for intermediate fields: <S z

cell
> = H/H

c
, for 

H
c
/2 < H < 3H

c
/2 (see Figure 4). In this regime the average 

spin at sites A continuously rotates seeking a full alignment 
with H, accompanied by a rotation of the spins at sites B,
such that the transversal spin components at sites A and B
always cancel out. To achieve this cancellation the spins 
at sites B rotate in the opposite direction up to a maximum 
polar angle  = /6 and then rotate back [see Figure 4(b)]. 

Figure 4. Average spin at sites A (a), sites B (b) and per unit cell (c), in units 
of –h, as function of the reduced field, H/H

c
, for the quantum ferrimagnetic 

S = 1/2 AB
2
 Heisenberg chain, with H

c
 = 2J. (d) The field dependence of 

the Gibbs free energy shows that the continuous solution (solid line) for 
the magnetization is the stable phase. The Ising-like solution is shown 
for comparison (dashed line).
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These results are corroborated by the analysis of the Gibbs 
free energy [Figure 4(d)].

At last, a spherical version of the quantum AB
2
 spin 

Hamiltonian has also been studied.51 For this purpose, a 
chemical potential (µ) term is added to equation (2) in order 
to take care of the spherical constraint, 

i
<S2

i
> = N/4, where 

N is the total number of sites. Quantum fluctuations are 
introduced, associated with a quantum coupling parameter 
g, through a kinetic energy term (g/2)

i
P2

i
, in which P

i
 are 

momentum operators canonically conjugated to each spin 
degree of freedom. By diagonalizing the Hamiltonian in a 
space of proper bosonic operators, we obtain two dispersive 
eigenmodes, also present in the linear AF spherical model, 
and a flatband induced by the AB

2
 topology. At the only 

critical point, g = T = H = 0, the ferrimagnetic long-range 
order is present with <S

B
> = − <S

A
>/ 2 = –h(3/16)1/2 and 

<Sz

cell
> = –h(21/2 − 1)(3/8)1/2. Interestingly, in the quantum 

AB
2
 spherical case the average spin per unit cell is less 

than –h/2, in contrast with the result of Lieb’s theorem 
for the AB

2
 Hubbard model in the strong-coupling half-

filled limit and the quantum AB
2
 Heisenberg chain with 

AF couplings. Calculation of the correlation functions at 
g = T = H = 0 show that they are distance independent and 
finite, consistently with the ferrimagnetic order and the 

spherical constraint. Outside this critical point, for any finite 
g, T or H, quantum and/or thermal fluctuations destroy the 
long-range order in the system, which in this case displays 
a finite maximum in the susceptibility. In this regime spins 
remain ferrimagnetically short-range ordered to some 
extent in the {g, T, H} parameter space as a consequence of 
the AF interaction and the AB

2
 topology. Indeed, we notice 

in Figure 5 that, although the field-induced unit cell average 
spin, <Sz

cell
>, displays quantum paramagnetic behavior for 

any finite g or T, the spins at sites A and B can display 
opposite orientations depending on the values of g, T and 
H. Therefore, for special regions of the parameter space 
{g, T, H} spins at sites A points antiparallel with respect to 
those at sites B, thus giving rise to a rapid increase in the 
unit cell average spin for very low H and a field-induced 
short-range ferrimagnetism, which is destroyed for large 
g, T or H. In addition, to better characterize the approach 
to the g = T = H = 0 critical point, we have considered 
several paths. For T  0 and g = H = 0 the susceptibility 
behaves as  ~ T−2, as also found in several classical and 
quantum spherical and Heisenberg models (see above). On 
the other hand, for H  0 and g = T = 0, we find  ~ H−1,
and for g  0 and T = H = 0,  ~ exp(cg−1/2), where c is a 
constant, evidencing an essential singularity due to quantum 
fluctuations. In any path, the relation  ~ 2 is satisfied. We 
also mention that the known drawback of classical spherical 
models as T  0 regarding the third law of thermodynamics 
(finite specific heat and diverging entropy) is fixed in the 
presence of quantum fluctuations, g  0.

3.2 Numerical results

The ferrimagnetic ordering can be probed through the 
magnetic structure factor:

(14)

The condition for a long-range ferromagnetic 
ordering is that S(0) ~ N; while S( ) ~ N in a long-range 
antiferromagnetically ordered state. A ferrimagnetic 
long-range ordering fulfill these two conditions: S(0) ~ N
and S( ) ~ N. This is the case for the AB

2
 Hubbard and 

Heisenberg chains as exemplified in Figure 6 through 
the exact diagonalization (ED) of finite clusters. Due to 
the critical nature of both chains at low temperatures, the 
correlation length  and (q = 0) = S(q = 0)/(k

B
T) satisfy 

power law behavior:  ~ T−  and  ~ T−  as T  0. Since  ~ N
at T = 0, using scaling arguments and the results of Figure 
6, we have T−  ~ T− /T, i.e.  −  = 1, in agreement with the 
values  = 2 and  = 1 derived using renormalization group 

Figure 5. (a) Average spin per unit cell, <S
z

cell
>, and (b) spin averages at 

sites A ( ) and B ( ), in units of –h, as function of H/J, for g = 0.05J and 
T = 0.05J, calculated for the quantum spherical S = 1/2 AB

2
 model. Inset 

of (a): very-low-field regime.
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techniques. Furthermore, the ferrimagnetism of the model 
was also manifested through Hartree-Fock and quantum 
Monte Carlo methods.43

Systems with a ferrimagnetic GS naturally have 
ferromagnetic (lowering the GS spin) and antiferromagnetic 
(rising the GS spin) magnons as their elementary magnetic 
excitations. The AB

2
 chain have three spin wave branches:46

an antiferromagnetic mode (AF mode), defined as 
E

S+
(q) = E(Sz = S

g
 + 1, q) − E

GS
; and two ferromagnetic ones (F1 

and F2 modes), derived from E
S−

(q) = E(Sz = S
g
 −1, q) − E

GS
,

where E
GS

 is the GS energy and E(Sz, q) are lowest energies 
in the sector {Sz, q}, with the lattice wave-vector q = 2 l/N

c
,

where l = 0, 1, ..., N
c
 − 1. These modes are depicted in 

Figure 7(a) for the Heisenberg model: the AF mode has a 
gap 

S+
 = 1.7591J; the gapless F1 mode is the Goldstone 

mode, consistent with the symmetry broken phase of 
the chain; and the F2 mode has a gap 

S−
 = 1.0004J.

The gapped F2 branch is flat and is associated with the 
formation of a singlet state between the B sites in one 
cell, while the other cells have B sites in triplet states, 
as illustrated in Figure 7(b). The localized nature of the 
excitation is associated with the Hamiltonian invariance 
under the exchange of the B sites of any cell. This 

symmetry implies that the many-body wave function has a 
definite parity under the exchange of the spatial variables 
associated with these sites. Since these dispersive modes 
preserve the local triplet bond, they are identical to those 
found in the spin-1/2 / spin-1 chain.70 Surprisingly, linear 
spin wave theory (LSWT)67 predicts that 

S−
 = 1, very 

close to our estimated value: 
S−

 = 1.0004J. Moreover, 
a good agreement is found for the gapless F1 branch in 
the long wave-length limit. However, both LSWT and 
mean field theory48 predicts 

S+
 = 1, deviating from our 

estimated exact diagonalization value: 
S+

 = 1.7591J,
which is in excellent agreement with numerical and 
analytical calculations for the spin-1/2 / spin-1 chain.70 On 
the other hand, the interacting spin wave theory47 derives 
a better result for 

S+
, but it implies in a higher shift for 

S−
 (flat mode) not observed in our data of Figure 7(a).
On the other hand, the AF mode is relevant in the 

analysis of the response to an applied magnetic field H.
The AF gap found above is responsible for a plateau in 
the curve of the magnetization per spin, m(H) = <Sz>/(N–h),
as a function of H. In fact, it has been shown71 that if 

(s − m) = integer, a plateau may appear in the magnetization 
curve of the Heisenberg model. In the last equation, s is 

Figure 6. Magnetic structure factor S(q) for (a) the AB
2
 Hubbard chain with U = 2t and (b) the AB

2
 Heisenberg chain. The inset presents the size dependence 

of the ferromagnetic [S(0)] and antiferromagnetic [S( )] peaks. Dashed lines are guides for the eye.

Figure 7. (a) Ferromagnetic (F) and antiferromagnetic (AF) spin wave modes of the Heisenberg AB
2
 chain for N

c
 = 10 (circles), 8 (triangles down), 6 

(triangles up). Solid lines are the linear spin wave results from reference 67; dashed lines are guides to the eye. (b) Illustration of the F2 mode: ellipse 
indicates a localized singlet state.
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the site spin quantum number and  is the number of sites 
in one unit cell of the GS for a given value of H. The AB

2

Heisenberg chain has s = 1/2 and three sites per unit cell 
(  = 3); so, unless the system spontaneously breaks the 
translation invariance, we expect plateaus at m = 1/6 and 
m = 1/2. This is indeed what is observed in Figure 8. The 
plateau width at m = 1/6 is exactly given by 

S+
, and is a 

measure of the stability of the ferrimagnetic phase. For 
higher fields, the magnetization increases in the expected 
way,71 as shown by the full line in Figure 8, before saturation 
at m = 1/2 for H = 3J. This field-dependent behavior 
contrasts with the linear one predicted by mean-field 
theory48 shown in Figure 3. In fact, as predicted,71 the curve 
connecting the plateaus display square-root singularities, 
i.e., ~ |H-H

c
|1/2, where H

c
 is the critical field at the edge pf 

the plateaus. Exact diagonalization results46 indicate that the 
antiferromagnetic spin gap and, consequently, the plateau 
at m = 1/6 exists for any finite value of U, with the plateau 
width (

S+
) nullifying as U2 in the limit U  0.

Away from half-filling43,52 the AB
2
 Hubbard model 

exhibits a rich phase diagram depending on the electronic 
density, n N

e
/N, or doping  (= 1 − n) from half-filling, and 

the Coulomb coupling U. The doped region was analyzed 
through Hartree-Fock43, exact diagonalization43,52 and density 
matrix renormalization group (DMRG),52 which is the 
state-of-the-art method72 for the study of the GS properties 
of one-dimensional quantum lattice models. DMRG results 
suggest that in the underdoped region and for U = 2t, the 
ferrimagnetic phase sustains up to 0.02, while for 
0.02 <  < 0.07 hole itinerancy promotes incommensurate 
spin correlations (a spiral phase73) with a -dependent 
peak position in the magnetic structure factor, as shown in 
Figure 9(a) and (b). For U =  and = 0 the GS total spin 
is degenerate, whereas for 0 <  < 0.225 hole itinerancy 
(Nagaoka mechanism74,75) sets a fully polarized GS, as 

shown in Figure 9(c). For higher doping, the system phase 
separates76 into coexisting metallic and insulating phases 
for

PS
(U) < < 1/3 [with 

PS
( ) 0.225 and 

PS
(2) 0.07]. 

In fact, the Hartree-Fock solution is unstable in this region 
and a Maxwell construction is needed.43 The local parity 
symmetry is even (odd) in the insulating (metallic) phase. In 
Figure 10 we present spin correlation functions at  = 0.18 
( = 0.28) and U = 2 (U = ), calculated through DMRG 
(for these parameter values, the system is found in a phase 
separated state). 

In Figure 10(a) the correlation function between the 
spin at the extreme site of the phase with odd parities 
and the others spins, <S

1
·S

i
>, evidences the spiral phase 

for U = 2t. For U =  the local magnetization at sites A
and B

1
+B

2
 shown in Figure 10(b) clearly displays the 

coexistence between the Nagaoka ferromagnetic phase and 
a paramagnetic one. Notice that, in the Nagaoka phase, the 
magnetization displays spatially modulated profiles due to 
hole itinerancy. Further, the local parity symmetries of the 
two coexisting phases are manifested in the correlation 
function between B spins at the same cell, <S

B1
·S

B2
>,

shown in figures 10(c) and (d): in the phase with odd (even) 
parities cell triplet (singlet) states predominate. In Figure 
10(e) we illustrate the phase separation for U = . DMRG 
and exact diagonalization results52 indicate that the phase 
separation region ends precisely at  = 1/3. For this doping 
the electronic system presents finite spin and charge gaps 
with very short ranged correlations and is well described 
by a short-ranged resonating-valence bond (RVB) state,77

with the electrons correlated basically within a cell, as 
illustrated in Figure 10(f). A crossover region is observed 
for 1/3 /3, while a Luttinger-liquid behavior78 can be 

Figure 8. Magnetization as a function of the dimensionless applied 
magnetic field H/J for the AB

2
 Heisenberg chain. The full line is a curve 

traced from the midpoints of the steps found in the finite size results, 
except at plateau regions.

Figure 9. (a) and (b): Magnetic structure factor for U = 2t and 
N = 100, using DMRG, in the underdoped region. (c) Total spin per cell 
S

g
/N

c
 as function of  for U = ; the variational approach is described 

in reference 52.
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explicitly characterized for  > 2/3. Luttinger liquids are 
paramagnetic metals in one-dimension exhibiting power-
law decay of the charge and spin correlation functions and 
the separation of the charge and spin excitation modes.

In particular, the asymptotic behavior of the spin 
correlation function is given by

(15)

where k
F
 is the Fermi wave vector and K  is the model-

dependent exponent. The predicted behavior in equation 
(15) fits very well the DMRG data at  = 88/106 using 
K = 0.89 (U = 2t) and K  = 0.57 (U = ), as shown in Figure 
11. We remark that these values are close to 1 (noninteracting 

fermions) and 1/2 (noninteracting spinless fermions) for 
U = 2t and U = , respectively.

In addition, we mention that the commensurate doping 
= 2/3 is insulating, with a charge gap nullifying with 

U in a similar manner as the one of the Hubbard model in 
a linear chain at half-filling,79 while the spin excitation is 
gapless.

4. Conclusions

In this contribution on the celebration of the 80th 
birthday anniversary of Prof. Ricardo Ferreira, we have 
presented a brief review of the main experimental and 
theoretical achievements on quasi-one-dimensional 
magnetic compounds, featuring those with AB

2
 unit cell 

structure.
As reported, this has been an area of intense activity, 

particularly since the first experimental announcements in 
the mid 80’s.1–4 Nowadays several groups all over the world, 
involving chemists, physicists, and material scientists, 
are engaged in the characterization and description of 
properties of the already known materials, as well as doing 
great efforts towards the design and synthesis of new 
compounds, with novel properties suitable for technological 
applications.80

From the fundamental point of view, these compounds 
have been used as a laboratory in which many theoretical 
concepts and predictions in the field of low-dimensional 
materials have been tested.

In conclusion, it seems clear that this interdisciplinary 
research area will remain an exciting and topical one for 
many years to come, offering new challenges both from 
the scientific and technological aspects.
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