Acessibilidade / Reportar erro
Journal of Aerospace Technology and Management, Volume: 8, Número: 4, Publicado: 2016
  • Design and Manufacture of a Solar-Powered Unmanned Aerial Vehicle for Civilian Surveillance Missions Original Papers

    Betancourth, Nelson Javier Pedraza; Villamarin, Julio Enoc Parra; Rios, John Jairo Vaca; Bravo-Mosquera, Pedro David; Cerón-Muñoz, Hernán Darío

    Resumo em Inglês:

    ABSTRACT In order to promote the development of renewable energy and take advantage of the new technologies for the benefit of sustainability, both the design and the manufacture methodologies of an experimental solarpowered unmanned aerial vehicle for civilian surveillance applications are presented. Throughout the document, it is provided the historical process around the development of the aircraft. Therefore, in the first part, it is shown the aerodynamic design, which includes the 2-D and 3-D analyses of the wing platform using numerical and experimental methods, the analytical design of the empennage configuration, and the main characteristics of the performance analysis. In addition, major systems and components that characterize the aircraft are described, such as the photovoltaic solar cells configuration as well as the electronics and control system into the unmanned aerial vehicle. Lastly, the modeling for the weights distribution of the components was carried out in a preliminary test using CAD tools. Thus, it was obtained a suitable process for the manufacture of the unmanned aerial vehicle, considering that the purpose of the aircraft is to be as light and aerodynamic as possible to accomplish the mission for which it was created.
  • Design Analysis of Solar-Powered Unmanned Aerial Vehicle Original Papers

    Sri, Karthik Reddy Buchireddy; Aneesh, Poondla; Bhanu, Kiran; Natarajan, M

    Resumo em Inglês:

    ABSTRACT One of the main problems in micro unmanned aerial vehicles is endurance or flight time since the general domain aircraft uses conventional fuel, which is a pollutant, has a limited life and is costly. Then, there is a huge demand for using an unlimited non-exhaustible source of energy. Solar energy is one of the unlimited available renewable energy which can be used to increase the endurance of unmanned aerial vehicle without adding significant mass or increasing the size of the fuel system. This paper aims to encourage research on renewable energy sources for aviation considering the basic challenges for a solar-powered aircraft: geographical area of operation, energy collection and storage, payload and design parameters. Hence, a plane is designed for 2 kg, including payload, and is analyzed in various aspects. Besides, the design is optimized starting from airfoil to complete structure for better performance.
  • The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System Original Papers

    Zhelamskij, Michail

    Resumo em Inglês:

    ABSTRACT This article highlights both theoretical and experimental experiences in the field of helmet-mounted cueing systems. The current state of these systems is described as optical and hybrid. The adventures of the positioning under local magnetic field are considered, and the directions for further improvement of magnetic technology are identified. A new method is proposed for the local magnetic field creation to increase update rate, to reduce the influence of the Earth’s magnetic field, and to reduce energy consumption of helmet-mounted cueing systems in relation to known prototypes. A mathematical model of positioning field is offered. The accuracy of the field mathematical description is studied for different shapes of windings. The transients are investigated in the source of positioning field and in the interior of the cockpit. In addition, a mathematical model of magnetic measurements is proposed, and the main sources of measurement and positioning errors are investigated. The calculation algorithm of the helmet’s coordinates is considered based on the results of magnetic measurements. The results of physical models research are given, and the operation of a sample in the full range of angles is shown. The trial mapping is conducted for the field created by the source with a ferromagnetic core. Positioning of the helmet’s movement on specified paths is performed, and the results make it possible to figure out the next generation of helmetmounted cueing systems with extended angles range, higher angular and linear accuracy, increased update rate (200 Hz), and minimized influence of Earth’s magnetic field.
  • GPS-Dependent Systems: Vulnerabilities to Electromagnetic Attacks Original Papers

    Faria, Lester de Abreu; Silvestre, Caio Augusto de Melo; Correia, Marcelino Aparecido Feitosa

    Resumo em Inglês:

    ABSTRACT The GPS is a satellite navigation system that provides location and time information. Such a system currently supports critical applications for military, civil and commercial users worldwide and is accessible to any operator by using a single GPS receiver. However, although being too dependent on GPS signals, just a few of these applications present some kind of countermeasure to electromagnetic attacks, showing a high level of vulnerability to intentional attacks. In this paper, we pose questions and situations related to security and vulnerability of different kinds of platforms/vectors and systems which directly afflict the situational awareness of operators. Experiments were made with different general GPS receivers as a function of distance and incidence angle, showing that they fail to work even at low jamming powers (−25 and 0 dBm at 10 m). More complex GPS systems, such as aeronautical receivers, were also tested, losing completely the tracking at −30 dBm, when a 0° (levelled) and 10 m far electromagnetic jamming signal is incident on its antenna. A specific open source, free software (JammPy) allows extending these experimental results, providing a roadmap and estimating how much jamming power is necessary to cause damage to these systems.
  • A Software-in-the-Loop Simulation Scheme for Position Formation Flight of Multicopters Original Papers

    Castro, Davi Ferreira de; Santos, Davi Antônio dos

    Resumo em Inglês:

    ABSTRACT The cooperative control of small unmanned aerial vehicles such as the multicopters has been extensively investigated worldwide for functionality augmentation and cost reduction with respect to a single larger vehicle. The present paper proposes a software-in-the-loop simulation scheme for performance evaluation and demonstration of formation flight control systems of multicopters. The simulation scheme consists of a computer network where each computer simulates one of the vehicles using the MATLAB/Simulink for implementing the local control system and the X-Plane for simulating the flight dynamics and environment. For cooperation, the local control systems exchange position data by means of the network. In order to illustrate the proposed scheme, a group of 3 octocopters is taken into consideration and a leader-follower strategy is chosen for triangular position formation, with the leader moving in a straight line with constant speed.
  • A New Algorithm for Shock Sensor Calculation at Supersonic Speeds on a 3D-Unstructured Grid Original Papers

    Tahmasbi, Vahid; Karimian, Seyed Mohammad Hossein

    Resumo em Inglês:

    ABSTRACT In this paper, 3-Dsupersonic flow around two types of wings is solved using a new algorithm for shock sensor calculation. A dual-time-stepping implicit method with 2nd-order accuracy is used for time integration of the equations. In each real time step, the non-linear system of equations is solved by iterating in pseudo-time, using a multi-step integration method. A cell-center finite volume scheme is applied to discretize the solution domain. Governing equations are discretized using 2nd-order central scheme of Jameson. Undesirable oscillations are prevented using artificial dissipation terms containing 2nd and 4th-order derivative terms. The second-order derivative term is proportional to shock sensor, which is a function of pressure gradient in general and is devised to capture shock waves correctly. Appropriate calculation of shock sensor is very important especially for the solution of 3-D supersonic flow on unstructured grids. In this study, a simple efficient algorithm is proposed for shock sensor calculation to stabilize solution in supersonic 3-D flows on unstructured grids. The new algorithm, implemented at an in-house code, is evaluated by comparison of its results with wind tunnel test data and upwindtype differencing scheme of Roe for a tailplane model tested at Royal Aircraft Establishment. The results show that supersonic flow with shock waves has been accurately captured.
  • NSGA-II-Based Multi-objective Mission Planning Method for Satellite Formation System Original Papers

    Shao, Xiaowei; Zhang, Zehao; Wang, Jihe; Zhang, Dexin

    Resumo em Inglês:

    ABSTRACT This study proposes a non-dominated sorting genetic algorithm-II-based multi-objective optimization method to solve the multi-objective mission planning problem for satellite formation flying system which has the ability to obtain both digital elevation map and ground moving target indicator information at the same time when certain conditions are satisfied. The 2 objectives considered in this study are maximizing total profits and maximizing numbers of completed acquisitions. Thus, the multiple-objective satellite scheduling optimization problem is formulated and solved by the proposed method. Its validity and effectiveness are verified by numerical simulations, and the results show that it can achieve better performance with respect to 2 different objectives in an overall perspective than the traditional scheduling optimization, which can consider only 1 objective.
  • The Effects of Spoilers on Jet Mixing of Lobed Nozzles Original Papers

    Dawei, Liu; Jun, Huang; Zhiqiang, Sheng; Jinzu, Ji

    Resumo em Inglês:

    ABSTRACT In this study, spoilers were installed on the lobed nozzle principal model. Keeping axial position unchanged, the different widths of spoilers were mounted along the circumferential direction of a mixer tube. The effects of spoilers on the jet mixing of lobed nozzle were investigated by numerical method, and the results showed that, before or after the installation, the flow ratio did not change significantly. The value of thermal mixing efficiency and total pressure recovery coefficient had a corresponding improvement. The spoilers increased the borderline area of the primary and secondary streams, thus the mixing was accelerated. Spoilers can avoid high-temperature primary stream impinging the wall of the tube, and the temperature of mixing tube wall decreased significantly.
  • Wind Tunnel Testing on a Generic Model of a Hybrid Lifting Hull Original Papers

    Ul Haque, Anwar; Asrar, Waqar; Omar, Asharf Ali; Suleiman, Erwin

    Resumo em Inglês:

    ABSTRACT In this research, an experimental investigation was carried out at the International Islamic University Malaysia - Low Speed Wind Tunnel facility on a generic model of a hybrid lifting hull. Based on the historical trends of non-rigid airships, the fineness ratio of the said hull has been selected equal to 4. Free stream velocity was kept at 20 m/s and, along with the estimation of aerodynamic parameters, longitudinal and lateral stability characteristics were determined over a range of angles of attack from −8° to +12° and angles of sideslip from −10° to +10°. Zero lift coefficient was obtained at −4.2°, and the corresponding value was found to be greater than that at zero angle of attack. The comparison of the experimental results with the existing analytical relationships of wing has revealed that such an airfoil shaped hull cannot be considered as a wing due to 37% less analytical value of lift coefficient than that obtained by CFD simulations of the said hull. Existing equation of form factor of hull for conventional airships was also revisited, and a correction factor equal to 1.16 in the fundamental drag equation of aircraft’s fuselage was also proposed for fineness ratio equal to 4. Trends of the experimental data and mabsmoraiscomparison of the same with the theoretical calculations and computational results posed some interesting findings. The longitudinal and directional stabilities of a hybrid lifting hull were found to be statically unstable.
  • Thermal Distortion Analysis of Inflatable Antenna Structures Considering Inflation Gas Original Papers

    Xu, Yan; Guan, Fuling; Ye, Qian

    Resumo em Inglês:

    ABSTRACT This paper addresses the static distortion and stress analysis of inflatable antenna structures subjected to a thermal load, which is a very important type of load experienced by such structures during service in orbit. Non-linear finite element analysis methods for inflatable structures were formulized, and the thermal stress of thin films was considered. The dynamic relaxation method was used to address the singularity problem of the stiffness matrix for the non-pre-stressed membrane structures. When the thermal load is changing, the state of the inflation gas inside the structure chamber varies, as well as the thermal stress of the membrane material. An iterative algorithm was presented to solve this coupling problem between thermal load, the structures, and inflation gas. The presented algorithm has been implemented into an own finite element code of inflatable structures. The thermal deformation and the stress distribution of a 3.2-m inflatable antenna structure were analyzed to illustrate the feasibility of the numerical method. The results indicated that the change in the state of the inflation gas adversely affects the structural performance, so the inflation gas must be considered.
  • Anomalous Behavior of a Solid Rocket Motor Nozzle Insert During Static Firing Test Original Papers

    Reis, Ronald Izidoro; Shimote, Wilson Kiyoshi; Pardini, Luiz Claudio

    Resumo em Inglês:

    ABSTRACT This paper presents the study and development of a firing test used to evaluate the behavior of a solid rocket motor. The motivation for the development of a subscale solid rocket motor with end burning propellant grain geometry arose from the need to evaluate the nozzle inserts of graphite for the possible replacement with the carbon fiber-reinforced carbon composite. These subscale solid rocket motors, simulating full scale motor operating time, but with mass flow far below, aim to determine the ablative characteristics of composite materials as a function of operating time. The objective was to correlate the mass flow between subscale solid rocket motors and full scale using insert data materials such as graphite and carbon fiber-reinforced carbon composites, which have ablative characteristics determined in subscale solid rocket motors used at the Instituto de Aeronáutica e Espaço. The critical section to evaluate the test device is rocket nozzle throat region. Analysis of the materials of the subsonic and supersonic nozzle insert parts was performed after the burning tests. It was found the formation of a thin layer of material deposited after the test. The deposited coating layer was analyzed by electron dispersive x-ray analysis and scanning electron microscopy. The results analyzed by these methods showed that there were aluminum and carbon in the coating. Finally, the material was analyzed by x-ray diffraction, and the results showed the presence of aluminum oxide. It was also noticed that, because of the unexpected coating deposition forming material in exit conical and throat of the insert that the effect of ablation was not observed.
  • Combined Cycle Performance Evaluation and Dynamic Response Simulation Original Papers

    Mattos, Heitor Augusto da Silva; Bringhenti, Cleverson; Cavalca, Diogo Ferraz; Silva, Osmar Francisco Reis; Campos, Gustavo Bonolo de; Tomita, Jesuíno Takachi

    Resumo em Inglês:

    ABSTRACT Power plants operating in combined cycle present higher thermal efficiency (over 60%) and increased power generation when compared to traditional simple cycles, such as gas or steam turbines operating alone. Considering that the power plant evaluated in this paper is already operational, a further development concerning to the power plant control system is required in order to evaluate disturbances and frequency variations, generated by the electrical grid during normal operation, as the loads applied to the turbines are intrinsically associated to the grid frequency. A computer program able to simulate the control system was developed to cope with these instabilities and to guarantee the necessary protection to the power plant operation. The develop program was made using MATLAB Simulink®. The main components of the power plant consists of 2 gas turbines of 90 MW each and a steam turbine of 320 MW, totalizing 500 MW. Firstly, the power plant main components were constructed separately. Once obtained stable models, the exhaust from the gas turbine was connected to the water-steam cycle through the heat recovery steam generator. The main parameters necessary to adjust the model such as gains, limits and constants were obtained from the power plant operational data. The simulation results allowed the evaluation of some key parameters; others are possible but not shown, such as power, exhaust gas temperature, fuel flow and variable stator angles during grid instabilities. The studies were conducted by testing the robustness, response time, transient analysis, steady state analysis and reliability of the proposed model.
Departamento de Ciência e Tecnologia Aeroespacial Instituto de Aeronáutica e Espaço. Praça Marechal do Ar Eduardo Gomes, 50. Vila das Acácias, CEP: 12 228-901, tel (55) 12 99162 5609 - São José dos Campos - SP - Brazil
E-mail: submission.jatm@gmail.com