Acessibilidade / Reportar erro
Journal of Aerospace Technology and Management, Volume: 8, Número: 2, Publicado: 2016
  • Systems Engineering Editorial

    Vaughan, William W.
  • Comparative Assessment of stabilised Polybutadiene Binder under Accelerated Ageing Original Papers

    Sbegue, Luiz Felipe Cannaval; Villar, Luciene Dias

    Resumo em Inglês:

    ABSTRACT Polybutadiene elastomers are versatile materials, being employed at several applications from rocket propellant binder to adhesives and sealants. The elastomers derived from hydroxyl-terminated polybutadiene are usually stabilised with antioxidants to prevent degradation. In this study, a comparative assessment among 2,2’-methylene-bis (4-methyl-6-tert-butylphenol) (AO2246), 2,6-di-tert-butyl-4-methylphenol (BHT), p-phenylenediamine (pPDA), and triphenylphosphine (TPP) regarding stabilisation of hydroxyl-terminated polybutadiene binder under accelerated ageing (six months at 65 °C) was carried out. Evaluation of antioxidants effectiveness was examined through Oxidation Induction Time, sol/gel extraction, swelling and mechanical testing, dynamic mechanical analysis, and mass variation measurement. AO2246 yielded the best performance, meanwhile BHT was poorly protective. TPP acted as prooxidant, causing a severe degradation of the binder, and pPDA was not manageable to be assessed due to the lower curing degree of the resulted polyurethane.
  • Qualification of Magnesium/Teflon/Viton Pyrotechnic Composition Used in Rocket Motors Ignition System Original Papers

    Barros, Luciana de; Pinheiro, Afonso Paulo Monteiro; Câmara, Josemar da Encarnação; Iha, Koshun

    Resumo em Inglês:

    ABSTRACT The application of fluoropolymers in highenergy-release pyrotechnic compositions is common in the space and defense areas. Pyrotechnic compositions of magnesium/Teflon/Viton are widely used in military flares and pyrogen igniters for igniting the solid propellant of a rocket motor. Pyrotechnic components are considered highrisk products as they may cause catastrophic accidents if initiated or ignited inadvertently. To reduce the hazards involved in the handling, storage and transportation of these devices, the magnesium/Teflon/Viton composition was subjected to various sensitivity tests, DSC and had its stability and compatibility tested with other materials. This composition obtained satisfactory results in all the tests, which qualifies it as safe for production, handling, use, storage and transportation.
  • Design, Prototyping and Measurement of a Cascaded 6-GHz Frequency Selective Surface Array Original Papers

    Perotoni, Marcelo Bender; Andrade, Luiz Alberto; Junqueira, Cynthia

    Resumo em Inglês:

    ABSTRACT The design, prototyping, and free-space measurement of a 6-GHz Frequency Selective Surface filter is presented. The prototyping resolution of a large (A4 sheet size) Frequency Selective Surface with small loops as elements is checked, as well as the correlation with measurements performed with a 3-D full-wave solver. The test also involved the effect of cascading two different Frequency Selective Surfaces with a viewpoint towards a narrower frequency range, which provided good results.
  • Performance Comparison of the IMMPDAF Algorithm Using Real and Simulated Radar Measurements Original Papers

    Souza, Marcelo Lucena de; Guimarães, Alberto Gaspar; Pinto, Ernesto Leite

    Resumo em Inglês:

    ABSTRACT Performance indexes obtained in idealized simulated scenarios are the primary source of data for evaluating different target tracking algorithms in most researches presented in the literature. Despite the convenience of simulation, ultimate evaluation of a tracking algorithm must be made in real scenarios. Unfortunately, real radar measurements as well as accurate aircraft position, necessary for calculating tracking errors, are not easily available. In this paper, we present an evaluation of the well-known Interacting Multiple-Model with Probabilistic Data Association Filtering algorithm using data obtained from a flight inspection of a Brazilian Air Force ground-based long-range surveillance radar. The presented results show that, in this scenario the Interacting Multiple-Model with Probabilistic Data Association Filtering algorithm performance using real data is worse compared to simulation. Statistical properties of the real radar measurements are also investigated, and some evidence is found that embedded noise is not well modeled as perfectly white.
  • Micro-motion Recognition of Spatial Cone Target Based on ISAR Image Sequences Original Papers

    Shu, Changyong; Xue, Fengli; Zhang, Shengjun; Huang, Peiling; Ji, Jinzu

    Resumo em Inglês:

    ABSTRACT The accurate micro-motions recognition of spatial cone target is the foundation of the characteristic parameter acquisition. For this reason, a micro-motion recognition method based on the distinguishing characteristics extracted from the Inverse Synthetic Aperture Radar (ISAR) sequences is proposed in this paper. The projection trajectory formula of cone node strong scattering source and cone bottom sliptype strong scattering sources, which are located on the spatial cone target, are deduced under three micro-motion types including nutation, precession, and spinning, and the correctness is verified by the electromagnetic simulation. By comparison, differences are found among the projection of the scattering sources with different micro-motions, the coordinate information of the scattering sources in the Inverse Synthetic Aperture Radar sequences is extracted by the CLEAN algorithm, and the spinning is recognized by setting the threshold value of Doppler. The double observation points Interacting Multiple Model Kalman Filter is used to separate the scattering sources projection of the nutation target or precession target, and the cross point number of each scattering source’s projection track is used to classify the nutation or precession. Finally, the electromagnetic simulation data are used to verify the effectiveness of the micro-motion recognition method.
  • Comparison of In-Flight Measured and Computed Aeroelastic Damping: Modal Identification Procedures and Modeling Approaches Original Papers

    Follador, Roberto da Cunha; Souza, Carlos Eduardo de; Marto, Adolfo Gomes; Silva, Roberto Gil Annes da; Góes, Luis Carlos Sandoval

    Resumo em Inglês:

    ABSTRACT The Operational Modal Analysis technique is a methodology very often applied for the identification of dynamic systems when the input signal is unknown. The applied methodology is based on a technique to estimate the Frequency Response Functions and extract the modal parameters using only the structural dynamic response data, without assuming the knowledge of the excitation forces. Such approach is an adequate way for measuring the aircraft aeroelastic response due to random input, like atmospheric turbulence. The in-flight structural response has been measured by accelerometers distributed along the aircraft wings, fuselage and empennages. The Enhanced Frequency Domain Decomposition technique was chosen to identify the airframe dynamic parameters. This technique is based on the hypothesis that the system is randomly excited with a broadband spectrum with almost constant power spectral density. The system identification procedure is based on the Single Value Decomposition of the power spectral densities of system output signals, estimated by the usual Fast Fourier Transform method. This procedure has been applied to different flight conditions to evaluate the modal parameters and the aeroelastic stability trends of the airframe under investigation. The experimental results obtained by this methodology were compared with the predicted results supplied by aeroelastic numerical models in order to check the consistency of the proposed output-only methodology. The objective of this paper is to compare in-flight measured aeroelastic damping against the corresponding parameters computed from numerical aeroelastic models. Different aerodynamic modeling approaches should be investigated such as the use of source panel body models, cruciform and flat plate projection. As a result of this investigation it is expected the choice of the better aeroelastic modeling and Operational Modal Analysis techniques to be included in a standard aeroelastic certification process.
  • The Use of Cognitive Maps for Requirements Elicitation in Product Development Original Papers

    Dias, Raquel; Cabral, Arnoldo Souza; López, Brenda; Belderrain, Mischel Carmen Neyra

    Resumo em Inglês:

    ABSTRACT This article approaches Engineering Requirements concepts and proposes the use of cognitive maps as support to the problem identification of the stakeholders during the requirements elicitation process. It presents a case study of the aerospace cluster of São José dos Campos, State of São Paulo. The cognitive map technique was developed to represent the views of the individuals, generating cognitive maps, which, in an aggregated way, express graphically the collective vision to support the decision-making process. Applied to Engineering Requirements, it has revealed the potential to promote the convergence of different points of view on the actual stakeholders’ needs in innovative fashion. This technique has demonstrated effectiveness when approaching the stated requirements early in the development process implemented throughout the life cycle of the system/product.
  • An Implementation of Self-Organizing Maps for Airfoil Design Exploration via Multi-Objective Optimization Technique Original Papers

    Jung, SungKi; Choi, Won; Martins-Filho, Luiz S.; Madeira, Fernando

    Resumo em Inglês:

    ABSTRACT Design candidates obtained from optimization techniques may have meaningful information, which provides not only the best solution, but also a relationship between object functions and design variables. In particular, trade-off studies for optimum airfoil shape design involving various objectives and design variables require the effective analysis tool to take into account a complexity between objectives and design variables. In this study, for the multiple-conflicting objectives that need to be simultaneously fulfilled, the real-coded Adaptive Range Multi-Objective Genetic Algorithm code, which represents the global and stochastic multi-objective evolutionary algorithm, was developed for an airfoil shape design. Furthermore, the PARSEC method reflecting geometrical properties of airfoil is adopted to generate airfoil shapes. In addition, the Self-Organizing Maps, based on the neural network, are used to visualize trade-offs of a relationship between the objective function space and the design variable space obtained by evolutionary computation. The Self-Organizing Maps that can be considered as data mining of the engineering design generate clusters of object functions and design variables as an essential role of trade-off studies. The aerodynamic data for all candidate airfoils is obtained through Computational Fluid Dynamics. Lastly, the relationship between the maximum lift coefficient and maximum lift-to-drag ratio as object functions and 12 airfoil design parameters based on the PARSEC method is investigated using the Self-Organizing Maps method.
  • Formation Flight Control of Multi-UAV System with Communication Constraints Original Papers

    Xue, Ruibin; Cai, Gaohua

    Resumo em Inglês:

    ABSTRACT Three dimensional formation control problem of multi-UAV system with communication constraints of non-uniform time delays and jointly-connected topologies is investigated. No explicit leader exists in the formation team, and, therefore, a consensus-based distributed formation control protocol which requires only the local neighbor-toneighbor information between the UAVs is proposed for the system. The stability analysis of the proposed formation control protocol is also performed. The research suggests that, when the time delay, communication topology, and control protocol satisfy the stability condition, the formation control protocol will guide the multi-UAV system to asymptotically converge to the desired velocity and shape the expected formation team, respectively. Numerical simulations verify the effectiveness of the formation control system.
  • Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study Communications

    González, Freddy Alexander Díaz; Cabrera, Pablo Roberto Pinzón; Calderón, Claudio Marcel Hernández

    Resumo em Inglês:

    ABSTRACT The growing countries that have carried out the development of CubeSat missions for academic purposes do not offer aerospace engineering programs at their universities. This causes difficulties for traditional engineers upon the formal use of different standards and frameworks for aerospace development, such as the European Cooperation for Space Standardization and Space Mission Analysis and Design . One way in which traditional software engineers can easily understand the structure of an aerospace framework, in order to apply it on the development of CubeSat mission software parts, is comparing its most important elements in relation to the elements suggested by a more familiar method. In this paper, we present a hybrid framework between the ECSS-E-ST-40C standard and the Rational Unified Process, which can be used by traditional software engineers as a guide model for the development of software elements in academic nanosatellite missions. The model integrates the processes and documentation suggested by the ECSS-E-ST-40C with the disciplines, workflows and artifacts suggested in Rational Unified Process. This simplifies the structure of ECSS-E-ST-40C and allows traditional software engineers to easily understand its work elements. The paper describes as study case the implementation of the hybrid model in the analysis and design of ground monitoring and control software for the Libertad-2 satellite mission, which is currently being developed by the Universidad Sergio Arboleda in Colombia.
  • Anticipating the Need for New Skills for the Future Aerospace and Aviation Professionals Communications

    Lappas, Ilias; Kourousis, Kyriakos I.

    Resumo em Inglês:

    ABSTRACT This study aims to translate needed future skills to the university classroom for the aerospace and aviation industry personnel, given the fast-paced change taking place in both the industry and the education sectors. A synopsis of the current challenges faced in the educational field is outlined, followed by a mapping of the future of both education and air platforms, in an attempt to set the basis of the needed skills framework. The Assessment and Teaching of 21st Century Skills Project is used as a baseline for the definition of the future “critical” skill set, which is considered well aligned with the future needs of the aerospace industry. It is suggested that this critical skill set can be translated to the higher education environment through an effective redesign of the existing teaching and learning philosophy and the practices.
Departamento de Ciência e Tecnologia Aeroespacial Instituto de Aeronáutica e Espaço. Praça Marechal do Ar Eduardo Gomes, 50. Vila das Acácias, CEP: 12 228-901, tel (55) 12 99162 5609 - São José dos Campos - SP - Brazil
E-mail: submission.jatm@gmail.com