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Entropy variation in isothermal fluid 
flow considering real gas effects
Abstract: The present paper concerns on the estimative of the pressure 
loss and entropy variation in an isothermal fluid flow, considering real 
gas effects. The 1D formulation is based on the isothermal compressibility 
module and on the thermal expansion coefficient in order to be applicable 
for both gas and liquid as pure substances. It is emphasized on the simple 
methodology description, which establishes a relationship between 
the formulation adopted for ideal gas and another considering real gas 
effects. A computational procedure has been developed, which can be used 
to determine the flow properties in duct with a variable area, where real 
gas behavior is significant. In order to obtain quantitative results, three 
virial coefficients for Helium equation of state are employed to determine 
the percentage difference in pressure and entropy obtained from different 
formulations. Results are presented graphically in the form of real gas 
correction factors, which can be applied to perfect gas calculations.
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List of Symbols

a Sound velocity m/s
A Cross section m2

AW Wet area m2

B Second virial coefficient cm3/mole
C Third virial coefficient cm3/mole2

Cp Specific heat at constant pressure J/kgK
Cv Specific heat at constant volume J/kgK
f Friction coefficient -
h Enthalpy J/kg
M Mach number -

!m Mass flow rate kg/s
P Pressure Pa
pW Wet perimeter m
qc

Heat exchange parameter W/m2K

R Gas constant J/kgK
R Parameter of Equation (37) m3/Pa/kg/K
S Entropy J/kgK
t Time s
T Temperature K
u Velocity m/s
U Internal energy J/kg
v Specific volume m3/kg
WHe Molecular weight of helium mole
x Longitudinal coordinate m
Z Compressibility factor -
α Angle between the horizontal and 

the direction of flow
rad

αP Thermal expansion module K-1

βT Isothermal compressibility module m2/N
εP Pressure correction factor -
εS Entropy correction factor Pa2

γ Specific heat ratio -
ρ Density kg/m3

µ Viscosity kg/ms

!
W

Shear stress N/m2

INTRODUCTION

The term “isothermal process” describes a thermodynamic 
process that occurs at a constant temperature. There 
are a lot of examples of technical analysis using 
isothermal process. Isothermal compression is an 
example to illustrate the position that isothermal 
process takes along other thermodynamic processes. In 
a real engine (compressor), the isothermicity condition 
cannot be fulfilled and every real thermodynamic 
process demands more energy than the isothermal 
compression. In this context, the practical importance 
of isothermal compression lies in its use, as a reference 
process to evaluate the actual compression (Oldrich 
and Malijesvsky, 1992). The adiabatic frictional flow 
assumption is appropriate to high speed flow in short 
ducts. For flow in long ducts, such as natural gas 
pipelines, the gas state approximates more closely to the 
isothermal one. By doing this approach, it is possible 
to establish a relationship among all thermodynamic 
quantities (White, 2005). 

In the flow field thermodynamic calculation of 
aeronautical devices, the real process is approximated 
to a suitable idealized one that can be mathematically 
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described. Usually, the choice lies among isentropic, 
polytropic, and isothermal processes. These 
thermodynamic processes are also used as reference 
ones in the internal flow field calculation of aeronautical 
devices. The isentropic and polytropic processes have 
been discussed by many authors, including their 
applications to real gases (Oldrich and Malijesvsky, 
1992). In contrast, the isothermal process has not 
received such attention. Attempts at refining the results 
by inserting values calculated from a virial equation 
of state for real gas have led to some improvement. 
However, these efforts particularize the solution of the 
flow field issue.

The present paper is concerned over the estimative of 
the pressure loss and entropy variation in an isothermal 
fluid flow considering real gas effects. The formulation 
is based on the isothermal compressibility module and 
on the coefficient of thermal expansion, in order to be 
applicable for both gas and liquid as pure substances. 
The description of the simple methodology, which 
establishes a relationship between the formulation 
adopted for ideal gas and that considers the real 
gas effects, will be emphasized. A computational 
procedure has been developed, and it can be used to 
determine the flow properties in duct with a variable 
area where real gas behavior is significant. In order 
to obtain quantitative results, three virial coefficients 
for helium equation of state (Miller and Wilder, 
1968; Schneider and Duffie, 1949) are employed to 
determine the percentage difference in pressure, and 
entropy between the different formulations. Results 
are graphically presented in the form of real gas 
correction factors, which can be applied to perfect gas 
calculations. This paper is part of a continuing effort 
that is being carried out at the Institute of Aeronautics 
and Space from the Brazilian Aerospace Technology 
and Science Department (DCTA/IAE, acronyms 
in Portuguese) to develop flow analysis methods, 
and design of aeronautical devices in a conceptual 
context. 

MATHEMATICAL FORMULATION

Isothermal flow is a model of compressible fluid flow 
whereby the flow remains at the same temperature 
while flowing in a conduit. In the kind of flow, heat 
transferred through the walls of the conduit is offset 
by frictional heating back into the flow. Although 
the flow temperature remains constant, a change in 
stagnation temperature occurs because of a change in 
the velocity. From this approximation, it is possible to 
demonstrate that, for ideal gas formulation, the flow 
is choked at mach number (M) given by 

!
1 /   , 

and not at mach number equal to one as in the case 

of many other models, such as Fanno flow (John 
and Keith, 2006). This analysis is applied to the 
1D fluid flow (Fig. 1). It is assumed that the fluid 
undergoes an isothermal process during this process. 
In other words, its total energy remains unchanged 
by the flow. The generalized form of this process 
includes the possibility of the presence and effect 
of viscosity (through µ and 

!
W

), gravity (through α– 
the angle between the horizontal and the direction of 
flow), pressure (P), heat exchange ( qc

) and thermal 
conducting terms (k). 

!
W

 is the shear stress due to wall 
friction. Equations 1, 2 and 3 show the generalized 
mathematical model.

Figure 1: Differential control volume (CV).
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(iii) Energy Equation:

!

hA
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2

u W pW

qpW

cos
.

� (3)

In order to create practical relations for engineering 
use, steady state flow hypothesis is adopted, and the 
thermal conduction and viscosity terms are neglected. 
This approach gives the following results:

(i) Continuity Equation

!

d uA
dx

0 ;� (4)
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(ii) Momentum Equation

d uAu
dx

A dP
dx W pW ;� (5)

(iii) Energy Equation:

d uAh
dx

Au dP
dx

u W AW

qpW

cos � (6)

The strategy chosen in this development is to convert 
the dependent variable (ρ, u, h) in terms of pressure 
(P) and temperature (T). Thus, the equation system is 
reduced to two equations, whose dependent variables 
are pressure and temperature, and the independent one 
is the longitudinal coordinate (x). It is important to 
highlight that during this development, any constitutive 
relation, such as virial equation of state, was adopted, 
in order to generalize the applicability of the method 
to all pure substances.

Energy Equation

Since h h P x ,T x , it can be written as: 

!

dh h
T P

dT h
P T

dP Cp P ,T dT h
P T

dP � (7)

By definition:

h U Pv , so     

dh dU Pdv vdP .

Considering an isothermal process:

!

h
P T

U
P T

P v
P T

v � (8)

The second law applied to the reversible process is given 
by: Q

T
dS . Since Q dU Pdv , the first law becomes: 

TdS dU Pdv . In this expression, the isothermal 
condition is used: T S

P T

U
P T

P v
P T

.

Therefore, using Eq. 8, and, by the Maxwell relation 
(Wyllen and Sonntag, 1987), the result is the following 
(Eq. 9):

!

h
P T

T v
T P

v � (9)

Substituting Eq. 9 in Eq. 7, it is obtained Eq. 10:

dh Cp P ,T dT T v
T P

v dP .� (10)

Now, take into consideration the momentum Eq. 5 in 

the form 

!

Au dP
dx

d uAu
dx w pw , and substitute it in 

energy equation, considering the continuity equation, 
which will result in Eq. 11:

!

d uAh
dx

um 2
d v

A
dx

qpw

cos � (11)

Note that: 

d uAh
dx

uA dh
dx

h d uA
dx

uA dh
dx

m dh
dx

Thus, from Eq. 11, 

mCp P ,T dT
dx

m T v
T P

v dP
dx

mv
A

m 2
A dv

dx
v dA

dx
A 2 Q ,

where : 
cos

Wpq
Q  , 

dv
dx

v
T P

dT
dx

v
P T

dP
dx  , 

and u mv
A .

From algebraic manipulation of the previous equation, 
the energy equation is obtained with pressure and 
temperature as dependent variables, which is:

!
G P ,T dP

dx
H P ,T dT

dx
I P ,T ,� (12)

where: G m
A

2

v v
P T

T v
T P

v ,

H Cp P ,T m
A

2

v v
T P

, and 

I Q
m

m
A

2

v 2 d ln A
dx

Momentum Equation

Since the cross section of the duct is a function of the 
longitudinal coordinate, A=A(x), it can be written:

du
dx

d
dx

mv
A

m d
dx

v
A

;
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thus, 
d uAu

dx
m 2 d

dx
v
A .

By substituting the last equation into momentum Eq.  5 
and dividing it by A, one obtains the representative 
equation of momentum conservation in terms of pressure 
and temperature, which can be seen in Eq. 13:

TPM
dx
dTTPK

dx
dPTPJ ,,, ,� (13)

where: J m
A

2
v
P T

1,

!

K m
A

2
v
T P

, and

!

M m
A

2

v d ln A
dx

W pW

A . 

Generalized flow formulation

Equations 12 and 13 represent the generalized 
formulation written in terms of pressure and temperature, 
which include heat exchange, flow with friction (wall 
friction), and flow in variable-area ducts influence. It is 
noteworthy that, up to this point, any approximation for 
equation of state was not used. In order to extend the 
applicability of the mathematical model, it is interesting 
to write the parameters G, H, I, J, K and M in terms 
of isothermal compressibility module (βT) and thermal 
expansion module (αP). In gas dynamics, compressibility 
is a measure of the relative volume change of a fluid or 
solid as a response to a pressure (or mean stress) change. 
Since the compressibility depends strongly on whether 
the process is adiabatic or isothermal, it is usually 
defined as:

T
1
v

v
P T

� (14)

The thermal expansion coefficient describes how the 
size of an object changes with a change in temperature. 
Specifically, it measures the fractional change in 
size per degree change in temperature at a constant 
pressure. In the general case of a gas, liquid, or solid, 
the volumetric coefficient of thermal expansion is 
given by:

P
1
v

v
T P

� (15)

Therefore, by considering definitions of isothermal 
compressibility module and thermal expansion 
coefficients, it is possible to write the general equations 
as:

G P ,T dP
dx

H P ,T dT
dx

I P ,T

J P ,T dP
dx

K P ,T dT
dx

M P ,T ,� (16)

where,

G v 1 K T

P

T P ,

!
H Cp P ,T vK ,

!

J v m
A

2

T 1 , and

!
K u 2

v P .

Critical Conditions for Generalized Flow

Applying Kramer rule in the system of equations 

(Eq. 16), it will provide: dP
dx

H I
K M

H G
K J

HM IK
HJ GK  .

It is desirable, as in the isentropic case, to investigate 
this relationship by the choice of a convenient reference 
state. Since stagnation conditions are not constant, 
the stagnation state is not suitable for this purpose. 
However, the state corresponding to unity mach 
number (“critical condition”) is suitable, because, as 
Eq. 16 shows, condition there is constant for a given 
flow. In this case, the critical condition is obtained 
from the expression:

HJ GK 0 .� (17)

Since: 

HJ Cp P ,T m
A

2
v
P T

Cp P ,T

m
A

4

v v
T P

v
P T

m
A

2

v v
T P ,

and
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!

GK m
A

4

v v
T P

v
P T

T m
A

2
v
T P

2

v m
A

2
v
T P ,

by substituting it in Eq. 17, it is obtained:

!

u v
Cp P ,T

Cp P ,T v
P T

T v
T P

2

� (18)

It should be noted that the relationship between the 
specific heats at pressure and volume constant is given 
by Van Wyllen and Sonntag (1987, p. 284): 

!

Cp P ,T Cv P ,T T v
T P

2
v
P T

The sound velocity (a), in an isothermal process, can 

be written as (John and Keith, 2006, p. 45): a v

T

.

Substituting the relations above in Eq. 18, the following 
equation is obtained by:

u v
Cp P ,T
v
P T

Cv P ,T

Cp P ,T v 2

Cv P ,T v
P T

a

In other words, the critical condition in a generalized 
flow field, considering real gas effects, is given by the 
mach number equals to one. This value is in accordance 
with technical literature.

Isothermal flow formulation

Isothermal flow can be characterized by the relation 
(Eq. 19):

!

dT
T

0 � (19)

Considering Eq. 19 and the general system (Eq. 16), it 
is obvious the relation:

!

dP
dx

I
G

M
J � (20)

From this expression, it is possible to characterize 
isothermal flow in another, but similar, manner: 
IJ = MG.

Using the previous definitions for parameters J and G, 
it can be concluded that:

I
Mv

1 1

1 m
A

2

v T

PT 1 1

1 2
PT

Real M �(21)

Equation 21 presents an interesting mathematical format. 
It is possible to distinguish the “driver” terms (left side of 
the equation), in a dimensionless form, which represents 
the physical conditions necessary to obtain an isothermal 
flow. This term is built with the contributions of heat 
exchange, wall friction, area variation, and mass flow. 
The right side of the Eq. 21 represents the thermodynamic 
conditions obtained in an isothermal flow, with the “driver” 
conditions defined by the left side. Another important thing 
to note about Eq. 21 is that the variation of the parameter 
I / Mv , at constant temperature, can be found from the 
equation of state and mass flow rate. This information can 
be used in the control system design based on isothermal 
fluid flow. The simplicity of this formulation is a great 
attractive for conceptual design and engineering analysis.

Critical conditions for isothermal flow

Equation 21 shows that the critical condition can be 
obtained from the expression:

1 m
A

2

v T 0 � (22)

Considering the concepts of sound velocity and 
isothermal compressibility module, the second term 

of the left side becomes: m
A

2

v T

u 2
T

v
2 . Then, 

!

1 m
A

2

v T 1 Real
2 0 . From that, it is obtained:

!

1

Real
� (23)

Analogously to the ideal formulation (John and Keith, 
2006, p. 366), Eq. 23 shows that the critical mach 
number for isothermal flow is not subcritical flow. It 
follows that because the adiabatic speed of sound is 
greater than the isothermal speed of sound, isothermal 
flow may be supercritical without being necessarily 
supersonic. It is important to highlight that constitutive 
relations are not used in this development. Thus, it is 
assumed that Eq. 23 is valid for all real gas or liquid 
formulation, for the flow process does not involve 
change of physical state.

Pressure drop in isothermal flow

The most effective approach to flow problems of this 
type is to express ratios of the gas properties and flow 
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parameters between any two points in the flow stream, as 
function of the mach number and specific heat ratio of the 
gas. Using these ratios, a reference state is defined, and 
the ratios of the variables at any mach number to those at 
the reference state are tabulated. Following this reasoning, 
consider the case of duct with constant cross section, by 
applying Eq. 20:

!

dP
dx

M
J

W PW

A
1 Real

2 � (24)

It is a common practice to assume (John and Keith, 
2006, p. 291):

W
1
8

u 2 f � (25)

Thus, 

W PW

A
W

A
4A
D

4 W

D
1
2

u 2 f
D .

By substituting it in Eq. 24, it is obtained: 

dP 1
2

u 2

v
1

1 Real
2

fdx
D .

Since

1
2

u 2

v
1
2v

Real
2v

T

1
2

Real
2

T

,

It is demonstrated that:

dP 1

T

Real
2

2
1 Real

2

fdx
D � (26)

Equation 26 establishes the relationship between the 
pressure drop and the parameters ‘mach number’, 
‘wall friction’, and ‘thermodynamic properties of the 
gas’, when the longitudinal direction considered. Note 
that for ideal gas:

T
1
v

v
P T

1
v

v
P

1
P � (27)

Substituting Eq. 27 into 26, the pressure drop 
formulation developed for ideal gas (John and Keith, 
2006, p. 366) is recovered, which is:

!

dP
P Ideal

Real
2

2
1 Real

2

fdx
D � (28)

In other words, it can be concluded that:

T dP dP
P Ideal

� (29)

The right side of the Eq. 29 can be related to the mach 
number. Using the definition of βT and an isothermal 
process, we will have:

dv v
T P

dT v
P T

dP v
P T

dP ,� (30)

The expression (Eq. 26) can be written as:

dv
v

Real
2

2
1 Real

2

fdx
D � (31)

However, from continuity equation, one has:

dv
v

du
u

d
� (32)

Thus:

!
T dP dP

P Ideal

d

Ideal
� (33)

It is easy to demonstrate that Eq. 33 can be used for 
flow in ducts with variable cross section.

Entropy variation in isothermal flow

Since S S P ,T , it can be written:

dS S
T P

dT S
P T

dP � (34)

Using the concepts of specific heat at constant pressure 
and Maxwell relation:

dS Cp P ,T dT
T

v
T P

dP � (35)

Considering an isothermal process and the definition 
of αP, it is obtained:
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dS PvdP .� (36)

Substituting Eq. 26 in 36, it is obtained:

dS
R

Real
2

2
1 Real

2

fdx
D

d

Ideal
,� (37)

where: 

!

R Pv

T

By definition:

R
v v

T P

v
P T

� (38)

Since

v
P T

P
T v

T
v P

1,

or

P
T v

v
T P

v
P T

,� (39)

the value of R  can be written as:

R v P
T v � (40)

Note that for ideal gas:

R v R
v

R ,� (41)

which is in accordance with results from technical 
literature (John and Keith, 2006, p. 367).

EXAMPLE OF APPLICATION

From Eq. 29 and 37, it is possible to define 
multiplicative correction factors that can be used in 
an ideal gas formulation in order to solve problems 
associated with the real gas formulation. However, it is 
important to define the concept of specific heat ratio in 

terms of R . According to Wyllen and Sonntag (1987, 
p. 285):

!
Cp P ,T Cv P ,T PTR ;� (42)

thus, the expression for specific heat ratio is given by:

Real 1 PTR
Cv P ,T � (43)

This value is used in Eq. 44, which is:

dP
P Ideal

Real
2

2
1 Real

2

fdx
D

d

Ideal
� (44)

Equation 44 can be integrated in terms of mach 
number, considering the friction factor f constant 
in the segment dx . From this result, it is possible to 
evaluate the pressure drop for ideal gas formulation. 
Thus, applying the multiplicative factor T on the last 
result, the drop pressure considering real gas effects 
is obtained. Regarding to the entropy variation, it is 
possible to write from Eq. 37 and 44:

dS
R

dP
P Ideal

,� (45)

CORRECTION FACTORS

In this section, the pressure correction factor (
!

P   ) 
and entropy correction factor (

!
S ) are defined. The 

parameter 
!

P  is calculated from the use of Eq. 33 for 
ideal and real gases. By substituting Eq. 14 in Eq. 33, 
the following result is given:

dP
P Real P

P

T

dP
P Ideal

P
dP
P Ideal

,� (46)

where the correction factor 

!
P
 is given by:

!
P

1

T P ,� (47)

In analogous fashion, it is defined the entropy 
correction factor. In accordance with Eq. 37 and 44, 
the entropy correction factor is given by:

S R / R ,� (48)

In order to obtain quantitative results, an equation of 
state for helium, based on a three virial coefficient 
(Miller and Wilder, 1968; Schneider and Duffie, 1949), 
is employed to determine the correction factor for 
pressure and entropy variation. The equation used to 
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represent the pressure-density-temperature relationship 
of real helium gas is the virial equation of state:

!
P Z RT RT 1 B T 2C T � (49)

A relatively large amount of experimental data on 
the second virial coefficient, B(T), exist for low 
and moderate temperatures (up to about 1,000 K). 
Experimental results for the third virial coefficient, 
C(T), are few and show a great deal of scatter. At the 
conditions dealt within this paper, the contribution 
of C(T) to the state equation is relatively small. In 
this context, the expression derived for the virial 
coefficients is given by:

B T b0 b1T
1

4 b2T
3

4 b3T
5

4 b4T
7

4 ,� (50)

and 

C T c0 c1T
1

4 c2T
3

4 c3T
5

4 � (51)

The coefficients of virial equation are given in Tables 
1 and 2. The units of T, B(T) and C(T) are K, cm3/mole 
and (cm3/mole)2, respectively.

and

P

T

RT 1 2 B T 3 2C T � (53)

Considering the virial equation of state, Eq.49 and 47, 
the pressure correction factor (

!
P
) is given by:

P
1
Z

1 2 B T 3 2C T � (54)

Entropy correction factor (εS)

Using Eq. 40 and 48, it is demonstrated that:

S 1 B T T
dB T

dT
2 C T T

dC T
dT .� (55)

RESULTS

The values of B(T) and C(T) computed from Eq. 
2 and 3, for real helium gas, are plotted in Figs. 2 
and 3. Note that the virial coefficients are plotted in 
terms of [cm3/mole], where [cm3/mole] = WHe/1000 
(m3/kg). The accuracy of these coefficients was 
checked by comparing the values of the resulting 
compressibility coefficient, Z, with those given in 
the tabulation of helium properties prepared by the 
International Union of Pure and Applied Chemistry 
(IUPAC). Figure 4 shows the compressibility 
coefficient Z, which was in very close agreement 
with IUPAC for all densities.

Figure 5 shows the multiplicative correction factor 
for pressure drop. It is a common practice the use of 
relation (Eq. 26), in a context of ideal gas, in order 
to obtain the solution for isothermal flow of real gas 
by only using a real specific heat ratio. However, it 
can be noted that the specific heat ratio is not the 
only parameter of influence. In fact, the correction 
factor 

!
P  must also be considered in this procedure. 

In this context, although the first methodology is 
easy to conceive, the latter, more complete, requires 
the knowledge of more details about the physical 
properties of the pure substance. Another interesting 
aspect of this result is related to the value of 

!
P . When 

a gas undergoes a reversible process, in which there 
is heat transfer, the process frequently takes place in 
such a manner that a plot of log P versus v is a straight 
line. This is called polytropic process (Wyllen and 
Sonntag, 1987, p. 167), in other words:

Table 1: Second virial coefficient – B(T)
Coefficient T < 1300 K T > 1300 K
b0 -13.4067 1.178236
b1 165.4459 -7.57134
b2 -1357.92 5225.701
b3 5959.061 -188923
b4 -12340.8 2460461

Table 2: Third virial coefficient – C(T)

Coefficient T
c0 -13.7898
c1 139.7339
c2 8114.259
c3 -17456.9

Pressure correction factor (εP)

From the Eq. 49, it is obtained:

!

P
T

R 1 B T T
dB T

dT
2 C T T

dC T
dT

,
� (52)
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Figure 2: Second virial coefficient – B(T).
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Figure 3: Third virial coefficient – C(T).
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Figure 4: Compressibility coefficient – Z.
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dP
P
dv
v Ideal

n ,
� (56)

where, n = 1 (one) is an ideal isothermal process.

From Eq. 32, 33 and 52, it is possible to note that: 

dP
P
dv
v Real

1

T P P
� (57)

Thus, the pressure corrector factor εP establishes 
a direct comparison of ideal and real isothermal 
processes. Results presented in Fig. 5 can be used as a 
good indicative of the tolerance that must be adopted 
in a system specification, based on isothermal fluid 
flow results. 

Figure 6 shows the entropy correction factor, εS. It 
is clear that εS is more temperature sensitive than εP. 
Internal energy and entropy are not directly physically 
measurable, whereas certain of the intensive variables 
(e.g. T,P) are. Thus, the entropy formulation presented 
in this paper is an important mathematical model 
to know the accuracy of entropy correction factor, 
obtained indirectly from the 1D analysis using ideal gas 
formulation. Another aspect that must be considered 
during flow analysis of helium gas is related to the 
discontinuity observed at T = 1300 K. Although it is 

not clear in B(T) variation (Fig. 2), this discontinuity 
is probably associated with the model adopted for gas 
equation. The fit curve coefficients for high temperature 
(Table 1) are not consistent when it is considered high 
variation in density.

COMENTS AND CONCLUSION

The primary purpose of this investigation was to develop 
a method required to study the behavior of real pure 
substance in an isothermal fluid flow. Particular emphasis 
was given to develop useful procedures and techniques 
in order to study the general types of gas, which are 
encountered in aeronautical applications, such as, wind 
tunnel, combustors, and so on. More complicated systems 
can be studied, in a 1D context, with little additional 
difficulty. From this research, it is possible to draw several 
conclusions:

•	 The mathematical formulations developed for pressure 
and entropy variation, Eq. 26 and 36, respectively, 
can be used for different pure substances. the 
pressure correction factors (εP) that must be adopted 
in an isothermal gas flow are a function of isothermal 
compressibility module, βT , and static pressure. These 
factors establish a direct comparison of ideal and real 
isothermal processes (Eq. 47).

•	 The entropy correction factor (εS) is a function 
of thermal expansion module (αP), isothermal 
compressibility module (βT), and specific volume 
(v). It is given by the Eq. 48. Similar to the 
pressure correction factor, it depends on the state 
equation.

Figure 5: Correction factor for pressure drop.
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Figure 6: Correction factor for entropy variation.
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