
J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

 https://doi.org/10.1590/jatm.v14.1278 THEMATIC SECTION | AVIATION SAFETY AND CONTINUED AIRWORTHINESS

ABSTRACT
This work aims to propose a customized, open-source data model for supporting an integrated process of Requirements and

Configuration Management that allows for keeping track of which requirement originated each part, subsystem and system—
and vice versa—, over their entire life cycle. That model might prospectively contribute to the processes of Aeronautical Engineering
design and Continued Airworthiness in organizations that do not want either to invest in complex existing commercial, proprietary
software packages or to train their professionals for that purpose. The complete source code of the model is provided in Python
and SQL languages.

Keywords: Requirements; Engineering; Configuration; Management; Safety.

A Customized Data Model for an
Integrated Process of Requirements
and Configuration Management
Sérgio Ricardo de Freitas Oliveira1,* , Guilherme Conceição Rocha2 , Donizeti de Andrade2

1.Lanlink Informática – Fortaleza/CE, Brazil. 2.Departamento de Ciência e Tecnologia Aeroespacial – Instituto Tecnológico de
Aeronáutica – Divisão de Engenharia Aeronáutica – São José dos Campos/SP, Brazil.

*Correspondence author: sergio.r.f.oliveira@ieee.org

INTRODUCTION

Design methodologies have been developed since the 1950s. According to Jänsch and Birkhofer (2006), the first guideline in
this field was developed in 1954 by Fritz Kesselring—a Swiss electrical engineer—who, in his book Technische Kompositionslehre
(Theory of Technical Composition) described a Wegleitung zur Erfindung (Guidance for inventions). Kesselring himself, along
with Friedrich Hansen—a German mechanical engineer—, gave rise to the Verein Deutscher Ingenieure (VDI) directive 2222 to
establish a “Project Methodology,” in 1973. The VDI 2222 guideline has four phases: clarification of the task, conceptual design,
embodiment design and detailed design, and already foresaw adaptations of requirements from one phase to another (Jänsch
and Birkhofer 2006). VDI 2222 was replaced in 1993 by the VDI 2221 directive – “Systematic Approach to the Development and
Design of Technical Systems and Products” which is still available (VDI 2017) and is based on VDI 2222 and on the principles of
Systems Engineering (Jänsch and Birkhofer 2006).

According to Kenneth J. Schlager (1956), the term “Systems Engineering” was probably first used by Bell Telephone Laboratories.
Buede (2009) reports that it appeared supposedly in the 1940s, and “had its development leveraged in World War II” (Buede 2009,
p. 6-7; INCOSE 2017). Therefore, the recognition of the importance of requirements definition, allocation and management comes

Received: May 31, 2022 | Accepted: Sept 08, 2022
Peer Review History: Single-Blind Peer Review.
Section editor: Joana Ribeiro

This is an open access article distributed under the terms of the Creative Commons license.

https://doi.org/10.1590/jatm.v14.1278
https://orcid.org/0000-0002-2292-9414
https://orcid.org/0000-0002-8847-9671
https://orcid.org/0000-0001-7058-656X
https://ror.org/01x81nn04
mailto:sergio.r.f.oliveira@ieee.org

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

Oliveira SRF, Rocha GC, de Andrade D2

from a long time. So much so, according to Buede (2009), the central problem of a project in Systems Engineering is defined in
terms of requirements.

Over the years, modeling languages have been developed to try to give more formalism to requirements elicitation and
management. One of the most notorious, if not the most notorious, is SysML, which is an open-source language proposed by the
Object Management Group (OMG) and derived from the Unified Modelling Language (UML), that uses standardized constructs
for analyzing, designing, specifying, verifying, and validating complex system (Ramos et al. 2012). SysML and UML offer a mix
of data models, functional models and database models.

Time also brought sophistications to Systems Engineering, one of them being the Model-Based Systems Engineering (MBSE),
which emphasizes the application of rigorous, formal analysis methods—usually computational models—throughout the design
and development process (Blanchard and Blyer 2016, p. 27). Such a greater rigor is favored by substitution of paper documents
for electronic ones. Here, the word “documents” may refer to requirements specifications, engineering diagrams, risk matrices,
configuration controls, change controls, among many others.

Because MBSE demands formalism in requirements specification, SysML seems to be the ideal method for that objective,
since it includes specific constructs for this purpose. However, it turns out that, in practice, the use of the SysML language
is still limited, perhaps because learning it takes a lot of time and effort, or their diagrams may seem counterintuitive and
difficult to understand by those unfamiliar with the language. To make things worse, the scenario is that MBSE be adopted
when many multidisciplinary groups of people are working together on the same project. So, it is possible that some or
many of those persons may not be versed in SysML, which makes it difficult for them to understand the diagrams and the
logic of the language.

Bone and Cloutier (2010) report that, in a survey conducted by the OMG in 2009, one of the main sponsors of the SysML
initiative regarding how SysML and MBSE had been used, 72.9% of the respondents agreed that “the primary purpose of the
[MBSE] model is to improve the quality of requirements and design to reduce downstream defects” (p. 3). However, in that same
survey, one of the key findings was that “the idea that MBSE and SysML require a steep learning curve is a theme that is found
throughout the survey when asked open-ended questions” (p. 3). It is also interesting to note that half of the respondents agreed
that “there should be an update to SysML in the next three years” (p. 4) but only in May 2017 OMG issued a new version of its
SysML language (OMG 2017).

There is a very comprehensive MBSE open-source tool called Capella (Thales 2018), but it is much more than a requirement
management software tool, and it is not web-based.

There are commercial alternatives from traditional vendors for Requirements Management that do not necessarily
rely on SysML. Typically, they are software packages that implement some form of framework for Systems Engineering or
for MBSE. To name some: IBM’s DOORS and Dassault’s 3DEXPERIENCE. Unfortunately, they are expensive—thousands
of dollars per year (Software Engineering Research Group 2012)—, and/or do not support web-based usage. For some
corporations, the cost for such tools might not even be the main problem when compared to other costs of their typical
programs: it might be, rather, the need of one more hard-to-learn, complicated tool to deploy and disseminate. Bonnet
et al. (2015, p. 3) reported that:

[...] for several reasons, the large-scale deployment of solutions based on UML […] did not succeed [in their
organization—the Thales Group—, where] […] software architects felt comfortable with UML, [but] systems and
hardware architects did not – and SysML was not considered as fully bridging the gap.

It is plausible that an open-source, web-based, cloud-enabled software tool specific for RE and CM might potentially have a
lower cost of ownership, be less complicated to deploy and easier to learn.

And there always exists the possibility of using spreadsheets—e.g., Excel—or text editors—e.g., Word—for basic requirements
management. George Koelsch (2016), a systems engineer with more than 40 years of experience in writing requirements for the
U.S. Army and U.S. Federal Government, in his book Requirements Writing for System Engineering, compared seven tools for

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

A Customized Data Model for an Integrated Process of Requirements and Configuration Management 3

requirements writing—varying from a simple typewriter to sophisticated software like CaliberRM, ReqPro, ALMComplete and
DOORS. His comparison considered 15 characteristics: Capture all the requirements; Update the baseline quickly; Capture additional
data; Visually represent all information; Support development methodologies; Easily search various fields; Generate a hard copy;
Span multiple projects; Not too complex; Not limit the engineer; Good documentation; Flexible; Ease of installation; and Good
online help and Cost. He concluded that:

[...] with cost included, Excel is second only to the top application in the industry, DOORS, by a slight margin. If you
remove cost, Excel is still second to DOORS but very comparable to all four of the dedicated requirements tools
examined. (Koelsch 2016, p. 262)

Unfortunately, those who have already used electronic spreadsheets for writing requirements probably felt many deficiencies
in referential integrity—e.g., keeping track of which requirement depends on which requirement—, keeping track of changes,
phases, authoring privileges, etc., to name only a few difficulties.

In the light of what is stated above, the objective of this work is to define an open-source, customized data model that can be
used by a software application for an integrated Requirements and Configuration Management process.

METHODS

It is plausible, given the public datasheets of existing commercial requirements management software, that most
of them use some form of Relational Database Management System internally; so, it is not an innovation to propose a
new approach to do that. However, in his quest for a nonproprietary data model for supporting an integrated process
of Requirements and Configuration Management, the authors have found only one—which is, nonetheless, much more
complex and comprehensive than the authors’ desires and needs originally demanded: the GEIA-927 Common Systems
Information Schema Concept (Colson 2005). The proposition of this work is, thus, to present a customized, open-source
data model specific for supporting an integrated process of Requirements and Configuration Management according to
the best practices of the literature and standards.

With a data model for integrated Requirements and Configuration Management it can be possible:
For Requirements Management:
• To specify all requirements and subrequirements of a project or program;
• To keep track of which requirements depend on which other requirements (interdependence tracking);
• To keep track of change history (who, when, why);
• To allow for change approval workflows;
• To allow for SQL queries and pivot-tables through Open Database Connectivity—or equivalent technologies—in

Microsoft Excel or Google Sheets, to identify the impact of changes in requirements, track interdependencies, adherences,
changes, and approvals;

• To allow for reuse of requirements between different projects;
For Configuration Management:
• To keep track of part-numbers, serial-numbers, suppliers, vendor warranties, drawings/diagrams in which the component

is located, over its entire lifetime;
• To keep track of digital files: full-path, version, author, date, modifications;
• To keep track of what requirements—from those registered in the requirements management process—a component

is addressed;
• To allow for queries via SQL and via pivot-tables in Microsoft Excel or Google Sheets;
• To document how a requirement is implemented in the final product.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

Oliveira SRF, Rocha GC, de Andrade D4

RESULTS

In this section a Customized Data Model for Integrated Requirements and Configuration which can also be extended to
Integrated Asset Management are defined and described.

The Proposed Model
The proposed model is based on the following two basic assumptions: 1) desires and needs from end-users or clients—

which are called Stakeholders Requirements in the context of this work—, must be elicited into System Requirements;
those requirements must be fulfilled by Configurations Items during the design phases; such items must finally be built
into Assets during the assembly/integration/test/launch phase; 2) the main attributes of each one of the above entities
must be kept and assessed in light of the original System Requirements and stakeholders desires and needs along all their
life cycle. Note: The standard IEC/IEEE 29148 – Systems and software engineering – Life cycle processes – Requirements
engineering, in its Section 6.2, “Stakeholder Requirement Definition Process,” states that this process “identifies
stakeholders, or stakeholder classes, involved with the system throughout its life cycle, and their needs, expectations, and
desires” (ISO/IEC/IEEE 2011, p. 19). Also, Blanchard and Blyer (2016), in their book System Engineering Management,
use extensively the term “desires” regarding the process of stakeholder’s requirement discovery (Blanchard and Blyer
2016). That is the reason why, throughout this text, this author uses the expression “Desires and Needs – D/N” to denote
those original aspirations.

In this section the main components of the model are described, and their main attributes and relationships explained.
The model is composed of 30 entities—or classes. A picture of it may be downloaded in a zoomable format from: https://github.
com/sergiorfoliveira/ircm/blob/master/IRCM%20UML%20Diagram.pdf.

In the following sections, a divide-and-conquer approach is implemented to discuss in detail the 6 main entities of the model.
Its 24 other classes, considered auxiliary, are also briefly discussed. Anyhow, the complete model source-code is available for
download at: https://github.com/sergiorfoliveira/ircm.

Interesting enough, the very model being proposed is, itself, subject to the assumptions listed in the previous paragraph. In fact,
not only the model, but all other components that take part in this same undertaking.

Tables 1 and 2 list the main classes and auxiliary classes of the proposed model, respectively.

Table 1. The proposed model main classes.

Class Short Description

Desires and Needs
A class for cataloging

stakeholders’ desires and
needs

Requirements List A class for cataloging
requirements

Items A class for cataloging CI and
Assets

Examination Verification
Validation Events

A class for cataloging
assessment events

Part Numbers A class for cataloging
part-numbers

Asset Requirements List A class for assigning
requirements to CIs or Assets

Source: Elaborated by the authors.

https://github.com/sergiorfoliveira/ircm/blob/master/IRCM UML Diagram.pdf
https://github.com/sergiorfoliveira/ircm/blob/master/IRCM UML Diagram.pdf
https://github.com/sergiorfoliveira/ircm

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

A Customized Data Model for an Integrated Process of Requirements and Configuration Management 5

Table 2. The proposed model auxiliary classes.

Class Short Description

Asset Classes A class for cataloging asset categories

Changes A class for cataloging changes in model and items

Clauses List A class for cataloging lists of S/R clauses

Configuration Baselines A class for cataloging Configuration Baselines

Hazards A class for cataloging hazards

Hazards List A class for cataloging lists of hazards

Interfaces A class for cataloging CI or Asset interfaces

Interface Types A class for cataloging types of interfaces

Manufacturers A class for cataloging Assets manufacturers’

Parent-Child 01 A class for “multiparent” D/Ns

Parent-Child 02 A class for “multiparent” requirements

Programs A class for cataloging Programs (i.e., sets of
Projects)

Projects A class for cataloging Projects

Requirement Levels A class for cataloging levels of requirements

Requirement Types A class for cataloging types of requirements

Stages A class for cataloging project stages

Stakeholders A class for cataloging Stakeholders

Standards A class for cataloging Standards/Regulations

Standard Clauses A class for cataloging S/R clauses

Violations A class for cataloging requirement violation reasons

VV Actions A class for cataloging actions of assessment events

VV Methods A class for cataloging methods of assessment events

VV Status A class for cataloging Pass/Fail status

Yes No A class for cataloging standard Yes/No assessment
answers

Source: Elaborated by the authors.

The Desires and Needs Class
This is where all begins. This class is intended to keep all desires and needs from end-user clients or stakeholders. Its attributes

are shown in Table 3. For many of these attributes the authors have been inspired by the American National Aeronautics and
Space Administration’s Systems Engineering Handbook (NASA 2007, p. 47-48); by the Chapter 5 from the book Engineering
Design: A Systematic Approach, from Pahl et al. (2007, p. 145-158); by the work of Koelsch (2016, p. 265-271); and by their very
own desires and needs.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

Oliveira SRF, Rocha GC, de Andrade D6

Table 3. The Desires and Needs Class attributes.

Attribute Description

GlobalID This is a unique identifier for the desire/need

SetName An optional attribute that allows grouping
desires/needs into sets

Label An optional label (e.g., 1.1, 1.2, 1.2.1, etc.)

ParentID
If the desire/need is derived from another, this
attribute keeps its “parent id,” i.e., the desire/

need from where it is derived

IsAlternativeForGlobalD
If the desire/need is a restatement of another,
this attribute keeps the desire/need “id” from

which it is a restatement

Type Type of the desire or need (e.g., Safety,
Security, etc.)

DesireOrNeedText Statement of the desire or need

Rationale Rationale of the desire/need

CreationTimestamp The timestamp of the registration of the
desire/need

CreatorStakeholder The stakeholder who registered the desire or
need

RequestorStakeholder The stakeholder who manifested the desire or
need

VerifierValidatorStakeholder The stakeholder who will be in charge of
validating the D/N

Frozen Whether this desire/need is frozen or not

FreezerStakeholder The stakeholder who has frozen the desire/
need

FreezingTimestamp The timestamp when the D/N is frozen

Source: Elaborated by the authors. Notes: If the D/N is a “child” D/N, i.e., it exists because
a “parent” D/N has been broken into sub-D/Ns for clarity or convenience—then the attribute
“ParentID” contains the “GlobalID” of the “parent” D/N. If the D/N has more than one “parent”
—i.e., more than one originating D/N—, the model has an auxiliary class called Parent-Child
01, which relates the D/N with its other parents. More on this follows in the section where
Parent-Child auxiliary classes are discussed. The “Type” attribute is useful for qualifying a
D/N as being related to issues like “Cost,” “Quality,” “Safety,” “Security,” etc. This allows for
keeping track of specific types of D/Ns. The “Frozen” attribute is intended to signal whether
a D/N is still being revised or is already available for further elicitation into one or more
System. The “IsAlternativeForGlobalD” attribute is intended to the tracking of changes of a
D/N: Rather than deleting the originating D/N and replacing it for a new one, a restatement
D/N keeps a pointer to the D/N from which it is derived, what allows for auditing and
liability control. It is important to note the difference between an “alternative” D/N—which is
basically a restatement from another one previously existent and intended to be replaced—,
from a “child” D/N, which is a D/N that exists because a “parent” D/N had been broken
into sub-D/Ns for clarity or convenience—this is the reason for the attribute “ParentID.”
For both attributes—“Frozen” and “IsAlternativeForGlobalD”—the authors have been inspired
by Chapter 30 of the book “System Engineering Analysis, Design, and Development” from

Charles Wasson (2016, p. 652-653).

The Requirements List Class
Once a D/N has been frozen, it is ready to be further elicited into one or more System Requirements, and the class “Requirements

List” is intended to keep all those elicited requirements. Its attributes are shown in Table 4.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

A Customized Data Model for an Integrated Process of Requirements and Configuration Management 7

Table 4. The Requirements List Class attributes.

Attribute Description

ReqID This is a unique identifier for the requirement

OriginatingDesireOrNeed The GlobalID of the originating D/N

OriginatingRequirement The ReqID of the requirement from which this requirement is derived, if any

ProgramRequirementOf If it is a program requirement, then this attribute contains the Program Name, Otherwise, stays empty

ProjectRequirementOf If it is a project requirement, then this attribute contains the Project Name, Otherwise, stays empty

CreationTimestamp The timestamp of the registration of the requirement

SetName An optional attribute for grouping requirements in sets

ReqLabel An optional label (e.g., 1.1, 1.2, 1.2.1, etc.)

IsAlternativeOf If the requirement is a restatement of another, this attribute keeps the requirement “id” from which it
is a restatement

ReqType Type of the requirement (e.g., Safety, Security, etc.)

ReqText Statement of the requirement

Rationale Rationale of the requirement

AssociationTimestamp The date/hour when the requirement has been associated to the project or program

AssociatorStakeholder The stakeholder who registered or associated the requirement to the project/program

VerifierValidatorStakeholder The stakeholder who will be in charge of V&V activities for this requirement

ReqLevel Stakeholder Requirement or System Requirement

Priority The priority of that requirement for that project/program

Difficulty The greater the number the greater the difficulty in implementing the requirement

StageOfAssociation The stage when that requirement is associated to the project (e.g., “Concept and Technology
Development,” “System Assembly, Integration, Test and Launch” etc.)

StageToBeVV Stage before or at which the requirement must be verified or validated

VVMethod Verification/Validation method (e.g., “Demonstration,” “Test,” “Simulation”, etc.)

Frozen Whether this requirement is frozen or not

FreezerStakeholder The stakeholder who has frozen the requirement

FreezingTimestamp The timestamp when the requirement is frozen

HazardListName The associated hazard list name

StdClausesListName The associated standards clauses list name

Source: Elaborated by the authors. Notes: The “OriginatingDesireOrNeed” attribute points to the frozen D/N from which the requirement has been derived, if any. If the
requirement is a “child” requirement—i.e., if it exists because a “parent” requirement has been broken into subrequirements for clarity or convenience—then the attribute
“OriginatingRequirement” contains the “ReqID” of the “parent” requirement. If the requirement has more than one “parent”—i.e., more than one originating requirement—,
the model has an auxiliary class called “Parent-Child 02,” which relates the requirement with its other parents. More on this follows in the section where Parent-Child auxiliary
classes are discussed. The attributes “ProgramRequirementOf” and “ProjectRequirementOf” indicate if the requirement refers to a program—i.e., a group of projects—or
to a project that belongs to a program, and, if so, it contains the program name or the project name, as appropriate. The proposed model has two auxiliary classes—
“Programs” and “Projects”—from which the names come from. The “SetName” attribute has two functions: to allow for grouping requirements in sets, and to allow for the
assignment of many requirements—the entire set—to a Part Number or to a Configuration Item at once. More on that is discussed in the section about the Items class. The
“ReqLevel” attribute keeps the level of the requirement, for instance, “Stakeholder Requirement” or “System Requirement.” In the context of this work, a requirement which
has not yet been reviewed considering the clause 5.2 from standard ISO/IEC/IEEE 29148:2011 – Requirements fundamentals, is still a Stakeholder Requirement, not yet a
System Requirement. The proposed model has a class to keep track of these reviews. The “ReqType” attribute is useful for qualifying a Requirement as being related to issues
like “Cost,” “Quality,” “Safety,” “Security,” etc. This allows for keeping track of specific types of requirements. The “Priority,” “Difficulty” and “StageOfAssociation” attributes exist
not only for convenience, but also for compliance with the clause 5.2 from standard ISO/IEC/IEEE 29148:2011 – Requirements fundamentals. The “StageOfAssociation”
attribute allows values from an auxiliary class called Stages. The prototype application assumes usable values for this attribute inspired by the Chapter 6 of the document
SX000i – International Guide for the Use of the S-Series Integrated Logistics Support Specifications (ASD/AIA 2016, p. 6.4), but the auxiliary class Stages allows for other
stage names. The “VVMethod” attribute exists mostly for compliance with clause 6.2 from standard ISO/IEC/IEEE 29148:2011—The Stakeholder requirements definition
process—, although it allows for the inclusion of other methods. The prototype application includes a method called “Examination” not for verification/validation actions,
but for requirement reviews (i.e.: the assessment of the quality of the requirement itself). The “HazardListName” attribute allows for the assignment of a list of previously
identified hazards which the requirement aims to mitigate. The proposed model has two auxiliary classes called Hazards and Hazards List which allow for keeping identified
hazards and groups of hazards, respectively. This attribute has been conceived to work in conjunction with the attribute “ReqType” for requirements of type “Safety.” The
“StdClausesListName” attribute allows for the assignment of a list of previously identified standard/regulation clauses on which the requirement has been based, if any. The
proposed model has three auxiliary classes called Standards, Standards Clauses and Clauses List, which allow for keeping standards/regulations, the clauses belonging to
those standards/regulations, and groups of clauses, respectively. This is useful for further documenting the reason of existence of a requirement, and to map standard/

regulation clauses into requirements or vice versa.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

Oliveira SRF, Rocha GC, de Andrade D8

The Items Class
Along with the Desires and Needs class and the Requirements List class, the Items class is among the top three main classes

of the proposed model since it allows for keeping track of Configuration Items and Assets. Its attributes are shown in Table 5.

Table 5. The Items Class attributes.

Attribute Description

ID This is a unique identifier for the Asset or the Configuration Item

Name This is the name of the item

ConfigurationBaseline This is the name of the configuration baseline to which the item belongs, if any

SerialNumber If the item is a real asset—e.g., a built/purchased item—, this attribute may keep the serial
number of the asset—or version number, if the asset is a document. Otherwise, it stays empty

Tag This is an optional attribute for keeping the tag of a built item—e.g., the registration of an aircraft

PartNumber The part-number of the asset. It must contain a valid part-number previously cataloged in the Part
Numbers class

VendorNickname The nickname of the vendor of the asset, if it is a purchased item. Otherwise, it stays empty

OwnerNickname The nickname of the owner of the asset, if it is a purchased item. Otherwise, it stays empty

Count The count—i.e., the number—of this item in its parent item or in the current
configuration baseline

ParentID The “parent” item, if the asset is component of a built/purchased item already cataloged. Otherwise,
it stays empty

CreatorStakeholder The stakeholder who cataloged the item

CreationTimestamp The timestamp when the item has been cataloged

FQFN It may contain the fully qualified filename, if the item is an electronic document, or the
specification document/drawing, if the item is not an electronic document.

Note Some description of the item

RequirementsSetName It may point to the attribute “SetName” of the Requirements List class, in case this item must
comply with a given set of already-cataloged requirements

Source: Elaborated by the authors. Notes: If the proposed model is used in a design organization, the attribute “ConfigurationBaseline” may be used
to keep track of the baseline name or version name of the configuration being designed, according to standard IEEE 828-2012. If the proposed
model is being used in a non-design organization—for instance, in an end-user or client organization—the attribute “ConfigurationBaseline” may be
left unused. Although an item may not have a serial number—for instance, items not yet built do not have serial numbers—, the proposed model
assumes that every item must have a “PartNumber”—be it an internally-assigned part-number, if the model is being used in a design organization—,
or a manufacturer-assigned part-number, if the model is being used in a non-design organization, for instance, in an end-user or client organization.
The proposed model has a class called Part Numbers which keeps track of usable part-numbers. The proposed model is agnostic in relation to
serial number and part-number formats. For items purchased from other organizations, the attribute “VendorNickname” may contain the name
of the vendor. The proposed model does not have a class for vendors since this information can be obtained from other sources or models. If the
item does not belong to the organization where the proposed model is used, for instance, if the organization only maintains the requirements of
the item, then the attribute “OwnerNickname” may contain the organization name of the item owner. The attribute “ParentID” allows for keeping
track of items that are subitems of another already cataloged item. The attribute “RequirementsSetName” may point to the attribute “SetName” of
the Requirements List class, in case the item must comply with a group of requirements. The proposed model supports another way of assigning

individual requirements to individual items.

The Examination/Verification/Validation Events Class
Along with the Asset Requirements List class, this is one more class that establishes relations between requirements and items.

The rationale is: if there is a requirement, then there must be at least 3 events related to that requirement, each event having one
action, such as “Examination,” “Verification” or “Validation”, in the following order:
• An assessment or review of the quality of the written requirement, considering the clause 5.2 from standard ISO/IEC/

IEEE 29148:2011 – Requirements fundamentals. In this proposed model, this kind of action is called “Examination,” but an
organization adopting this model may call that by any other name;

• A “Verification” event, in which the designed or built system/subsystem/element is verified against the requirement to answer
the question: was the item designed/built correctly? There are many possible ways for performing verification assessments—
for instance “Analysis,” “Demonstration,” “Inspection,” “Test” and “Simulation” (Buede 2009, p. 64). A prototype application
has already these methods cataloged and allows for the addition of others and the modification/deletion of existing ones.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

A Customized Data Model for an Integrated Process of Requirements and Configuration Management 9

• A “Validation” event, in which the designed or built system/sub-system/element is validated by the requestor stakeholder to
answer the question: Was the correct item designed/built? Note: This is a final assessment, at the real operational environment,
without the use of computational simulation.
Naturally, during the design/build phases of an Item there may exist many iterations of these 3 types of events, until a

requirement is considered to “pass” its “Examination,” or until a tuple Item-Requirement is considered to “pass” its “Verification”
and “Validation” events. And after that—and all over the entire life cycle of an item—, the Item may be subject to many “Verification”
and “Validation” events, depending on modifications it suffers. This class allows for recording all those events.

The attributes of this class are shown in Table 6.

Table 6. The Examination/Verification/Validation Events Class attributes.

Attribute Description

ID This is a unique identifier for the event

ReqID This attribute points to the requirement unique
identifier which has been the object of this event

AssetID

If the action of event is “Verification” or “Validation,”
then this attribute points to the item unique

identifier which is the object of the verification or
validation event. Otherwise, if the event action is
“Examination,” this attribute stays empty because

what has been assessed is the quality of the
requirement itself, not the compliance of an item

to a requirement

EventAction
The action that has been performed in the

event. For instance: “Examination,” “Verification,”
“Validation”

EventTimestamp The timestamp when the event took place

EventMethod
The method used to perform the event action.

For instance: “Analysis,” “Demonstration,”
“Inspection” etc

EventStatus The resulting status of the action. For instance:
“Pass,” “Fail”

MainViolation

If the requirement has failed the event, this attribute
keeps the primary reason of violation. For instance,

“Non-compliant,” “Ambiguous,” “Non-complete,” “Non-
consistent,” etc.

ExecutorStakeholder The stakeholder who has performed the event action

EventDescr A text attribute for describing event details, if desired

Source: Elaborated by the authors. Notes: The proposed model assumes that never an event is deleted from the events
repository. In case of a “Fail” event, a future “Pass” event will have to exist regarding the same item and/or requirement.
The prototype application assumes as possible values for the “MainViolation” attribute those cited in the clause 5.2 from
standard ISO/IEC/IEEE 29148:2011 – Requirements fundamentals (ISO/IEC/IEEE 2011, p. 6-18). The model has an
auxiliary class called Violations, which may contain other reasons beyond those. A prototype application created by the
authors assumes as possible values for the “EventMethod” attribute those listed in the book “The Engineering Design of
Systems: Models and Methods,” from Dennis Buede (2009, p. 64), except for the “Examination” method, for which the
authors have been inspired by the definition 4.1.23 from ISO/IEC/IEEE 29148:2011 (p. 6): “confirmation by examination
that requirements (individually and as a set) are well formed.” The model has an auxiliary class called Verification and

Validation Methods, which may contain other methods beyond those.

The Part-Numbers Class
As already stated, the proposed model assumes that an Item may not have a serial number, but every single item must have a

“PartNumber”—be it an internally-assigned part-number, if the model is being used in a design organization—or a third-party,

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

Oliveira SRF, Rocha GC, de Andrade D10

manufacturer-assigned part-number, if the model is being used in a non-design organization, for instance, in an end-user or client
organization. The attributes of this class are shown in Table 7.

Table 7. The Part-Numbers Class attributes.

Attribute Description

OurPartNumber This is a unique identifier of the part-number

OurDescription This attribute may contain a description of the part-number

ManufacturerNickname This attribute may contain the nickname of the manufacturer of the item, if it is a third-party
item. Otherwise, it stays empty

MafacturerPartNumber This is a unique identifier of the part-number, in case it is a third-party item. Otherwise, it
stays empty

ManufacturerDescription This attribute may contain a description of the manufacturer, in case it is a third-party item.
Otherwise, it stays empty

Class
This attribute contains the class to which the part-number belongs. For instance: “1510 –
Aircraft – fixed wing,” “1520 – Aircraft – rotary wing,” “1540 – Gliders,” “1550 – Drones,”

etc. The informed class must be previously cataloged by the Class auxiliary class

IsAlternativeFor If this part-number is an alternative for another part-number already cataloged, this attribute
points to its alternative unique identifier, i.e., its “OurPartNumber” attribute

RequirementsSetName It may point to the attribute “SetName” of the Requirements List class, in case this part-
number must comply with a given set of already-cataloged requirements

Source: Elaborated by the authors. Notes Regarding the attribute “Class,” the proposed model has an auxiliary class for containing usable categories of part-numbers.
In the prototype application are proposed some part-number categories inspired in the U.S. Federal Supply Classes (U.S. Department of Defense 2018), but the model
has an auxiliary class called Asset Classes which may contain other categories beyond those. The attribute “RequirementsSetName” may point to the attribute “SetName”
of the Requirements List class, in case the part-number must comply with a group of requirements. It is assumed that all items having that part-number will have to
comply with those requirements. But the proposed model supports another way of assigning individual requirements to part-numbers. The proposed model is agnostic in

relation to part-number formats.

The Asset Requirements List Class
As already stated, the proposed model provides two ways of assigning requirements to items or to part-numbers: a) through

the “SetName” attribute of the Requirements List class—and its counterpart “RequirementsSetName” attribute of the Items
and Part Numbers classes; b) through the Asset Requirements List class, which allows for assigning individual requirements
either to individual items or to individual part-numbers, using the Asset Requirements List class. The attributes of this class
are shown in Table 8.

Table 8. The Asset Requirements List Class attributes.

Attribute Description

ID This is a unique identifier of the assignment

ListName This is the name of the list of assignments

AssetID
If the requirement is being assigned to an item, this attribute contains the
unique identifier of the item, previously cataloged through the Items class.

Otherwise, it stays empty

PartNumberID
If the requirement is being assigned to a part-number, this attribute contains
the unique identifier of the part-number, previously cataloged through the Part

Numbers class. Otherwise, it stays empty

ReqID This is the unique identifier of the requirement being assigned to an item or to
a part-number

Source: Elaborated by the authors. Notes: It is assumed that if a requirement set is assigned to a part-number—through its “RequirementsSetName”
attribute—, all items that share that part-number will have to comply with that group of requirements, even though the tuple item-requirement is not
related by the Asset Requirements List class. This allows for a powerful way of assigning multiple requirements to multiple items without the need of
individually assigning each requirement to each item. It is assumed that for each assignment done through the Asset Requirements List class, either

a value to the attribute “AssetID” or to the attribute “PartNumberID” will be informed, not to both.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

A Customized Data Model for an Integrated Process of Requirements and Configuration Management 11

Auxiliary Classes
The proposed model has 30 main classes. The other classes—some of them already cited in previous Sections—, are briefly

listed below. The auxiliary classes are:
• Asset Classes: Allows for keeping asset categories—e.g., “1510 – Aircraft – fixed wing,” “1520 – Aircraft – rotary wing,”

“1540 – Gliders,” “1550 – Drones,” etc. The prototype application proposes some usable categories based on U.S. Federal
Supply Classes (U.S. Department of Defense 2018), but the Asset Classes may deal with other categories beyond those.

• Changes: Allows for keeping changes made in the model itself and in the values kept by its main classes. This is a true
auxiliary class—or meta-class—since nothing else in the model depends on this class.

• Clauses List: Allows for keeping groups of clauses taken from regulations or standards. These groups—or lists—of clauses
may then be assigned to requirements. This class is directly related to the Standards and Standard Clauses classes.

• Configuration Baselines: Allows for keeping attributes of configuration baselines, such as whether the baseline is frozen or
not, and if so, who performed the freezing of the configuration, and when.

• Hazards: Allows for keeping hazards, e.g., “There may be child requirements that are not compliant.”
• Hazards List: Allows for keeping groups of hazards kept by the Hazards class. These groups—or lists—of hazard may then

be assigned to requirements.
• Interfaces: Allows for keeping how many items having a specific part-number may be contained in—or connected to—

other items having other specific part-numbers through specific types of interfaces. This is useful for applications that
want to verify if a configuration being designed is valid.

• Interface Types: Allows for keeping usable interface types, e.g., “ARINC-629,” “ARINC-664-P7-AFDX,” etc. This class is
directly related to the Interfaces class.

• Manufacturers: Allows for keeping attributes of usable manufacturers, such as the nickname and the “id” of the
manufacturer in the organization ERP system. By design, it has been chosen to keep this class as minimalistic as possible
in the proposed model, since such attributes are typically maintained by other models of an organization.

• Parent-Child 01: Allows for keeping D/Ns that have more than one “parent” D/N.
• Parent-Child 02: Allows for keeping requirements that have more than one “parent” requirement. Note: Even though the

model allows for requirements with more than one “parent,” this does not mean this functionality must be used by an
adopting Organization. This is a discretionary functionality. For example, a professional application based on this model
may be configured to enforce the limit of one “parent”, at most, for any requirement. However, in some circumstances it
may be desirable, or even mandatory, to have a requirement with more than one “parent,” depending on the Organization
policy and/or the system being designed. Another reason for including that functionality is that at least one author—e.g.,
Robert Halligan (2018)—who was a reviewer of EIA 632 and EIA 731 standards and a content contributor to EIA 632
standard—, have manifested a favorable opinion about the possibility of having multiple “parent” requirements to a single
“child” requirement.

• Programs: Allows for keeping attributes of existing programs. Note: In this context, a program is a group of projects.
By design, it has been chosen to keep this class as minimalistic as possible in the proposed model, since such attributes
are typically maintained by other models of an organization. This class is directly related to the Projects class.

• Projects: Allows for keeping attributes of existing projects. By design, it has been chosen to keep this class as minimalistic
as possible in the proposed model, since such attributes are typically maintained by other models of an organization.

• Requirement Levels: Allows for keeping the level of a requirement, for instance, “Stakeholder Requirement” or “System
Requirement.” In the context of this work, a requirement which has not yet been reviewed considering clause 5.2 from
standard ISO/IEC/IEEE 29148:2011 – Requirements fundamentals – is still a Stakeholder Requirement, not yet a System
Requirement. Anyhow, this class supports any values one may find appropriate to use.

• Requirement Types: Allows for keeping usable types of requirements, such as “Cost,” “Quality,” “Safety,” “Security,”
etc. The prototype application proposes some usable values for this attribute based on the following sources: the book

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

Oliveira SRF, Rocha GC, de Andrade D12

Engineering Design - A Systematic Approach from Pahl et al. (2007, p. 567) and the clause 5.2.8.2 from the standard ISO/
IEC/IEEE 29148:2011 (p. 13).

• Stages: Allows for keeping usable stages—or phases—for program and project life cycles, such as “Pre-Phase A: Concept
Studies,” “Phase A: Concept and Technology Development,” “Phase B: Preliminary Design and Technology Study,” etc.
The prototype application proposes some usable values for this attribute based on the document SX000i - International
Guide for the Use of the S-Series Integrated Logistics Support Specifications (ASD/AIA 2016, p. 6.4).

• Stakeholders: Allows for keeping stakeholders’ attributes. By design, it has been chosen to keep this class as minimalistic
as possible in the proposed model, since such attributes are typically maintained by other models of an organization.

• Standards: Allows for keeping standards/regulations attributes, such as title, issuer and year.
• Standard Clauses: Allows for keeping relevant clauses from standards/regulations. This class is directly related to the

Standards and Clauses List classes.
• Violations: Allows for keeping reasons of violation of requirements, such as “Ambiguous,” “Non-complete,” “Non-

consistent,” etc. The prototype application proposes some usable values for this attribute based on the clause 5.2 from
standard ISO/IEC/IEEE 29148:2011 (p. 8-14).

• VV Actions: Allows for keeping actions related to verification/validation events, such as “Verification,” “Validation,”
“Examination,” etc. The prototype application proposes some usable values for this attribute based on definitions 4.1.22,
4.1.23, 4.1.32, 4.1.33 from standard ISO/IEC/IEEE 29148:2011 (p. 6-7).

• VV Methods: Allows for keeping methods related to requirement review/verification/validation events, such as
“Analysis,” “Demonstration,” “Inspection,” “Test,” etc. The prototype application proposes some usable values for this
attribute based on the following source: the book “The Engineering Design of Systems: Models and Methods,” from
Dennis Buede (2009, p. 64), except for the “Examination” method, which is based in the definition 4.1.23 from ISO/
IEC/IEEE 29148:2011 (p. 6).

• VV Status: Allows for keeping the result of a requirement review/verification/validation event, such as “Pass” or “Fail.”
• Yes No: Allows for keeping standard responses to questions like “Have the requirement passed the assessment?” Note: the

“Yes No” class is useful for customizations and for localization, for example, to adapt some instantiation of model to
languages different from the English. This is suitable in Organizations where the words “Yes” and “No” must be substituted
for their respective counterparts in their native languages. The same may be said about other classes—for instance, the
“VV Status” class, which may contain words like “Pass” or “Fail” etc.

DISCUSSION

Benefits of the Proposed Model
The proposed model might lead to the following benefits:

• It allows to build a software application for integrated Requirements and Configuration Management, since the support for
necessary referential integrities between configurations, requirements, assessment events, part-numbers, stakeholders and
manufacturers is built into the model.

• More than that, it enables to extend such a software application to integrate Asset Management into Requirements and
Configuration Management, since the model already includes the support for referential integrities between serial numbers,
part-numbers, configurations, vendors and manufacturers, allowing the application to keep track of requirement compliance
over the entire life cycle of an asset.

• It enables a software application to implement the management of requirements, configurations and assets in an integrated
manner as preconized by Systems Engineering disciplines.

• The changes in a requirement itself may be tracked from the original D/N over the entire life cycle of the requirement, since
the model allows for requirement restatement without the exclusion of old versions.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

A Customized Data Model for an Integrated Process of Requirements and Configuration Management 13

• Assessment events—e.g., examination, verification and validation events—, in which items are verified/validated in light of
requirements, and requirement statements are examined in light of standards—, may be easily tracked over the entire life
cycle of the requirements and over the entire life cycle of the item, since the model allows for newer events to be included
without the exclusion of older events. Among other things, this enables to track who are the authors that write the best and
the worse requirement statements, as a support information for training planning.

• Standards and regulations can be integrated into requirements by a software application since the necessary attributes and
support for referential integrities are already built into the model. Also—and for the same reason—, hazards can be easily
integrated into requirements.

• Certain requirements, like the ones regarding to safety, can be classified and tracked separately from other types, as well as
the related hazards which are relevant to those requirements, since the model already has attributes for keeping the type of
the requirement and the hazards.

• Since the model is all-relational, non-hierarchical, and non-object-oriented, it can be implemented in a conventional
Relational Database Management System.

• It allows for tracking in which stage of the project a requirement has been created or restated, and who did that;
• It can be used as a teaching aid tool in classes related to Requirements and Configuration Management.
• It allows for keeping statistics or key performance indicators on the quality of the requirement writing process, for liability

control, for training plans, and to assess the impact of requirements volatility on the Systems Engineering discipline.
• It can be used as a support tool in the QFD methodology, enabling the incorporation of “the voice of the regulator” to the

QFD Matrix I.
All the basic attributes necessary for implementing an application with approval workflow functionality are already included in the

proposed model. Thus, a new requirement or configuration—or a change in an existing requirement or an existing configuration—,
can be easily checked against requirements, standards and decision-making policies for compliance verification and approval.

The verification of the above benefits—except for the last four, which are just inferred—was carried out by a prototype web-
based application which is available in the GitHub repository. The validation of all the above benefits and the verification of last
four ones are left for future works.

The authors understand that an open data model such as the one proposed, compliant with the System Engineering
taxonomy, allows for both—the analysis of safety issues in the design phase, and the deployment of processes for minimizing
the chance of neglecting safety-relevant aspects during the development of critical systems; not to mention other aspects such
as security, quality, etc.

This would be particularly useful for small and medium Organizations and for the academic community—that may not be
willing to acquire a sophisticated, proprietary market solution, configure it, and train their staff to effectively use it to implement
basic Systems Engineering practices—, and to those who would be interested in extending or adapting the model for their
specific needs.

CONCLUSION

From the ground up, the process of designing the data model has been done in light of the fact that a proposed model
originated from this work would have to fulfill, itself, a set of requirements and would have to result in configuration items and
assets which should be, themselves, managed, in an integrated way, by a prototype web application built to use the very proposed
model, instantiated in the form of a relational database in an open-source RDBMS. If the originating requirements were robust
enough, detailed enough and open enough, the proposed model could be verified and validated by third parties in light of its own
requirements and/or third-party requirements and in light of the best practices of Systems Engineering, Requirements Management
and Configuration Management disciplines.

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

Oliveira SRF, Rocha GC, de Andrade D14

The endeavor has been successful, resulting in a customized data model capable of providing the necessary support for an
integrated process of Requirements and Configuration Management, and in a database and a prototype web application capable
of verifying the model.

The result of this work contributes to the diffusion and incorporation of Systems Engineering best practices specially in academy
and in small and medium-sized companies since they do not have the time, accumulated experience, and money available to
implement from scratch SE processes.

AUTHORS’ CONTRIBUTIONS

Conceptualization: Oliveira SRF; Methodology: Rocha GC; Software: Oliveira SRF; Validation: Rocha GC; Formal analysis:
Oliveira SRF; Investigation: Oliveira SRF; Resources: Oliveira SRF; Data Curation: Oliveira SRF; Writing - Original Draft: Oliveira SRF;
Writing - Review & Editing: Oliveira SRF; Visualization: Oliveira SRF; Supervision: Rocha GC; Project administration: de Andrade D.

DATA AVAILABILITY STATEMENT

The data are available in: https://github.com/sergiorfoliveira/ircm

FUNDING

Not applicable.

ACKNOWLEDGEMENTS

Not applicable.

REFERENCES

[ASD/AIA] AeroSpace and Defence Industries Association of Europe, Aerospace Industries Association (2016) SX000i -
International Guide for the Use of the S-Series Integrated Logistics Support (ILS) Specifications, Brussels: ASD/AIA. [accessed
Dec 9 2017]. http://www.sx000i.org/docs/SX000i_Issue_1.1.pdf

Blanchard BS, Blyer JE (2016) System engineering management. 5th ed. Hoboken: Wiley.

Bone M, Cloutier R (2010) The current state of model based systems engineering: Results from the OMG™ SysML Request
for Information 2009. Paper presented 8th Conference on Systems Engineering Research. CSER 2010; Hoboken, NJ, USA.
[accessed May 31 2022]. https://www.omgsysml.org/SysML_2009_RFI_Response_Summary-bone-cloutier.pdf

Bonnet S, Voirin J-L, Normand V, Exertier D (2015) Implementing the MBSE cultural change: Organization, coaching and
lessons learned. INCOSE International Symposium 25(1):508-523. https://doi.org/10.1002/j.2334-5837.2015.00078.x

Buede DM (2009) The engineering design of systems: Models and methods. 2nd edition. Hoboken: Wiley.

Colson J (2005) GEIA-927 Common data schema for complex systems. Huntsville: U.S. Army, Logistics Support Activity.

https://github.com/sergiorfoliveira/ircm
http://www.sx000i.org/docs/SX000i_Issue_1.1.pdf
https://www.omgsysml.org/SysML_2009_RFI_Response_Summary-bone-cloutier.pdf
https://doi.org/10.1002/j.2334-5837.2015.00078.x

J. Aerosp. Technol. Manag., São José dos Campos, v14, e2622, 2022

A Customized Data Model for an Integrated Process of Requirements and Configuration Management 15

Department of Defense (US) (2018) Defense Logistics Agency. ASSIST Quick Search Help. [access Jan 29 2018]. http://
quicksearch.dla.mil/qsHelp.aspx

Halligan R (2018) Multiple parents to a single child requirement. Project Performance International. [accessed Feb 19 2018].
https://www.ppi-int.com/resources/systems-engineering-faq/multiple-parents-single-child-requirement/

[IEEE] Institute of Electrical and Electronics Engineers (2012) IEEE 828:2012: IEEE Standard for Configuration Management
in Systems and Software Engineering. New York: IEEE.

[INCOSE] International Council on Systems Engineering (2017) History of systems engineering. [Accessed Dec 07 2017].
https://www.incose.org/AboutSE/history-of-systems-engineering

[ISO/IEC/IEEE] International Organization for Standardization / International Electrotechnical Commission / Institute of
Electrical and Electronics Engineers (2011) ISO/IEC/IEEE 29148 – Systems and software engineering – Life cycle processes
– Requirements engineering. Geneva: ISO/IEC/IEEE. [access Dec 9, 2017]. https://www.iso.org/standard/72089.html

Jänsch J, Birkhofer H (2006) The development of the Guideline VDI 2221 – The change of direction. Paper presented
DS 36: Proceedings DESIGN 2006, The 9th International Design Conference, Dubrovnik. [access Dec 9, 2017].
https://www.designsociety.org/publication/18983/THE+DEVELOPMENT+OF+THE+GUIDELINE+VDI+2221+-
+THE+CHANGE+OF+DIRECTION

Koelsch G (2016) Requirements writing system engineering. New York: Apress.

[NASA] National Aeronautics and Space Administration (US) (2007) Systems Engineering Handbook. Washington (DC): NASA.

[OMG] Object Management Group (2017) About the OMG System Modeling Language Specification Version 1.5. [accessed
Dec 09 2017]. http://www.omg.org/spec/SysML/1.5/

Pahl G, Beitz W, Feldhusen J, Grote H (2007) Engineering Design – A systematic approach. 3 ed. London: Springer.

Ramos AL, Ferreira JV, Barceló J (2012) Model-based systems engineering: An Emerging Approach for Modern Systems.
IEEE Trans Syst Man Cybern Syst 42(1):101-111. https://doi.org/10.1109/TSMCC.2011.2106495

Schlager KJ (1956) Systems engineering-key to modern development. IRE Trans Eng Manage EM-3(3):64-66. https://doi.
org/10.1109/IRET-EM.1956.5007383

Software Engineering Research Group (2012) Survey on requirements engineering (RE) tools. Grupo de Ingeniería del
Software. [accessed Dec 23 2017]. http://www.um.es/giisw/EN/re-tools-survey

Thales (2018) How Capella Help You? [accessed May 31 2018] http://polarsys.org/capella/index.html

[VDI] Verein Deutscher Ingenieure (2017) VDI-Standard: VDI 2221 Systematic approach to the development and design
of technical systems and products. [accessed Dec 08 2017]. http://www.vdi.eu/guidelines/vdi_2221-methodik_zum_
entwickeln_und_konstruieren_technischer_systeme_und_produkte/

Wasson C (2016) System engineering analysis, design, and development: Concepts, principles, and practices. Hoboken: Wiley.

http://quicksearch.dla.mil/qsHelp.aspx
http://quicksearch.dla.mil/qsHelp.aspx
https://www.ppi-int.com/resources/systems-engineering-faq/multiple-parents-single-child-requirement/
https://www.incose.org/AboutSE/history-of-systems-engineering
https://www.iso.org/standard/72089.html
https://www.designsociety.org/publication/18983/THE+DEVELOPMENT+OF+THE+GUIDELINE+VDI+2221+-+THE+CHANGE+OF+DIRECTION
https://www.designsociety.org/publication/18983/THE+DEVELOPMENT+OF+THE+GUIDELINE+VDI+2221+-+THE+CHANGE+OF+DIRECTION
http://www.omg.org/spec/SysML/1.5/
https://doi.org/10.1109/TSMCC.2011.2106495
https://doi.org/10.1109/IRET-EM.1956.5007383
https://doi.org/10.1109/IRET-EM.1956.5007383
http://www.um.es/giisw/EN/re-tools-survey
http://polarsys.org/capella/index.html
http://www.vdi.eu/guidelines/vdi_2221-methodik_zum_entwickeln_und_konstruieren_technischer_systeme_und_produkte/
http://www.vdi.eu/guidelines/vdi_2221-methodik_zum_entwickeln_und_konstruieren_technischer_systeme_und_produkte/

