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ABSTRACT: In this paper, the Ensemble Kalman Filter is 
compared with a 4DVAR Data Assimilation System in chaotic 
dynamics. The Lorenz model is chosen for its simplicity in 
structure and the dynamic similarities with primitive equations 
models, such as modern numerical weather forecasting. It 
was examined if the Ensemble Kalman Filter and 4DVAR are 
effective to track the Control for 10, 20 and 40% of error at 
the Initial Conditions. With 10% of noise, the trajectories of 
both are almost perfect. With 20% of noise, the differences 
between the simulated trajectories and the observations as 
well as “true trajectories” are rather small for the Ensemble 
Kalman Filter but almost perfect for 4DVAR. However, the 
differences are increasingly significant at the later part of 
the integration period for the Ensemble Kalman Filter, due the 
chaotic behavior system. However, for the case with 40% error 
at the Initial Condition, neither the Ensemble Kalman Filter 
or 4DVAR could track the Control with only 3 observations 
ingested. To evaluate a more realistic assimilation application, 
it was created an experiment in which the Ensemble Kalman 
Filter ingested single observation at the 180th time step in 
the X, Y, and Z Lorenz variables and only in the X variable. The 
results show a perfect fit of 4DVAR and the Control during a 
complete integrations period, but the Ensemble Kalman Filter 
has a disagreement after the 80th time step. On the other 
hand, it was shown a considerable disagreement between 
the Ensemble Kalman Filter trajectories and the Control as 
well as a total fail of 4DVAR. Better results were obtained for 
the case in which observation covers all the components 
of the model vector.

KEYWORDS: Data Assimilation, Ensemble Kalman Filter, 
4DVAR, Lorenz equations.
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INTRODUCTION

Numerical models are an important tool to weather 
forecasting, probably the most of all, being largely applied to 
specific issues, such as aeronautic weather forecasting. The 
development to improve these models is an ongoing process, 
and Data Assimilation has been a significant research line to 
improve weather forecasting model and its applications, such 
as wind profile predictive models, applied by the Brazilian 
Air Force at the Centro de Lançamento de Alcântara (CLA), 
Maranhão State.

Data Assimilation is a procedure to get the Initial 
Condition as accurately as possible, through the statistical 
combination of collected observations and a background 
field, usually a short-range forecast; such a best estimate 
is called “analysis” in Meteorology. The Data Assimilation 
community has extensively tested 2 approaches, one based 
on Kalman filtering and another, on variational calculation. 

Several operational meteorological centers, such as the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF), used to have Three-Dimensional Data Assimilations 
(3DVAR) to build their analysis (Parrish and Derber 1992; 
Courtier et al. 1998). 3DVAR is a kind of accurate statistical 
interpolation, being computationally feasible. However, it 
does not consider the “errors of the day”. It means that the 
background error covariance is static. To overcome this failure, 
4DVAR (Courtier and Talagrand 1998; Rabier and Courtier 
1992; Courtier et al. 1994; Rabier et al. 2000) and Kalman 
filters (Miller et al. 1994) have been subject of many researches. 
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Th e 4DVAR is model-dependent and computationally much 
more expensive than 3DVAR, but more accurate. In turn, only 
reduced rank Kalman Filters (KF) can be applied to operational 
numerical weather forecasting owing the computational cost. 
KF are especially interesting due the capacity to estimate the 
error covariance of the analysis.

The large dimension of the models can prohibit the 
implementation of KF in operational numerical weather 
prediction, but its implementation with simplifi cations — such 
as Ensemble Kalman Filter  (EnKF; Evensen 1994; Burgers et al. 
1998; Whitaker and Hamill 2002; Tippet et al. 2003), Ensemble 
Transform Kalman Filter (ETKF; Bishop et al. 2001), Ensemble 
Adjustment Kalman Filter (EAKF; Anderson 2001) and Local 
Ensemble Kalman Filter (LEKF; Ott et al. 2002, 2004) — is 
possible due to the decrease in the computational cost.

The purpose of this research was to compare an EnKF 
to a 4DVAR Data Assimilation system through the Lorenz 
equations and the sensitivity of the model to Initial Condition 
(IC) for non-linear and chaotic regimes. The main objective 
was to compare an implementation of the EnKF to a 4DVAR 
method with different noise levels at the IC and explore the 
assimilation systems over-determined by lack of observation. 

Th e organization of the paper is as follows: the “Methodo-
logy” section describes a brief theoretical formulation of Lorenz 
equations and presents a basic introduction to EnKF and 4DVAR; 
numerical experiments are shown in the “Results” section and 
fi nal comments are found in the “Final Comments” section.

METHODOLOGY
LORENZ EQUATIONS

Lorenz was looking for the periodic solutions of the 
Saltzman’s model (1962), considering a spectral Fourier 
decomposition and only low-order terms. Then, he obtained 
the following system of non-linear coupled ordinary 
differential equations:

(diameter of the Rayleigh-Bénard cell) and time, respectively; 
σ ≡ κ–1v is the Prandtl number, being v the kinematic 
viscosity; b ≡ 4(1 + a2)–1

 is the relation between the height 
and the width of the rectangle (orbit travelled; Saltzman 1962); 
the parameter r = R/Rc ∞ ∆T is the Rayleigh number, being
T the temperature and Rc the critical Rayleigh number.

ENSEMBLE KALMAN FILTER
Kalman Filter is the best linear unbiased estimator for a 

linear model under Gaussian assumption for the measure-
ments and model random errors. The Kalman Filter method 
for non-linear models is called Extended Kalman Filter 
(EKF) and is given by the following definition, considering 
forecast and analysis procedures:

where τ ≡ π 2 H–2 (1 + a2) κ t is the non-dimensional time, being 
H, a, κ and t layer height, thermal conductivity, wave number 
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where Fn is our mathematical model; μn is the stochastic 
forcing (modeling noise error); subscript n denotes discrete 
time-step; superscript f represents the forecasting value. 
The observation system [y 

o

n+1 –H(w f 
n+1) + vn] is modeled 

by the matrix H, and vn is the noise associated to the Y 
observation. The typical gaussianity, 0-mean and ortogonality
hypotheses for the noises are adopted. Th e state vector is 
defi ned as wn+1 = [Xn+1, Yn+1, Zn+1] and estimated through 
the recursion w a 

n+1 = w f 
n+1 + Kn+1[y 

o

n+1 –H(w f 
n+1)], where

w a 
n+1 is the analysis value, Kn is the Kalman gain, computed 

from the minimization of the estimation error variance Jn+1
(Lorenz 1963), being Jn+1 = E{(w a 

n+1 – w f n+1)
T (w a 

n+1 – w f n+1)},being
E{.} the expected value; Q is the covariance of μn and Rn 
is the covariance of vn. The assimilation is done through 
the sampling: rn+1 ≡ yn+1 – y f 

n+1 = yn+1 –Hnw f 
n+1; Pa and Pf

are forecast and analysis covariance error,respectively.
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According to Kalnay (2004), “Even if a system starts 
with a poor initial guess of the state of the atmosphere, the 
EKF may go through an initial transient period of a week or 
so, after which it should provide the best unbiased estimate 
of the state of the atmosphere and its error covariance”.  
However, according to Miller et al. (1994), if the system is 
very unstable and the observation is not frequent enough, 
it is possible for the linearization to became inaccurate, and 
the EKF may drift away from the true solution. 

The updating of Eq. 5 provides the “errors of the day”, 
but its computational cost makes this updating impossible in 
practice to carry out. Therefore, this equation was replaced 
by simplifying assumptions, such as ensemble mean. In this 
study, it was proposed an EnKF which consists of replacing 
the forecast error covariance (Eq. 5) by:

where α is a parameter to be chosen to achieve convergence 
through iterations;  ∇J is the gradient of the cost function 
with respect to initial state w 0 

f, k. 
If the iteration Eq. 11 converges, w 0 

f, k will approximate the 
desired initial state w 0 

f, ∞ that satisfies J = min (J). However, 
for operational primitive equation models, where the number 
of degrees of freedom is of the order of 107, this approach 
has some limitations. One of the limitations is overcoming 
by the adjoint model integrated backwards in time, which 
achieves an exact cost function gradient. This methodology, 
called 4DVAR, is summarized in the next section.

TANGENT LINEAR OPERATOR AND TANGENT 
LINEAR MODEL

Considering the model state w 0 
f  and its small perturbation

w 0 
f, tl (where tl means tangent linear), the change in the cost

function J (w 0 
f ), caused by the small perturbation, is denoted

by Jtl (w 0 
f ), where:where the ensemble has K data assimilation cycles; k is the 

iteration.

FOUR-DIMENSIONAL VARIATIONAL DATA 
ASSIMILATION

In order to formulate the 4DVAR, first of all, a cost function 
J should be introduced to measure the misfit between the 
model and observations: 

In this approach, the model is used as a strong constraint 
(Sasaki 1970); it means that the model is considered perfect 
in the cost function formulation.

To minimize the difference between the model state 
and the observation, it could be used an iterative process 
where the values of the initial ones and model parameters 
are adjusted in the opposite direction of the gradient of the 
cost function. In operational weather forecasting, efficient 
minimizations methods are necessary, such as quasi-Newton 
and conjugate-gradient. In this research, it was used a simple 
steepest descent approach with α, due the lower dimension 
of the Lorenz equations, given by:

In the limit of || w 0 
f, tl || → 0, Eq. 12 becomes

Using the definition of J(w 0 
f ) in Eq. 10, Eq. 12 can be

written as

Combining Eqs. 13 and 14, one has

Equation 15 may be used to compute the gradient of the 
cost function J(w 0 f ), since the relationship between wk 

f, tl

and w 0 
f, tl is found. To find this relationship, linearization of 

the model w k 
f = N(w f k-1)around the basic state , is done by:

where L(w k 
f ) is the tangent linear operator which depends 
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Figure 1. Resulting model state trajectories. 

on the basic state w k 
f and time step k. 

Equation 16 is the tangent linear equation of the forward 
model (Eq. 4). Through this equation, iteratively, the desired 
relation between w k 

f,tl and w0 
f,tl is obtained by:

• Integration of adjoint model backward in time 
(Eq. 21). During this integration, the observation 
is ingested whenever it exists. By this step, the cost 
function is minimized (Eq. 11).

• A new initial state is provided by Eq. 11.
• This new initial state is used to start the next k cycle.

RESULTS
NUMERICAL EXPERIMENTS

In the results explored forward from here, the Lorenz 
equations are solved by finite differences with a non-
dimensional time increment of 0.01 for 200 time steps 
integration length. According to Lorenz (1963), at a given 
σ = 10 and b = 8/3, the corresponding Rayleigh number 
is 24.74, which means that r larger than 24.74 will make a 
chaotic system. In this paper, only the variable X is depicted, 
just because Y and Z take to the same conclusions.

In this study, the sensitivity of the model (Classic Experiment) 
to the IC is evaluated. In Fig. 1a, it is depicted the resulting
model state trajectories for σ = 10, b = 8/3 and r = 10, assuming the
IC to be X0 = 1.00, Y0 = 3.00, Z0 = 5.00 (Case 1) and assuming 
IC to be X0 = 1.10, Y0 = 3.30, Z0 = 5.50 (Case 2). It means that 
Case 1 diff ers from Case 2 with an off set of 10% of noise for 
all model variables. In Fig. 1b, this experiment is directed to 
the chaotic regime (r = 32), Case 3 and Case 4.

This simple experiment shows that, for non-linear 
regime (r = 10), the noise at the IC is not determinant for the 
success of the prediction. By other side, for chaotic regime 
(r = 32), comparing the trajectories of Case 1 and Case 2, 
it is clearly seen that the bifurcation in the model solution 

where:

Substituting Eq. 17 in Eq. 15, it is obtained

where LT 
K is the transpose of LK.

The transpose of the tangent linear operator is known 
as the adjoint operator. It is important to note that the 
order of the time index of the adjoint operator is reversed, 
compared to tangent linear operator. By definition, the adjoint
model is:

(17)

(18)

(19)

(20)

(21)

(a) (b)

Thus, 4DVAR can be summarized by the procedures 
described below:

• Integration of forecast model (Eqs. 1 – 3) forward 
in time and storage of the trajectories.
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occurs throughout the integration period. This experiment 
illustrates the sensitivity of the chaotic system to IC. 

Experiment 1
In this experiment (Fig. 2), EnKF and 4DVAR assimilate 

the same evolution trajectories as the Classical Experiment, 
but the initial guess is rather poor: 10% (X = 1.10, Y = 3.30, 
Z = 5.50) — Fig. 2a; 20% (X0 = 1.20, Y0 = 3.60, Z0 = 6.00) 
— Fig. 2b; and 40% (X0 = 1.40, Y0 = 4.20, Z0 = 7.00) — 
Fig. 2c. It can be observed from the plots in Fig. 2 that, with 
10% of noise, the trajectories of both EnKF and 4DVAR are 
almost perfect; with 20% of noise, the differences between 
the simulated trajectories and the observations as well as 
“true trajectories” are rather small for EnKF but almost 
perfect for 4DVAR. However, the differences are increasingly 
significant at the later part of the integration period for 
EnKF, due the chaotic behavior of the system. However, 

for the case with 40% error at the IC, neither EnKF or 
4DVAR could track the Control with only 3 observations 
ingested. In fact, according to the literature, given a 40% 
error at the IC, the chaotic nature of the model solution 
demands a relatively large number of observations in the 
EnKF assimilation and large data assimilation window in 
4DVAR.

Experiment 2
Numerical Weather Forecasting is of the order of 166 – 107 

degrees of freedom, whereas the total number of conventional 
observations of the variables used in the models is of the 
order of 104 (Kalnay 2004). Thus, the amount of observed 
variables applied hitherto is somewhat overestimated. By this 
reason, Experiment 2 represents a more realist assimilation 
application, where the EnKF ingests a single observation 
at the 180th time step in the X, Y, and Z Lorenz variables 

Figure 2. Evolution of the EnKF and 4DVAR for poor Initial Conditions. 

Figure 3. EnKF and 4DVAR ingest a single observation at the 180th time step.

(a)

(a) (b) (c)

(b)
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(Fig. 3a) and only in the X variable (Fig. 3b). In Fig. 3a, the 
results show a perfect fit of 4DVAR and the Control during a 
complete integrations period, but EnKF has a disagreement 
after the 80th time step. On the other hand, Fig. 3b shows a 
considerable disagreement between the EnKF trajectories 
and the Control and a total fail of 4DVAR. It is clear that 
better results are obtained for the case in which observation 
covers all the components of the model vector.

FINAL COMMENTS 

In this study, an EnKF and 4DVAR were available 
in a Data Assimilation context in chaotic regime. Both 
methodologies were examined and are effective to track the 
Control for 10, 20 and 40% of error at the IC. Considering 
10% of noise at the IC, the results show a perfect fitting 
between assimilation curves and the Control. These 
results are still quite good for 20% of noise, but there is 
a disagreement between the “truth” and the estimation, 
especially at the end of integration period for EnKF, due 
the chaotic nature of the system. Considering 40% of noise 
at the IC, both EnKF and 4DVAR fail. 

Regarding an experiment in which it is explored the 
assimilation over-determined by lack of observation, results 
show that EnKF needs more frequent observations, and the 
4DVAR demands for observation in more than 1 variable of 
the Lorenz system.

Despite the limitations, EnKF and 4DVAR are state-of-
the-art techniques in Data Assimilation implemented in 
numerical weather forecasting.
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