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A multilayer model to simulate 
rocket exhaust clouds
Abstract: This paper presents the MSDEF (Modelo Simulador da Dispersão 
de Efluentes de Foguetes, in Portuguese) model, which represents the 
solution for time-dependent advection-diffusion equation applying the 
Laplace transform considering the Atmospheric Boundary Layer as a 
multilayer system. This solution allows a time evolution description of the 
concentration field emitted from a source during a release lasting time tr , 
and it takes into account deposition velocity, first-order chemical reaction, 
gravitational settling, precipitation scavenging, and plume rise effect. This 
solution is suitable for describing critical events relative to accidental 
release of toxic, flammable, or explosive substances. A qualitative evaluation 
of the model to simulate rocket exhaust clouds is showed.
Keywords: Alcântara Launch Center, Advection-diffusion equation, 
Atmospheric dispersion.

INTRODUCTION 

A model is an abstract idealization of a process involving one 
or more functions designed to simplify our description of the 
process. Constraints on the model include the availability and 
scope of the dataset; the mathematical approximation and 
limits of solution; and the complexity of analysis and data 
reduction that can be tolerated. In these considerations, we are 
interested in a diffusion model to provide a viable description 
of the transport of rocket exhaust effluents in the atmosphere. 
The transport of the rocket exhaust effluents is characterized 
by turbulent diffusion, in the atmosphere, which has not been 
uniquely formulated in the sense that a single basic physical 
model capable of explaining all the significant aspects of the 
transport process has not yet been proposed. The two general 
models are: the gradient transport model and the statistical one. 
Since atmospheric transport processes tend to be generally a 
nonstationary random process over periods of interest, and 
because normal meteorological data are incompatible with 
the statistical model, this approach is rejected in favor of the 
gradient transport model in the selection of an operational 
diffusion one. While the numerical and statistical techniques 
offer some vantages, especially in research investigations, 
the state of art of these transport techniques has not evolved 

to the point where they offer a viable solution to operational 
transport predictions rocket exhaust effluents for air quality 
and environmental assessments; thus, our selection offers an 
analytical technique for diffusion predictions (Stephens and 
Stewart, 1977). 

The burning of rocket engines during the first few seconds 
prior to and immediately following vehicle launches results 
in the formation of a large cloud of hot, buoyant exhaust 
products near the ground level, which subsequently rises 
and entrains ambient air until the temperature and density 
of the cloud reach an approximate equilibrium with ambient 
conditions. By convention, this cloud is referred to as the 
ground-cloud. The rocket engines also leave an exhaust trial 
from normal launches that extend throughout and beyond 
the troposphere depth. The National Aeronautics and 
Space Administration (NASA) has computational codes 
that are designed to calculate peak concentration, dosage 
and deposition (resulting from both gravitational settling 
and precipitation scavenging) downwind from normal and 
aborted launchings to use in mission planning activities 
and environmental assessments, pre-launch forecasts of the 
environmental effects of launch operations and post-launch 
environmental analysis (Bjorklund et al., 1982). Many of 
these models are based on the same steady-state Gaussian 
dispersion model concepts used by other ones. For sake of 
illustration, we cite the MSFC (Dumbauld et al., 1973), 
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REEDM (Bjorklund et al., 1982), RTVSM (Bjorklund, 
1990), and OBODM (Bjorklund et al., 1998). 

Recently, we take a step forward regarding the Gaussian 
concepts to simulate pollutant dispersion in atmosphere. 
The solution was obtained for a vertically inhomogeneous 
atmospheric boundary layer (ABL) of the time-dependent 
advection-diffusion equation, applying the Laplace 
transform, considering the ABL as a multilayer system. 
This technique is called advection-diffusion multilayer 
method (ADMM) and it is well established in the literature 
(Moreira et al., 2005a, b, c, d; Moreira et al., 2006). 

Therefore, the aim of this paper is to report the 
construction of a new model based on ADMM model, 
now called MSDEF, to simulate rocket exhaust clouds. 
For a better understanding, in the sequel, we briefly 
discuss the idea behind this method. The main feature 
of the ADMM approach consists on the following steps: 
stepwise approximation of the eddy diffusivity and 
wind speed; the Laplace transform application to the 
advection-diffusion equation in the x and t variables; 
semi-analytical solution of the linear ordinary equation 
set resulting in the Laplace transform application and 
construction of the pollutant concentration by the Laplace 
transform inversion, using the Gaussian quadrature 
scheme. It is important to mention that, for the first time, 
the ADMM model (now MSDEF) is depending on time 
release, deposition velocity, first-order chemical reaction, 
gravitational settling, and precipitation scavenging. 
This solution allows a time evolution description of 
the concentration field emitted from a source during a 
release lasting time tr. The model takes into account the 
plume rise formulation of the literature (Briggs, 1975) 
for convective conditions, which is included in the 
computational codes of the NASA. The code used by 
NASA is the well-know rocket exhaust effluent diffusion 
model (REEDM). The REEDM has been used to assess 
the environmental impact of Space Shuttle operation and 

to support the first launches of the Space Shuttle. The 
dispersion models used in the REEDM code are based on 
Gaussian model concepts. The exhaust material, which 
is a mixture amongst CO, CO2, HCl and alumina, that is, 
the most solid propellants exhausted gases, is assumed 
to be uniformly distributed in the vertical and to have 
a bivariate Gaussian distribution in the plane of the 
horizon at the point of cloud stabilization. The REEDM 
system is operationally used at Cape Canaveral to model 
the behavior of rocket exhaust clouds, and to evaluate 
the potential threat to health from the toxic gases present 
in those clouds. 

PHYSICAL APPROACH

A tool for analysis of toxic dispersion in the USA and to 
support the release and evaluation of public risk is the 7.13 
version of the REEDM (Bjorklund et al., 1982; Bjorklund, 
1990; Bjorklund et al., 1998). Thus, this program was 
used as reference for modeling physics and mathematics 
of the problem in the development of MSDEF program. 
For more details about these approaches, see Bjorklund 
et al. (1982).

The main assumption used in the REEDM on the nature 
and behavior of the cloud released by the rocket is that it 
can be initially defined as a single cloud that grows and 
moves, but remains the same during the formation of its 
ascending phase. This concept is illustrated in Fig.  1, 
where it can be noticed that the model is designed for 
REEDM concentrations from the vertical position of the 
stabilized cloud.

The aspect “multilayer” is still used in the REEDM and 
relates to the partitioning of cloud stabilized in “disks” 
of material from the cloud, represented by different 
meteorological levels at different altitudes. Typical levels 
are 20 to 50 m deep.

Figure 1: Conceptual illustration of cloud formation (source), “cloud-rise” and atmospheric dispersion of the cloud (Nyman, 2009).



A multilayer model to simulate rocket exhaust clouds

J. Aerosp.Technol. Manag., São José dos Campos, Vol.3, No.1, pp. 41-52, Jan. -  Apr., 2011 43

Since the cloud is defined and has reached the condition 
of thermal stability with the atmosphere, it is partitioned 
into “disks”. The position of each disk with respect to the 
origin (launch pad) is determined based on the cloud’s 
rise time through a sequence of layers, which are defined 
using meteorological measuring levels obtained from a 
radiosonde. Each layer can have a single meteorological 
speed and wind direction that moves the disk into the 
same cloud. The concept of stabilized cloud partition is 
illustrated in Fig. 2.

The hypothesis of transport in a straight line used in 
the REEDM during the transport of clouds and phase 
dispersion ignores the possibility of wind fields, which 
can arise in complex mountainous terrain or may evolve 
during the passage of a sea breeze front or greater scale. 
Thus, it is recommended that the assumption of uniform 
wind is limited to the transport of the plume at distances 
that do not exceed 25 km. Therefore, the model does 
forecast REEDM concentration ranging from 5 to 10 
km from the launch pad, so that this hypothesis is not a 
problem.

The REEDM assumes that all chemical reactions are 
completed before the combustion process of the cloud’s 
rise. A mass fraction is assigned to each constituent and 
the total mass of the source (cloud) is multiplied by this 
fraction to determine the total mass of each chemical 
component in the cloud. The molecular weight of each 
species is used to convert the mass concentration per unit 
volume (mg/m3) to part per million (ppm).

The REEDM makes predictions of instantaneous and 
average concentration in time (typically a 10-minute 
average). In many situations, an average of one hour is 
made to compute the average concentrations. A shorter 
average time is appropriate to expose the cloud of the 
rocket, because the source (cloud) typically goes on 
a receiver with a time scale of ten minutes before the 
hour.

THE MATHEMATICAL MODEL

A typical problem with the advection-diffusion equation 
involves the solutions of problems corresponding to 
instantaneous and continuous sources of pollution. More 
precisely, considering a Cartesian coordinate system in 
which the x direction coincides with the one of the average 
wind, the time dependent advection-diffusion equation 
can be written as (Huang, 1979):

C
t

u C
x

v C
z x

K C
x y

K C
yg x y z

K C
z

Sz

� (1)

Where C denotes the average concentration, Kx, Ky, Kz 
are Cartesian components of eddy diffusivity, u is the 
longitudinal wind speed, vg is the gravitational settling, 
and S is a source/sink term.

The analytical solution of the Eq. 1 can be obtained 
assuming (Huang, 1979):
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C x z ty ( , , )  is the solution of the following equation:
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Where Cy is the crosswind integrated concentration, λ 
represents a chemical-physical decay coefficient, and Λ 
is the scavenging coefficient. The decay term λ represents 
in situ loss associated with processes, such as chemical 
reaction or radioactive decay.

Figure 2: Partitioning of cloud stabilized “disks” (Nyman, 2009).
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The mathematical description of the dispersion problem 
represented by the Eq. 4 is well posed when it is provided 
by initial and boundary conditions. Indeed, it is assumed 
that at the beginning of the pollutant’s release, the 
dispersion region is not polluted, which means:

C x zy ( , , )0 0   at  t = 0� (5)

A source of constant emission rate Q is assumed:

C ( z t)= Q
u

z Hy
s0, , ((t)- (t-t ) )r at   x = 0� (6)

Where δ(z-HS) is the Dirac delta function, HS the source 
height, η is the Heaviside function, and tr is the duration 
of release (Bianconi and Tamponi, 1993). 

The pollutants are also subjected to the boundary 
conditions:

K C
zz
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0	 at   z = h� (7a)

and 
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z
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y

d
y
	 at   z = 0� (7b)

Where h is the height of ABL and Vd is the deposition 
velocity.

Next, we assume that Kx, Kz as well as the wind speed u 
depend only on the variable z , and an averaged value is 
taken. The stepwise approximation is applied in problem (4) 
by discretization the height h into sub-layers in such manner 
that inside each sub-layer, average values for Kx, Kz and u are 
taken. At this point, it is important to remark that this procedure 
transforms the domain of problem (4) into a multilayered-slab 
in the z direction. Furthermore, this approach is quite general, 
and can be applied when these parameters are an arbitrary 
continuous function of the z variable. 

Indeed, it is now possible to recast problem (4) as a set of 
advective-diffusive problems with constant parameters, 
which for a generic sub-layer reads like:
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for n = 1:NL, where NL denotes the number of sub-layers 
and Cn

y , the concentration at the nth sub-layer. Besides 
which, two boundary conditions are imposed at z = 0 and 
h given by Eq. 7 together with the continuity conditions 
for the concentration and flux of concentration at the 
interfaces Namely:
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Both equations must be considered in order to be possible 
to uniquely determine the 2N arbitrary constants, 
appearing in the set of problems solution (Eq. 8).

Now, applying the Laplace transform in Eq. 8, the result is:
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with the initial condition:

C s zy ( , , )0 0 	 at   t = 0� (11)

source condition:
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and the boundary conditions:
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where C s z p L C x z t x s t py y( , , ) ( , , ); ; , which 
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Finally, applying the initial and boundary conditions, one 
obtains a linear system for the integration constants. Then, 
the concentration is obtained by numerically inverting the 
transformed concentration C by a Gaussian quadrature 
scheme (Stroud and Secrest, 1966):

for t > tr:
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for tr > t :
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Where η is the Heaviside function and P u x Ke n x  is the 
well known Peclet number, essentially representing the 
ratio between the advective transport to diffusive transport. 
This can be physically interpreted as the parameter whose 
magnitude indicates the atmospheric conditions in terms 
of the winds strength. Small values of this number may be 
related to the weak winds when the downwind diffusion 
becomes important and the region of interest remains 
close to the source, whereas large values imply moderate 
to strong winds when the downwind diffusion is neglected 
in comparison to the advection, and the region of interest 
extends to a larger distance from the source. 

The solution is valid for x > 0 and t > 0, as the quadrature 
scheme of Laplace inversion does not work for x = 0 and 
t = 0. The constants ai , aj , and pi , pj  are the weights and 
roots of the Gaussian quadrature scheme and are tabulated 
in the book by Stroud and Secrest (1966), while k and 
m are the quadrature points. However, we are aware of 
the existence in the literature of more accurate methods 
to evaluate this integral, like the multi-precision approach 
(Abate and Valkó, 2004). The semi-analytical character of 
the solutions (Eq. 15) and (Eq. 16) reduces to the solution 
of Moreira et al. (1999), when time goes to infinity 
(t →∞), Pe →∞ , vg= 0, Λ = 0 and λ = 0. 

In order to show time-dependent three-dimensional 
pollutant numerical simulations, we finalize reporting a 
simplified solution for this sort of problem, reliable for 
some physical scenarios. Indeed, we assume that the time-
dependent three-dimensional solution is written in terms of 
the time-dependent two-dimensional solution, multiplied 
by the steady Gaussian function in the y-direction. This 
procedure yields:

C x y z t C x z t ey
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y
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( , , , ) ( , , )
/2 22

2
 ,� (17)

Where C x z ty ( , , )  is expressed by the previous discussed 
formulation. 

Therefore, after determining the stabilization time and source 
(multiple sources due to partitioning of the cloud), the final 
concentration will be the contribution from all sources, i.e.,

C x y z t C x y z ti
i

n

( , , , ) ( , , , ) ,� (18)

Where i = 1,2,3,…, n and n represents the nth source due to 
the partitioning of the cloud of pollutants released by the 
rocket at the stabilization time.

BOUNDARY LAYER PARAMETERIZATION

In the atmospheric diffusion problems, the choice of 
a turbulent parameterization represents a fundamental 
aspect for pollutant dispersion modeling. The reliability 
of each model strongly depends on the way the turbulent 
parameters are calculated, and it is related to the current 
understanding of the ABL (Mangia et al., 2002). In order 
to calculate the three-dimensional concentration in the 
ground-level centerline concentration (Eq. 14), we need to 
know the lateral dispersion parameter σy. In this paper, the 
lateral dispersion parameter σy derived by Degrazia et al. 
(1998) was used. It presents the following form:
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/
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Where X is a nondimensional distance (X xw uh*
), w* 

is the convective velocity scale, and h is the ABL top.

Equation 19 contains the unknown function Ψ, the molecular 
dissipation of turbulent velocity is a leading destruction 
terms in equations for the budget of second-order moments, 
and according to Hφjstrup (1982), has the form:

1 3
2 2 3 1 2

1 0 75/
/ /

.z
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z
L � (20)

Where L is the length of Monin-Obukhov defined in the 
surface boundary layer.

In terms of the scaling parameters, the vertical eddy 
diffusivity can be formulated as (Degrazia et al., 1997):
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The micrometeorological parameters are adapted from 
the routine of the model AERMET / AERMOD (EPA, 
2004), whose function is to calculate the parameters: 
u* (friction velocity), L (Monin-Obukhov length), w* 
(convective velocity), h (ABL height), and H (heat flux) 
from the sounding (including the vertical wind speed) 
taken in Alcântara Launch Center.

NUMERICAL SIMULATIONS

For sake of illustration, the sensitivity analysis on tr and λ 
parameters is showed. Then, the sensitivity of the ground-
level concentration to these parameters is tested. Firstly, 
to show an example of the application of the obtained 
solution (Eq. 16) (tr > t), we report in Fig. 3 the time 
evolution of nondimensional concentration (Cyuh / Q) at 
three downwind distances (x = 500, 1000 and 2000 m). 
The concentration was computed as a mixture of CO, 
CO2, HCL and Alumina, which are the residuals from the 
solid propellant combustion.

Figure 4 shows the nondimensional ground level 
concentration (Cyuh / Q) as a function of the source 
distance with variable duration releases (tr= 50, 100, 150, 
200 seconds) for three different times (t = 250, 500 and 
750 seconds), emitted through a stack with a physical 
height of 10 m, in micrometeorological conditions 
characterized by a 2 m/s wind velocity, a 1,100 m mixing 
layer, w* = 2 m/s and L = -10 m.

Figure 4 shows that the concentration peak values increases 
as the duration of the release grows longer, until it reaches 
a limit value, for sufficiently long durations of the release. 
Besides, the concentration peak values decrease with the 
source distance increase.

Figure 5 demonstrates the concentration time evolutions 
with the parameters of the reference situation for 
time release of 50 seconds to different values of the 
chemical-physical decay coefficient (λ), at downwind 
distance of 500 and 1000 m (typical values of λ: 10-6 

to 10-2). It also shows that the concentration peak 
values decrease as the downwind distance increase. 

!

!

!

a)

b)

c)

Figure 4: Crosswind integrated concentration as a function of the 
source distance for three different times (t = 250, 500 
and 750 seconds) and different durations of release 
(tr = 50, 100, 150 and 200 seconds).

! Figure 3: Time evolution of nondimensional concentration at three 
downwind distances (x = 500, 1,000 and 2,000 m).
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Also, as the downwind distance increase, the peak 
position changes with respect to time and the peak 
concentration variation between the chemical-physical 
decay constants increase. 

Figure 6 has the concentration distributions in the 
horizontal xy-plane at ground-level for six different 
times: t = 100, 500, 100, 2000, 3000 and 5000 seconds. 
These isolines of equal concentration corresponds to the 
solution tr > t. 

As expected, when time becomes longer, the 
concentrations values enter into a steady-state condition. 
Figure 7 shows concentration distributions in the 
horizontal xy-plane at ground-level for the time t = 1000 
seconds and four different time release (tr = 300, 500, 

800 and 950 seconds). The lines represent isolines of 
equal concentration. 

As the duration of the release becomes longer, the 
concentrations values enter into a steady-state condition. 
Comparing Fig. 6 for t = 1000 seconds with Fig. 7, this 
affirmative is clearly observed.

Furthermore, due to lack of experimental data with 
rockets, we evaluated the performance of the model 
(tr > t, with a single source at 115 m) with the 
boundary layer parameterization proposed, using 
the well-known Copenhagen data set (Gryning et 
al., 1987). The Copenhagen data set is composed of 
tracer SF6 data from dispersion experiments carried 
out in Northern Copenhagen. The tracer was released 
without buoyancy from a tower at 115 m height, and 
was collected at ground-level positions in up to three 
crosswind arcs of tracer sampling units. The sampling 
units were positioned from 2 to 6 km far from the 
point of release. We used the values of the crosswind 
integrated concentrations normalized with the tracer 
release rate from Gryning et al. (1987). Tracer releases 
typically start up one hour before the tracer sampling 
and stop at the end of the sampling period. The site 
was mainly residential with a roughness length of 0.6 
m. Generally, the distributed data set contains hourly 
mean values of concentrations and meteorological 
data. However, in this work, data with a greater 
time resolution were used. In particular, 20 minutes 
averaged measured concentrations and 10 minutes 
averaged values for meteorological data were used. In 
such manner, in the present work, the variables (L, u* , 
w*) in the Copenhagen data set are dynamical (except 
the variable h). For details of the experimental data, 
see the work of Tirabassi and Rizza (1997).

The results obtained with the model are compared with 
the M4PUFF model (Tirabassi and Rizza, 1997), which is 
based on a general technique for solving the K-equation 
using the truncated Gram-Charlier expansion (type A) 
of the concentration field, and a finite set equation for 
the corresponding moments. Table 1 presents some 
performance measurements, obtained using the well-
known statistical evaluation procedure described by 
Hanna (1989). The statistical index FB indicates whether 
the predicted quantities underestimate or overestimate the 
observed ones. The statistical index NMSE represents the 
quadratic error of the predicted quantities in relation to 
the observed ones. The best results are indicated by values 
nearest 0 in NMSE, FB, and FS, and nearest 1 in COR 
and FA2.

The statistical indices point out that a good agreement 
is obtained between experimental data and the model. 

!

!
Figure 5: Time evolution of concentration at downwind distance 

of 500 and 1,000 m for time release of 50 seconds 
and different chemical-physical decay constants.

a)

b)
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Figure 6: Concentrations distributions in the horizontal xy-plane at ground-level for six different times: t = 100, 500, 100, 2000, 3000 
and 5000 seconds, for the solution tr > t. 

! !

! !

! !

a) b)

c) d)

e) f)
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A more detailed inspection of the Table 1 can stress that 
the model does a very well simulation of the observed 
concentrations presenting the best values for NMSE, 
COR (81%), and FA2 (95%).

Finally, a simulation considering a grid of 100 x 100 km 
in the region covered by the Alcântara Launch Center is 
carried out. The main points are shown in Fig. 8, with 
the vector wind speed and dispersion of the plume. The 
concentration unit is ppm.

CONCLUSIONS

A solution of the time-dependent advection-diffusion 
equation in the construction of the MSDEF has been 

Figure 7: Concentrations distributions in the horizontal xy-plane at ground-level for t = 1,000 seconds and four different times releases: 
tr = 300, 500, 800 and 950 seconds, for the solution t > tr.

!

!

!

!

a) b)

c) d)

Table 1: Statistical evaluation of model results (Copenhagen dataset)
Model NMSE R FA2 FB FS
MSDEF 0.15 0.81 0.95 0.18 0.38
M4PUFF 0.21 0.74 0.90 0.10 0.45
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presented. This solution considers duration time 
release, chemical-physical decay, settling velocity, 
scavenging coefficient, and can be applied for 
describing the turbulent dispersion of many scale 
quantities, such as air pollution, radioactive material, 
heat, and so on. From the previous results, we promptly 
notice the aptness this model to understand the time 
evolution of the concentration and its dependency on 
the duration of the contaminant emission. In fact, this 
model allows us to simulate the continuous, short-
term, and instantaneous emissions. In particular, the 
model is suitable for an initial and rapid assessment 
of atmospheric dispersion under emergency conditions 
without sophisticated computing resources. The model 
can be used in different conditions of atmospheric 
stability, making it possible to predict or simulate the 
concentration in accordance with emergency plans and 
pre and post-launches for environmental management, 

in situations of rocket launches in the Alcântara Launch 
Center.

To show the solution performances in actual scenarios, 
a parameterization of the ABL has been introduced, 
and their values have been compared with experiment 
dataset. The analysis of the results shows a reasonably 
good agreement between the computed values and 
the experimental ones. The discrepancies with the 
experimental data depend not on the solution of the 
advection-diffusion equation but on the equation itself, 
which it is only a reality model. Moreover, a source 
of discrepancies between the predicted and measured 
values lies in the ABL parameterization used (i.e., 
vertical wind and eddy diffusivity profiles). Although 
models are sophisticated instruments that ultimately 
reflect the current state of knowledge on turbulent 
transport in the atmosphere, the results they provide 

!

Figure 8:	 Topography of the region of 100 x 100 km with a resolution of 100 m showed the vector wind speed and plume generated in the 
simulation. The coordinate axes are in UTM. TMI represent the Tower Mobile Integration and VLS is the Satellite Launch Vehicle.
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are subject to a considerable margin of error. This is 
due to various factors, including the uncertainty of 
the atmosphere intrinsic variability. Models, in fact, 
provide values expressed as an average, that is, a mean 
value obtained by the repeated performance of many 
experiments, whereas the measured concentrations are 
a single value of the sample to which the ensemble 
average provided by models refers. 

This is a general characteristic of the theory of 
atmospheric turbulence and is a consequence of the 
statistical approach used in attempting to parameterize 
the chaotic character of the measured data. In light of the 
considerations, an analytical solution is useful to evaluate 
the performances of sophisticated numerical dispersion 
models, which numerically solve the advection-diffusion 
equation, yielding results that can be compared not only 
with experimental data but, in an easy way, with the 
solution itself, to check numerical errors without the 
uncertainties presented above.
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