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Fatigue behaviour study on 
repaired aramid fiber/epoxy 
composites
Abstract: Aramid fiber reinforced polymer composites have been used 
in a wide variety of applications, such as aerospace, marine, sporting 
equipment and in the defense sector, due to their outstanding properties at 
low density. The most widely adopted procedure to investigate the repair 
of composites has been by repairing damages simulated in composite 
specimens. This work presents the structural repair influence on tensile 
and fatigue properties of a typical aramid fiber/epoxy composite used in the 
aerospace industry. According to this work, the aramid/epoxy composites 
with and without repair present tensile strength values of 618 and 680MPa, 
respectively, and tensile modulus of 26.5 and 30.1 GPa, respectively. 
Therefore, the fatigue results show that in loads higher than 170 MPa, both 
composites present a low life cycle (lower than 200,000 cycles) and the 
repaired aramid/epoxy composite presented low fatigue resistance in low 
and high cycle when compared with non-repaired composite. With these 
results, it is possible to observe a decrease of the measured mechanical 
properties of the repaired composites.
Keywords: Fatigue behavior, Aramid/epoxy composite, Structural 
composites, Mechanical behavior.

INTRODUCTION

In recent years, fiber-reinforced composites have gained 
much attention due to their use in aerospace, marine, 
automobile, medical and other engineering industries. 
Among thermoset polymers, epoxy resins are the most 
common matrices for high performance aramid-fiber 
composites due to their easy processing conditions 
(Botelho et al., 2002; Botelho et al., 2003; Botelho et al., 
2005a; ABARIS, 1998; Cerny et al., 2000).

The continuous use of structural polymer composites in 
the aeronautical industry has required the development 
of repairing techniques of damages found in different 
types of composites. The first step of a repair procedure 
is to determine the extent of the damage sustained by the 
structure. One must always assume that the actual damage 
can be more extensive than the visible damage. This is 
especially true for aramid fiber-reinforced composites 
made with brittle standard cured epoxy resins (177°C 
cured epoxy matrix resins). After an impact with a foreign 
object, there is generally, but not invariably, some visual 
indication in the form of paint damage. However, due to 
the elasticity of high modulus fibers, the composite often 
springs back, leaving residual subsurface damage in the 
form of broken fibers, ply splitting and, in the case of 
sandwich panels, crushed core and disbanded face sheets 

(Ashcroft et al.,2001; Kawai et al., 2001; Roudet et al., 
2002; Gregory et al., 2005; Botelho et al., 2005b).

A similar fatigue damage tolerance mechanism may 
maintain the inherent properties of the repaired aramid 
fiber/epoxy composites when compared with non-repaired 
aramid composite. Fatigue damage results in a change 
of strength, stiffness and other mechanical properties of 
composite material. Damage phenomena under various 
loading conditions are significantly different for polymeric 
composites. Damages can occur by: crack formation due 
to fiber breakage, matrix crack propagation, fiber-matrix 
debonds, void growth and delamination. Any one or a 
combination of these mechanisms may lead to a reduction 
of the overall modulus and strength. Therefore, fatigue 
failure is a progressive process during which the overall 
modulus and strength decrease progressively until their 
values cannot longer resist the applied loading and hence 
total failure occurs (Botelho et al., 2005a; Ashcroft et al., 
2001; Kawai et al., 2001; Roudet et al., 2002; Gregory et 
al., 2005).

In many fatigue studies, the fatigue performance of 
materials is analyzed by investigating the relationship 
between the fatigue load, either applied stresses or 
applied strain, and the fatigue life (or number of cycles 
to failure). The applied fatigue stress can be expressed 
as the maximum fatigue stress. This normalized applied 
stress is the ratio of the maximum fatigue stress to the Received: 19/05/09 
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ultimate quasi static stress or strength of the composite. 
The normalized applied stress is often used to compare 
two or more materials with different values of ultimate 
tensile stress (Ashcroft et al., 2001; Kawai et al., 2001; 
Roudet et al., 2002; Gregory et al., 2005).

The objective of the present study is to evaluate the effects 
of the fatigue behavior on repaired aramid fiber/epoxy 
composites. Mechanical tests were performed in order to 
verify possible degradation on static mechanical properties, 
before the specimens undergo fatigue experiments. 
The stress as a function of the number of fatigue cycles 
(S-N curve) is then obtained. Also, the specimens were 
analyzed by microscopic techniques before and after the 
mechanical experiments.

MATERIALS AND EXPERIMENTAL PROCEDURE

Aramid fiber fabric/epoxy (AF/E) prepreg was used for 
the composite preparation. In this work plain weave 
fabric style was used (each fiber cable presented 3,000 
monofilament). The composite was prepared by using an 
autoclave system. The fiber content in each composite was 
of approximately 60% (v/v).The epoxy resin used has the 
number F584 as specification, manufactured by Hexcel 
Company and it is a structural resin with a cure temperature 
of up to 181°C and glass transition temperature of 154°C 
(ABARIS, 1998).

The composites were cured in autoclave, under a pressure 
of 0.69 MPa and vacuum of 0.08 MPa, following a heating 
cycle of up to 181°C. The aramid fiber/epoxy composites 
obtained were divided into two batches. The first batch of 
these composites was used as a reference material. The 
second batch of the continuous fiber/epoxy laminates was 
cut and machined. Figure 1 shows this process, where the 
cut used to simulate the removing of the damaged part of 
the specimens (20 mm x 200 mm) can be observed. After 
this procedure, the same aramid fiber/epoxy prepregs, 
used in the original laminate preparation, are carefully 
stacked in the damaged region using the scarf technique 
(ABARIS, 1998) in order to repair the laminate.

The cross section micrographs of the studied composites 
were obtained by optical microscopy (OM) in order to 
evaluate how homogeneous was the lamination and to 
examine in detail the specimen after the mechanical tests. 
The morphological evaluation was performed using a 
Nikon Epiphot 200 equipment. Measurements of tensile 
properties of aramid fiber fabric composites with and 
without repair were performed under ASTM standard 
D3039-93 normative  (ASTM, 1985a). The tensile 
tests were carried out in an Instron machine 8801. The 
extensometer device was attached to the specimen to 
measure displacements in longitudinal direction. Fatigue 

tests were performed using a servo-hydraulic machine 
(25 kN) at constant load amplitude. Fatigue tests were 
carried out according to ASTM 3479 (ASTM, 1985b) 
and the stress ratios, Smax (σmin/σmax) was 0.1, where 
σmax and σmin are the maximum and the minimum applied 
stresses, respectively, and σult is the ultimate strength of 
the composites. The fatigue frequency was 10 Hz. Glass 
fiber/epoxy end tabs with a length of 40 mm were attached 
at both ends of the specimens to avoid failure around the 
gripping device during the tests. The specimens were 
cycled up to 1,000,000 and in this work the same fatigue 
tensile value in both laminates were used and the fatigue 
life was measured.  

RESULTS AND DISCUSSION

Figure 2 depicts a representative optical microscopy of the 
repaired aramid fiber/epoxy cross-sections showing the 
repaired area performed in this composite. The repairing 
technique used induces small resin rich regions in the 

a)

b)

Figure 1: Details of the cut and machined area of the laminate 
used to simulate a damage to be repaired (a) and 
scheme of the scarf repair used (b).
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composite. Tensile and fatigue tests were conducted in 
order to evaluate this possible decrease in the mechanical 
properties.

due to the heterogeneity of the resin and discontinuity of 
the reinforcement on the repaired area. Hence, by using 
this repair technique, it is possible to reconstitute up to 
90% of the original properties of the aramid fiber/epoxy 
composite. In spite of such tensile stress reduction, it is 
observed, in this work, that the ultimate tensile strain value 
is almost the same for both non-repaired and repaired 
specimens (~3% mismatch). Additionally, a decrease of 
~12% in the tensile modulus values is observed in non-
repaired specimens, confirming the results obtained by 
ultimate tensile stress. 

Figure 3 presents the S-N fatigue curves for repaired 
and non-repaired aramid fiber/epoxy composites. In this 
experiment, it should be mentioned that in all specimens 

 

 

Repair area 

Figure 2: Optical microscopy of the repaired area of aramid 
fiber/epoxy composite.

Table 1 presents the experimental tensile properties 
for non-repaired and repaired aramid fiber/epoxy 
composites. The tensile properties of non-repaired 
aramid fiber/epoxy composites showed good agreement 
(6% mismatch) with the results available in the 
literature, around 720 MPa for non-repaired and 660 
MPa for repaired specimens (Botel ho et al., 2005a; 
ABARIS, 1998a; Cerny et al., 2000; Ganczakowski 
and Beaumont, 1989). The differences between 
experimental and literature results are expected for 
polymer composites since the interface effect or void 
presence can be induced during different processing 
conditions (Ganczakowski and Beaumont, 1989).

Table 1: Tensile properties for the specimens studied.

Material Non-repaired 
composite

Repaired 
composite

Tensile stress (MPa) 680±37 618±32
Tensile strain (%) 1.37±0.09 1.34±0.07
Elastic Modulus (GPa) 30.1±1.1 26.5±2.1

According to the results presented in Table 1, repaired 
composites present a decrease of around 10% on tensile 
stress when compared with non-repaired composites, 

plain weave textile was used, therefore, in 0° and 90° the 
load will be almost the same.

By means of Figure 3, it can be observed that in both 
cases, at low and high number of cycles (using the 
same frequency value), the repaired aramid fiber/epoxy 
composites show a decrease in the fatigue life values, 
by around 10% (low cycle) and 18% (high cycle), when 
compared with non-repaired composites.  At a low number 
of cycles (lower than 200,000.00 cycles), the non-repaired 
composite reached fatigue resistance values between 170 
and 220 MPa and for the repaired composites these values 
were between 160 to 205 MPa. For a high number of 
cycles, (higher than 200,000.00 cycles) these values are 
lower when compared with those found in low cycles, 
with 150 to 170 MPa for the non-repaired aramid fiber/
epoxy composites and 130 to 150 MPa for the repaired 
composites. According to Figure 3 both composites 
present a similar behavior.
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Figure 3: Fatigue performance of non-repaired and repaired ara-
mid fiber/epoxy composites.
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According to the results presented in Figure 4, it is observed 
that when fatigue tests are performed at high and low 
number of cycles, the repaired specimens can be affected 
by void rich regions created during repair. These voids are 
responsible for delaminations but, due to the low loads, 
the composite did not present catastrophic fracture but can 
most likely be affected by debonding (ABARIS,1998).  
The debonding occurred randomly in the specimen before 
the rupture, but parallel to the fatigue loading direction 
(ABARIS,1998; Ganczakowski and Beaumont,1989). 
When this kind of debonding propagation occurs, fatigue 
damage can be concentrated in one particular region of 
the specimen. As a consequence, that region will become 
weaker and critical.

of fatigue cycles. Debonding can occur randomly in 
the specimen, but mainly parallel to the fatigue loading 
direction. As a consequence, the debonded regions became 
weaker and critical. 

The results in this study demonstrate that the repaired 
aramid fiber/epoxy composites show a decrease in the 
fatigue resistance values, of approximately 10% (low 
cycle) and 18% (high cycle), when compared with the 
non-repaired. Thus, this repair process can be used in 
aerospace applications. These results can be associated 
to the good morphological aspects (good interface and 
no voids and cracks) and the mechanical behavior when 
both laminates composites are compared, which shows 
that a decrease of 12.1% in the tensile modulus values is 
observed in non-repaired specimens, corroborating the 
results obtained by fatigue tests. 
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