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ABSTRACT
In a beyond visual range (BVR) air combat, one of the challenges is identifying the best time to launch a missile, which is a 

decision that must be made quickly. The decision involves combining knowledge about altitude, speed, distance, onboard sensor 
systems information, aircraft type, and type of missile on the aircraft, as well as intelligence on the opponent’s behavior. This paper 
discusses an approach to evaluate the probability of shoot-down of an unmanned combat air vehicle (UCAV) in a BVR air combat, 
based on a decision support system model that makes use of parameters available from the onboard sensors of the shooter UCAV. 
The strategic options development and analysis (SODA) method is applied to select the main features available in the on-board 
sensor systems of the shooter aircraft required to launch a missile successfully. Such features help us to develop an artificial neural 
network (ANN) for shoot-down prediction. The ANN was trained with a data set with 1093 registered shoots in military exercises, 
and it shows 78.0% accuracy with the cross-validation procedure.
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INTRODUCTION

Beyond visual range (BVR) air combat has become the most important type of contemporary air combat. Beyond visual 
range combat occurs with the detection and tracking of an enemy aircraft (target) beyond the range of the pilot’s vision (Liang 
et al. 2010). Note that the pilot’s vision limit depends on the existence of visual obstacles (clouds, smoke), visual acuity, devices 
to improve visual acuity, luminosity, aspect and size of the target (Galante 2010). Beyond visual range combat uses radar sensors 
and radar warning receivers (RWR) to detect and track targets and specific air-to-air missiles.

Beyond visual range combat involves a highly complex operating environment and requires cognitive knowledge, skills and a 
huge mental effort on the part of the pilot. A complex environment generates cognitive workloads, degrading operator performance. 
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Gilberto (2017) states that failures can be summarized as pilot-caused operational errors of the aircraft weapon system when the 
missile is launched. Errors from the aircraft sensors, such as radar errors in estimating the position and speed of a target, can also 
degrade the application of the aircraft weapon system. These errors lead to the loss of armament efficiency in reaching the target. 
Several other factors involved in this environment can change the outcome of the mission. Such environmental factors resulted 
in the intensification of the use of unmanned combat air vehicle (UCAV) and artificial intelligence (AI) in BVR scenarios in the 
last decade.

The main phase of BVR combat is engagement. In a simplified way, this phase is a sequence of the following activities: the UCAV 
performs the target tracking procedure; decides whether to fire, checking the possibility of fire; if so, carries out the triggering 
procedure; performs the trigger support procedure, and makes an evasive maneuver, ending the engagement.

Identifying the right shoot time and the probability of success of the shoot is important for BVR combat to achieve the high 
strategic value of the mission. The shooter would like to increase the probability of success of each missile launched. In traditional 
BVR combat, the pilot launches the missile inside the weapon engagement zone (WEZ), a dynamic weapon range area calculated 
using data from the onboard sensors about the missile range, target and shooter’s altitude, target and shooter’s speed, and heading 
difference between the target and the shooter (Macedo 2017). The pilot does not know the probability of success at launch time 
because success probability combines several elements beyond those used in WEZ, such as target maneuvers, shoot range, number 
of aircraft in formation and closure rate.

Several publications in the literature address different aspects of BVR combat, from the allocation of targets to the analysis 
of the armed clash between opposing forces. Various methods are adopted, from knowledge bases to elaborated mathematical 
models aimed at computer simulations as a support for decision-making.

Rodin et al. (1987) proposed using an expert system in conjunction with pursuit-evasion algorithms and a pilot-derived expert 
database to evaluate alternative strategies for air combat. Rodin and Amin (1992) formulated and solved problems that involve 
prediction and identification of continuous trajectory air combat maneuvers using partial or incomplete information. Brain (1999) 
did a conceptual study using an artificial neural network (ANN) as a decision-support system for combat- maneuver-identification 
into BVR combat environments.

More recently, Yu and Wu (2011) addressed a methodology that uses fast arithmetic to evaluate the air target threat, 
helping pilot make decisions in a dynamic combat environment. Wu et al. (2013) consider the uncertainty of air combat 
information to threat assessment based on rough sets and support-vector machines (SVM). The tactics decision problem 
for cooperative team air combat is the focus of Meng et al. (2014), in which a granular computing theory is applied to the 
tactics decision analysis. Suseno and Sasongko (2016) use an air combat simulation system, which includes fighter maneuver 
modeling, definition, and formulation of parameters and probability of kill, to assess the effectiveness of maneuvers, tactics, 
and weapons in a combat situation.

Toubman et al. (2016) developed a machine learning method that can rapidly adapt the behavior of computer-generated 
forces (CGFs) to that of their opponents. The method entails the adaptation of behavior represented as finite-state machines 
(FSMs) through a reinforcement learning technique called dynamic scripting. Lei et al. (2018) use a machine learning approach 
with data samples generated by a “human-in-loop” air combat simulation system. The data includes the aircraft model, attributes 
of the two opposing groups (blue and red), aircraft position, attitude, and critical actions (target locking, real-time interference, 
launch missiles). Ximeng et al. (2019) also adopt a machine learning approach to target threat assessment. They use one-to-one 
air combat data from the air combat maneuvering instrument (ACMI), such as the relative position of the aircrafts involved, speed 
vectors, and relative angles, as input for the neural network.

Ma et al. (2019) address the problem of optimization of the predominance between two opposing groups of UAVs in a BVR 
combat scenario. One UAV group predominance over the other is estimated by the difference in distance and altitude between 
them, the lower and upper limits of the missile shooting distance, and the best shooting altitude. The decision variables are the 
spatial distribution of the two groups and the allocation of targets for each aircraft in these groups. The optimization problem is 
modeled as a zero-sum game and is solved in order to obtain a Nash equilibrium.
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Wanyang et al. (2020) focus their research on the advantages of the situation and the effectiveness of air combat, taking into 
account in their mathematical modeling the advantage of the geometric situation (angle advantage, distance advantage, speed 
advantage) and the effectiveness of combat training (lead launch probability, kill probability of missile to target, air combat 
effectiveness calculation model). Finally, the Hungarian algorithm target assignment method is used to study the decision-
making problem of cooperative multi-target attack air combat, and the ideal formation attack assignment decision-making 
scheme is obtained.

The cited papers have mainly provided decision support that improves tactics and strategies in air combat and the target 
allocation problem. The few studies addressing the probability of an aircraft being shot down by a missile use computer simulation 
based on mathematical models. No publications estimating the probability of a missile firing success using actual fight data obtained 
from military exercises and ANN were found. This type of problem has characteristics such as many input variables, noise, and 
the need for real-time processing, conducive to treatment by an ANN. Unmanned combat air vehicles must optimize the use 
of their weaponry by evaluating the probability of success before the launch of their missile, improving the efficiency regarding 
the human being that relies on WEZ, on its experience, and its response time. The main contribution of this paper is the use of 
information available in the aircraft (onboard sensor systems) collected in military exercises at the moment of missile launching 
to develop an ANN for predicting the shoot down of the opponent. The strategic options development and analysis (SODA) 
method is applied for structuring the problem. The target is supposed to be assigned at a previous time of the engagement, and 
the issue is not addressed here.

In summary, the purpose of the study is to develop a decision support system based on ANN that collects the vehicle and 
opponent relevant data, both provided by the aircraft sensors and decides in real-time whether the pilot or UCAV will shoot or not.

The two methods used in this work (SODA and ANN) are well known in the literature (Eden and Ackermann 2001; Russell and 
Norvig 2016). Despite that, the basic concepts necessary to understand the methodology and the tests carried out are presented 
in the following sections.

This paper is organized as follows: first, it is presented the method of structuring the problem used for predicting the accuracy 
of a missile launch in BVR combat. Second, it is presented the general concepts of a multilayer perceptron. The following presents 
the methodology used to customize a neural network to be applied to the work in question. The next section it is showed the 
results and analysis. Finally, the last section summarizes the conclusion of this work.

STRUCTURING THE PROBLEM

At the time of launching the missile, the pilot is faced with a multicriteria decision analysis (MCDA) problem, because he 
must consider several criteria before shooting. Structuring problems for MCDA have been attracting increasing attention over 
the past 20 years, and combining problem structuring approaches with MCDA produces a richer view of the decision situation. 
However, there are some limitations and challenges in combining both, most of which relate to building a value tree and assigning 
weights for each criterion (Marttunen et al. 2017).

Artificial neural network is a powerful option to build a value tree. In an ANN, the weight of each node is updated using 
some learning rule (Mingoti and Lima 2006). At the end of the machine learning process, the weights naturally produce a value 
tree, as well as an optimized weight assignment. The main features of the problem, also called the decision variables, must be 
identified to build an ANN. In this study, these factors influence the shoot down in BVR combat. The decision variables are 
the input nodes in the first layer. Data from military exercises of BVR combat collected over five years were used. From this 
database, the data from 1489 shoots associated with the engagement between two aircraft of the same type armed with the 
same missile were selected. However, these data include various highly complex BVR combat arenas with a varied number of 
aircraft in both the attacking squadron and the target squadron, at different levels of altitude, speed and heading. Only data 
available to the shooter aircraft are used.
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Strategic options development and analysis
Strategic options development and analysis is a problem-structuring approach that enables problematic situations to be 

explored in greater depth by constructing graphical representations before making a decision. Strategic options development and 
analysis uses a technique called cognitive or causal mapping, which analyses interviews with stakeholders and examines relevant 
documents. The picture is constructed using the natural language of the problem owners and becomes a model of the situation 
“owned” by the people who define the problem (Eden and Ackermann 2001).

Strategic options development and analysis has been used successfully for a wide range of purposes and applications. In this 
case, it is used to structure thinking through capturing chains of procedures and desirable pilot behaviors in the missile launch time 
in a BVR combat. According to Ackermann and Eden (2010), SODA allows capturing all the statements (constructs) along with 
their relationship (causal relationship) maps, identifying the key issues, evaluating the breadth of considerations, and identifying 
inconsistencies in arguments.

Georgiou (2011) says that language consists of words, many of which can have multiple connotations. One manner of minimizing 
the breadth of interpretation is to offer an alternative word or phrase that can highlight what is meant by the original description. 
This highlighting is the function of constructs, which are a concept or theoretical construction: purely mental, elaborated or 
synthesized based on simple data, from observable phenomena, which help researchers to analyze and understand some aspect 
of a study or science. Constructs are designed with two poles, whereby the second pole serves to clarify what is meant by the first 
pole. The two poles are separated by suspension points, distinguishing the two poles of the construct (Georgiou 2011). 

Georgiou (2011) states that constructs may be structurally categorized according to certain basic types: tails, heads, strategic 
options, implosions, explosions and dominants. Tails have no constructs leading into them and are known as prime causes. Heads have 
no constructs leading out of them and reflect objectives, outcomes, results or consequences stemming from the dependency paths 
of arrows that lead into them. Strategic options are constructs with immediate links to a head and reflect the options available 
through which a particular result (head) may materialize. Implosions are constructs with a relatively high number of constructs 
leading directly into them; an implosion is a construct affected by multiple other constructs. Explosions are constructs with a 
relatively high number of constructs directly leading out of them; an explosion is a construct that affects multiple other constructs. 
Dominants are constructs with a relatively high total number of constructs leading into and out of them; dominants will affect, 
and be affected by, multiple constructs, and offer a good indication of the major issues that must be tackled in order to reach the 
heads. These concepts are discussed in more detail with the example below.

Application of the SODA method
In qualitative research, some techniques are used to organize data in terms of their properties and dimensions. When no new 

information emerges during coding, i.e., when no new properties, dimensions, conditions, actions, interactions, or consequences 
are evidenced in the data, a category is considered saturated (Strauss and Corbin 1998). In this study, the interview of five specialists 
from different origins was enough to gather the relevant information during the SODA method utilization.

Five pilots from different squadrons who participated in the BVR combat exercises were interviewed. The BVR combat manuals 
were consulted to map the factors that influenced the combat results. After collecting the pilots’ responses and creating a cluster 
of causes and effects from each interview, the questionnaire answers and the individual clusters were presented to the pilots to 
create a consensual unified version. The pilots worked together to create a unified questionnaire response (Table 1) and a single 
cluster (Fig. 1) that removed the ambiguity from technical terms and standardized the cause-and-effect relationships.

It is possible to identify the main constructs in Fig. 1 according to their basic types: tails (constructs 1 to 6), heads (construct 
14 in an oval), strategic options (constructs 12 and 13), implosions (constructs 12 and 13), explosions (constructs 9 and 11), and 
dominants (construct 9).

The information presented in the cluster was the starting point to select the desirable features in the ANN. The data needed 
to assess the probability of success are those available from the onboard sensor systems: difference in altitude between opposing 
aircraft, shooting distance, shooting position concerning WEZ (short, medium, or long shoot), minimum shooting distance, 
closure rate, shooter aircraft speed, angle of the opposing aircraft in relation to the shooter aircraft and the number of planes in 
the shooter’s and the opponent’s squadrons.
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Table 1. Questionnaire provided to the pilots and their unified answers.

Question Responses

What are the factors that can 
increase the probability of success 
of shooting down the opponent in 

the missile launch time?

The aircraft approaches the opponent.

Aircraft as fast and as high as possible.

Long/medium launch.

The aircraft’s aspect in launch time is favorable.

Short launch.

The number of aircraft in the squadron is higher than the 
opponent.

Why?

The closure rate is high.

The missile can reach a longer distance.

The opponent aircraft did not do the defensive maneuver.

The opponent aircraft do not have enough time to escape.

The higher the number of aircraft, the higher is the 
probability of shooting down the opponent.

How effective is this factor? 

The missile has a low/medium 
probability of hitting the target.

The missile has a high probability of hitting the target.

12. The missile has a low/medium 
probability of hiting the target... 

The probability of success is lower 
than 70%.

7. The closure rate 
is high... Aircraft 

quickly approaches 
the opponent.

1. The aircraft 
aproaches the 

opponent... Two 
aircraft on a 

collision course.

6. The number of aircraft 
in the squadron is higher 

than the opponent... 
If the squadron has a 

least one aircraft more, 
this can be one tactical 

advantage.

5. Short launch and 
out of Rmin... Aircraft 
launches the missile 

usually in the first third 
of WEZ and observing 
a minimum shooting 

distance.

4. The aircraf's aspect 
in launch time is 

favorable... the aircraft 
launches the missile 

aiming at the opponents 
future point.

3. Long/medium 
launch... aircraft 

launches the missile 
in the 3° and 2° third 

of WEZ.

2. Aircraft as 
fast and high 
as possible... 

Themissile gets 
more potential 

energy.

8. The missile can reach a 
longer distance... Depending on 
speed and altitude, the missile 

range can increase up to 5 
nautical miles.

9. The opponent aircraft did not 
do the defensive maneuver... 

Opponent aircraft do not realise 
that the enemy launched his 
missile and maintain its plan.

10. The opponent aircraft 
do not have enough 

time to escape... If the 
opponent takes a little to 
evade, he can enter the 

missile's NEZ.

11. Usually the higher the 
number of aircraft, the higher 
is the probability of shooting 

down the opponent... When a 
squadron has a higher number 
of aircraft, each two aircraft 

can fight against one.

13. The missile has a high 
probability of hiting the target... The 

probability of success is equal or 
greater than 70%.

14. The missile hit the target... The opponent 
aircraft was shot down.

Figure 1. Unified cluster — influencing factors in shooting success.
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CONCEPTS OF MULTILAYER PERCEPTRON (MLP)

Machine learning aims to program computers to use example data or past experience to solve a given problem (Alpaydin 
2014). Supervised learning is learning from a training set of labelled examples provided by a knowledgeable external supervisor 
(Sutton and Barto 2018). In supervised learning, the teacher (or external supervisor) has knowledge of the environment, with 
the knowledge being represented by a set of input-output samples, called the training dataset, and the objective of learning is to 
estimate the free parameters of the network that minimize the output errors (Suresh et al. 2013). Neural networks are a type of 
supervised learning network in which signals are transmitted from input nodes to output nodes.

Russell and Norvig (2016) state that a neural network is composed of nodes or units connected by directed links. Figure 2 
shows a representation of a single-layer neural feed-forward network, or perceptron network. A link from unit i to unit j serves to 
propagate the activation from i to j. Each connection also has a numerical weight associated with it, which determines the strength 
and the connection signal. Each layer has a bias unit input a0(x0) = 1 with associated weight Θj,0. The mathematical model for an 
individual “unit” (also named “neuron”) is summarized in Eq. 1. Each unit j first calculates a weighted sum of its inputs of the 
layer l and then applies an activation function g (called perceptron) to the sum to get the output:

(1)
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Figure 2. A simple four-input, one output perceptron network.

The next task is to connect the units to form a network. A feed-forward network has connections in only one direction (Fig. 3), 
forming a directed acyclic graph. Every node receives input from “upstream” nodes and delivers output to “downstream” nodes; 
there are no loops (Russell and Norvig 2016).
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Figure 3. Multilayer perceptron with three layers (Layer 1: three input units, Layer 2: one 
hidden layer of three units, and Layer 3: one output unit).
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A multilayer perceptron (MLP), also often called a feed-forward neural network (Goodfellow et al. 2016), is a supervised 
learning algorithm that learns a function f(.):Rm → R0 by training on a dataset, where m is the number of dimensions of 
input and o is the number of dimensions of output. Given a set of features Xi = {xi|x1,x2,...,xm} and a target y, an MLP can 
learn a nonlinear function approximator for either classification or regression. Between the input and the output layer, there 
can be one or more nonlinear layers, called hidden layers. The first layer, known as the input layer, consists of a set of units 
Xi = {xi|x1,x2,...,xm} representing the input features. Each unit in the hidden layer transforms the values from the previous layer 
with the application of an activation function g(.):Rm → R on the weighted linear summation Θ10

(1)x0 + Θ11
(1) x1 + Θ12

(1) x2 + ...+ Θ1m
(1)

xm. The result feeds the units of the next layer. Different activation functions can be used, such as the logistic sigmoid function, 
the identity function, the hyperbolic tan function, or the rectified linear unit function (ReLU). The output layer receives the 
values from the last hidden layer and transforms them into output values (Pedregosa et al. 2011; Scikit-learn 2019). Figure 3 
shows a representation of a multilayer perceptron with one hidden layer of three units in layer 2. Note that in this case al

i is 
the activation of unit i in layer l.

Training the neural network
One way to train a network is to enter the inputs, that is, the set of features Xi = {xi|x1,x2,...,xm} in an MLP, take the output values 

(the hypotheses hΘ(x)) and compare them with the known results, y. A loss function can be expressed by Eq. 2 when several sets 
of inputs have been processed. The lower the value of the loss function, the more accurate is the network, and as can be seen in 
Fig. 2, the assumptions depend on the weights Θ of the units.

	 � (2)

where K is the number of units in the last layer, N is the number of training sets, n is the training set index, and L is the last layer. 
To maximize the prediction of the hypothesis, the loss function must be minimized. While the error (y – hΘ) in the output layer is 
easy to check, the error in the hidden layers is not clear because the training data do not say what value the hidden nodes should 
have. However, it turns out that it is possible to backpropagate the error of the output to the hidden layers. The backpropagation 
algorithm used for learning in multilayer networks can be summarized as follows: calculate loss values (y – hΘ) for the output 
units using the error observed from the output layer. Repeat this step for each layer of the network until the first hidden layer 
is reached. When the first hidden layer is reached, propagate the loss values back to the previous layer, and update the weights 
between the two layers (Russell and Norvig 2016).

Regularization
When the neural network has many features, and a high-order polynomial is used to fit the training set, the result may be 

overfitting. It is common to introduce restriction conditions by mean of a penalty function to the objective function, meant to 
include extra information. Such procedure helps to solve ill-posed problems or to prevent overfitting by ensuring the smoothness 
of the solution balancing complexity and accuracy (Marwala and Lagazio 2011). This procedure is named regularization, and it 
is penalized by the weight Θj,i, multiplying a parameter α, which can be expressed by Eq. 3:

	 	�  (3)

where J(Θ) is the loss function, L is the total number of layers in the network, SL is the number of units (not counting the bias 
unit) in layer l, and K is the number of output units, as previously mentioned.



J. Aerosp. Technol. Manag., São José dos Campos, v13, e3721, 2021

Lima Filho GM, Medeiros FL, Passaro A8

A high value of α tends to reduce the variance of the network objective function and imposes more biases to the network 
prediction. If changing regularization values does not change the accuracy of the network, then the network already has a high 
bias. The bias can be understood as a measure of how close to the expected value, on average, over several different training sets, 
an estimator is (Brown 2004). However, high bias causes underfitting in the neural network model.

Evaluating estimator performance
It is common practice when running a supervised machine learning experiment to keep some of the available data as a test set. 

In the procedure called cross-validation (CV), a test set should be held out for final evaluation. In the basic approach, called CV 
k-fold, the training set is divided into k smaller sets (folds). First, a model is trained using the folds as training data. The performance 
measure reported by the CV k-fold is then the average of the k calculated values (Kohavi 1995). This approach can be computationally 
expensive, but it does not waste a lot of data, which is a great advantage in problems where the number of samples is very small. 
In a second step, the resulting model is validated on the test set to compute the performance of the estimators, such as accuracy.

In this work, the neural network training set has 1093 shots registered from military exercises. The CV procedure uses 10 folds, 
and in each fold 70% of the data composes the training set and 30% the validation set. In the second step, additional 396 shots 
(27% of the total), not used in CV procedure, are used to measure the effectiveness of the neural network prediction.

METHODOLOGY: APPLICATION OF ANN TO 
PREDICT THE SHOOT DOWN OF THE OPPONENT

The first step in the adopted methodology correspond to the application of SODA method. As stated previously, five specialists 
were consulted and verified that no new information emerges after three interviews, suggesting that the five interviews have been 
enough to capture the relevant information. The five specialists acted together to create a unified consensual cluster. The cluster 
was already presented in Fig. 1.

To develop an ANN for predicting the shoot down of the opponent, the following eight influencing factors from the unified 
cluster were selected.
•	 Difference in altitude between opposing aircraft;
•	 Shooting distance;
•	 Shooting position in relation to WEZ (short, medium or long shoot);
•	 Minimum shooting distance;
•	 Closure rate;
•	 Shooter aircraft speed;
•	 Angle of the opposing aircraft in relation to the shooter aircraft, and
•	 The number of aircraft in the shooter’s and opponent’s squadron.

The database allowed selecting 1093 shoots from a military exercise database with the eight features cited. Training the MLP 
makes use of the backpropagation algorithm (LeCun et al. 2012), and three optimizers were studied to minimize the loss function. 
The first optimizer is the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) (Byrd et al. 1995), an optimizer 
in the family of quasi-Newton methods. The second one is the stochastic gradient descent (SGD) (Bottou 1991), and the third is 
the Adam algorithm that refers to a stochastic gradient-based optimizer, proposed by Kingma and Ba (2015). An example of an 
MLP for predicting the shoot down of the opponent can be seen in Fig. 4. The eight features identified in the SODA procedure 
feed the input layer of an MLP, and the expected answer is whether the shoot down happens.

A hyperparameter optimization for the neural network was made to select the best neural network architecture (Goodfellow 
et al. 2016). The metrics used to evaluate the results are accuracy, the proportion of correctly classified examples; precision, the 
proportion of true positives among instances classified as positive; recall, the proportion of true positives among all positive 
instances in the data; F1-score, a weighted harmonic mean of precision and recall (Dalianis 2018).
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Figure 4. Example of MLP with one hidden layer for predicting the shoot down of the opponent.

The training set is balanced, that is, the number of positive and the number of negative occurrences is equivalent. The neural 
network aims to predict the success of a missile in each launch. The metric to be used for decision-making depends on the 
specific conditions of the mission and UCAV tactical situation. For instance, if the vehicle has little range and having to shoot 
down the enemy in the first few engagements, the total amount of true positives and true negatives can be the most important to 
be evaluated. On the other hand, if the vehicle has sufficient range for several engagements, its missile has a very high cost and 
cannot be wasted, the false-positive rate will be considered more harmful than false-negative rate. The false-positive rate is the 
relative frequency of no shot down when shot down is predicted, and the false-negative rate is the relative frequency of shot down 
when the no shot down is predicted (Riffenburgh 2012). There may also be occasions when the amount of UCAV and missiles is 
high, and the tactical situation determines that every shot opportunity has to be used. In this case, the amount of false negative 
is more harmful than false positive. The evaluation conducted in the experiments will consider the accuracy, F1-score, precision 
and recall metrics for the analysis.

The first phase of the optimization process started looking for a number of layers, hidden units, optimizer and activation 
function that optimize the cited metrics.

The ideal network architecture for a task must be found via experimentation guided by monitoring the validation set error 
(Goodfellow et al. 2016). Functions representable with a deep rectifier net can require an exponential number of hidden units 
with a shallow (one hidden layer) network, according to Montúfar et al. (2014). Therefore, in the present work, a different number 
of hidden units were experimented with for the first hidden layer: 8, 32, and 64. Then, additional hidden layers were added (each 
one with 8, 16, 32, and 64 hidden units) to evaluate their effect on the result.

The second phase of the hyperparameter optimization was to choose the best regularization. The best neural network 
architectures obtained in the first phase was trained with different regularizations (α = 20, 15, 10, 5, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 
0.3, 0.2, 0.1, 0.01, 0.005, 0.001, 0.0001).
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The third and final phase re-evaluated the number of hidden layers and units after choosing the optimizer and the activation 
function for the hidden layer as a function of a subset of regularization parameters.

After the hyperparameter optimization, the best architectures selected will have a performance comparison with a testing set 
with 396 shots previously selected and not used in the training set, as mentioned previously.

RESULTS AND DISCUSSION

The main results obtained to define the neural network architecture for predicting the shoot down of the opponent in the 
BVR air combat, considering the aspects discussed previously, are presented and discussed. The neural network architecture is 
defined in three steps: the evaluation of the number of layers and hidden units, assuming a pre-defined regularization parameter; 
selection of the optimizer, the activation function, and the regularization parameter; and finally, the number of hidden units is 
reviewed, considering the best three parameters found in the second step.

Selecting the number of layers, hidden units, optimizer and activation function
To select the best number of layers, hidden units, optimizer and activation function, the neural network was trained with 

different optimizers (Adam, SGD and L-BFGS), different activation functions in the hidden layer (ReLU, logistic sigmoid 
function, identity function and hyperbolic tangent function), α = 1, and different number of layers and hidden units. Only 
the best four configurations are presented in Table 2, Table 3, and Table 4. In each table, the best result is highlighted in bold 
characters.

Table 2. Performance metrics from neural network architecture: Adam optimizer, 
ReLU, α = 1, different number of layers and hidden units.

Hidden units Accuracy F1-score Precision Recall

8 0.775 0.772 0.772 0.775

32 0.776 0.771 0.773 0.776

64 0.780 0.775 0.777 0.780

64, 8 0.771 0.767 0.768 0.771

64, 16 0.780 0.776 0.777 0.780

64, 32 0.775 0.771 0.772 0.775

64, 64 0.777 0.772 0.774 0.777

64, 32, 8 0.777 0.773 0.774 0.777

64, 32, 16 0.774 0.770 0.771 0.774

64, 32, 32 0.774 0.770 0.771 0.774

64, 32, 64 0.761 0.757 0.757 0.761

64, 32, 8, 8 0.772 0.769 0.769 0.772

64, 32, 8, 16 0.769 0.765 0.765 0.769

64, 32, 8, 32 0.767 0.762 0.763 0.767
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Table 3. Performance metrics from neural network architecture: Adam optimizer, 
hyperbolic tangent function, α = 1, different types of layers and hidden units.

Hidden units Accuracy F1-score Precision Recall

8 0.772 0.769 0.769 0.772

32 0.772 0.768 0.769 0.772

64 0.774 0.770 0.771 0.774

64, 8 0.766 0.762 0.762 0.766

64, 16 0.773 0.769 0.770 0.773

64, 32 0.774 0.770 0.771 0.774

64, 64 0.773 0.769 0.770 0.773

64, 32, 8 0.777 0.773 0.774 0.777

64, 32, 16 0.775 0.771 0.772 0.775

64, 32, 32 0.777 0.773 0.774 0.777

64, 32, 64 0.772 0.769 0.769 0.772

64, 32, 8, 8 0.780 0.776 0.776 0.780

64, 32, 8, 16 0.777 0.773 0.774 0.777

64, 32, 8, 32 0.774 0.770 0.771 0.774

Table 4. Performance metrics from neural network architecture: L-BFGS optimizer, 
logistic sigmoid function, α = 1, different types of layers and hidden units.

Hidden units Accuracy F1-score Precision Recall

8 0.776 0.771 0.773 0.776

32 0.777 0.773 0.774 0.777

64 0.778 0.774 0.775 0.778

64, 8 0.771 0.767 0.768 0.771

64, 16 0.775 0.771 0.772 0.775

64, 32 0.775 0.771 0.772 0.775

64, 64 0.780 0.777 0.777 0.780

64, 32, 8 0.683 0.630 0.699 0.683

64, 32, 16 0.764 0.759 0.760 0.764

64, 32, 32 0.625 0.481 0.390 0.625

64, 32, 64 0.679 0.628 0.686 0.679

64, 32, 8, 8 0.625 0.481 0.390 0.625

64, 32, 8, 16 0.625 0.481 0.390 0.625

64, 32, 8, 32 0.625 0.481 0.390 0.625
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The best neural network architectures in the four cases corresponds to: Adam optimizer, ReLU, α = 1, one layer and 64 hidden 
units; Adam optimizer, ReLU, α = 1, two hidden layers with 64, 16 units; Adam optimizer, hyperbolic tangent function, α = 1, 
four hidden layers with 64, 32, 8, 8 hidden units; L-BFGS optimizer, logistic sigmoid function, α = 1, two hidden layers with 64, 
64 units. These neural network configurations are used in the next step.

Selecting the regularization
For each neural network architecture selected in the previous phase, 19 different values of the regularization parameter α were 

considered: α = {20, 15, 10, 5, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.005, 0.001, 0.0001}.
Figures 5 to 8 present the performance metrics for each architecture cited in the previous subsection. Again, bold characters 

indicate the best result for each case. Note that the accuracy and recall response curves are superimposed on all figures.
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Figure 5. Performance metrics for different regularizations: Adam optimizer, ReLU, one hidden layer with 64 units.
0.79

0.78

0.77

0.76

0.75
0.0001 0.001 0.01 0.1 1 10

Regularizatom α

M
et

ri
cs

 p
er

fo
rm

an
ce

Accuracy F1-score Precision Recall

Figure 6. Performance metrics for different regularizations: Adam optimizer, ReLU, and two hidden layers 
with 64 and 16 units, respectively.
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Figure 7. Performance metrics for different regularizations: Adam optimizer, hyperbolic 
tangent function, and four hidden layers with 64, 32, 8 and 8 units, respectively.
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Figure 8. Performance metrics for different regularizations: L-BFGS optimizer, logistic 
sigmoid function, and two hidden layers with 64 and 64 units, respectively.

The tuning of the regularization parameters based on this data set shows that the four combinations of optimizer and activation 
function maintained the same performance metrics in predicting the best conditions for shoots, except the first architecture that 
showed a little improvement with α = 0.4 and α = 0.6 (Fig. 5) obtaining 78.1% accuracy, 77.7% F1-score, 77.8% precision, 78.1% recall.

From the results obtained so far, the third and last phase of the network architecture optimization evaluates the number of 
hidden layers and the number of units again as a function of the α = 0.4 and α = 0.6 in the Adam optimizer, ReLU, one hidden 
layer with 64 units. The tests showed no improvement in the results.

A short discussion of the cross-validation results
The best five architectures found for the MLP with a backpropagation learning algorithm are:

•	 Neural network 1 (NN1): Adam optimizer, ReLU, one hidden layer with 64 units and α = 0.4;
•	 Neural network 2(NN2): Adam optimizer, ReLU, one hidden layer with 64 units and α = 0.6;
•	 Neural network 3 (NN3): Adam optimizer, ReLU, and two hidden layers with 64, 16 units and α = 1;
•	 Neural network 4 (NN4): Adam optimizer, hyperbolic tangent function, and three hidden layers with 64, 32, 8, 8 units and α = 1;
•	 Neural network 5 (NN5): L-BFGS optimizer, logistic sigmoid function, and two hidden layers with 64, 64 units and α = 1.

The best performance metrics obtained by using the training set is 78.1% of accuracy, 77.7% (+/– 1%) of F1-score, 77.8% (6%) 
of precision and 78.1% of recall.

The performance metrics of the best five architectures of the neural networks with the training set showed very similar results.

Performance comparison with a test set
An additional test using an independent data set, built with 396 shots not included in the training phase were used to reevaluate 

the neural networks, allowing to verify which one would better generalize new data, i.e., make better predictions. Table 5 shows 
the results obtained and Table 6 presents the confusion matrix of each architecture. It can be noticed that the performance of the 
five ANN with the test set was inferior to the one obtained in the CV procedure, as measured by the four metrics. The differences 
occur due to some overfitting of the training data set which are almost inevitable due to the hyperparameters tunning, making the 
training scores optimistic. One way to minimize this problem is to use a bigger training data set, which it is not available at this time.

Table 5. Performance metrics for different ANN with their predictions of testing set.

Regularization Accuracy F1-score Precision Recall

NN1 0.737 0.636 0.758 0.548

NN2 0.735 0.632 0.756 0.542

NN3 0.742 0.643 0.767 0.554

NN4 0.740 0.633 0.774 0.536

NN5 0.730 0.619 0.757 0.524
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Table 6. Best confusion matrix of the five ANN architectures.

Predicted by NN1

Actual

1.0 0.0 True positive 91

1.0 91 75 False positive 29

0.0 29 201 False negative 75

True negative 201

Predicted by NN2

Actual

1.0 0.0 True positive 90

1.0 90 76 False positive 29

0.0 29 201 False negative 76

True negative 201

Predicted by NN3

Actual

1.0 0.0 True positive 92

1.0 92 74 False positive 28

0.0 28 202 False negative 74

True negative 202

Predicted by NN4

Actual

1.0 0.0 True positive 89

1.0 89 77 False positive 26

0.0 26 204 False negative 77

True negative 204

Predicted by NN5

Actual

1.0 0.0 True positive 87

1.0 87 79 False positive 28

0.0 28 202 False negative 79

True negative 202

The five neural networks had very similar results in their performance, both with the validation set and the test set. The false 
negative rate was relatively high for all neural networks with the test set, so these neural networks should preferably be used on 
missions in which the total amount of true positives and true negatives must be the most important to be assessed, or on missions 
in which the false positive rate will be considered more damaging than the false negative rate.

The training time of the ANN, which is done just once, with the data set used was 12.5 s. After training the ANN, the measured 
response time is 5.3 × 10–4 s for each input set, i.e., faster than the usual human time response. These data were obtained using one 
core of an i7 processor. The trained ANN can also be used in an onboard system without loss of time response.

CONCLUSION

Beyond visual range air combat has a very complex decision-making process because the scenario is dynamic, changes every 
second, and the pilot must consider many factors to update his decision. Nowadays, many decisions have become automated to 
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increase the probability of pilot survival. The most advanced air forces are already using UCAV instead of manned aircraft on 
some missions. Thereby, it is important to develop systems that make decisions automatically in a short time and with a reasonable 
probability of success.

This paper explores an ANN trained using a database from military exercises containing data from onboard sensor systems 
at the moment of launching a missile. The database is very rich, providing data from different scenarios with different aircraft 
numbers on both sides. The architecture of the ANN to predict the shoot down of the opponent was presented. Strategic options 
development and analysis method is used to evidence the relevant input data.

Considering the richness and complexity of the environments registered in the database, and the simplicity of the ANN 
architecture, the success probability of shooting down the opponent, based only on the onboard sensors data, is high, about 78% 
for all the performance metrics computed of using the training set and 74% of accuracy of using the testing set. This is a simple 
system, easy to program and effortless to implement in the UCAV airborne fire control computer. The trained ANN response time 
is low, of the order of 5 × 10– 4 s, and acceptable for real-time applications. Future works could aim to refine the analysis of the 
factors involved in BVR combat and analyze the parameters that would increase the probability of success provided by the ANN.
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