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ABSTRACT: In modern conditions unmanned aerial vehicles (UAVs) generate new classes of threats, including their use for 
terrorist purposes. A feature of modern UAVs is the ability to perform sudden maneuvers and to keep the same position in the 
point in space. For the description of the UAV movement with various types of maneuver it is used a rectangular coordinate 
system. We use the model in the form of stochastic dynamic system with random structure in the discrete time in which the 
change type UAV movement occurs at random times. When a UAV emits a sign, its location can be determined by wireless 
sensor networks (WSN) using the TDOA method. On the basis of a mathematical apparatus of the mixed Markov processes for 
in discrete time optimal and quasi-optimal adaptive algorithms for filtration of UAV movement parameters based on the TDOA-
measurement, sensor networks are synthesized. Devices that realize these algorithms are multichannel and belong to the class 
of devices with feedback between channels. At the same time, in a quasi-optimal algorithm, a sequential procedure of the arriving 
measurements from sensors of a sensor network is realized, which allows to avoid the inversion of large-dimensional matrices. 
An analysis of the quasi-optimal adaptive algorithm is performed using statistical modeling. On the intervals of hovering and of 
the UAV movements without maneuver, the developed algorithm allows to increase significantly the accuracy of the estimation 
of the UAV coordinates, and also to recognize various types of its movement with high probability level.

KEYWORDS: UAV, Wireless sensor networks, Optimal and quasi-optimal adaptive algorithms, Parameters of the movement, TDOA.

INTRODUCTION

Unmanned aerial vehicles (UAVs) are beginning to play an increasingly important role. The main arguments for their 
dissemination are low cost, high mobility and the ability to transfer photo-video information in real time. On the other hand, the 
availability and massive use of UAVs has led to a new class of threats (Nonami et al. 2010; Wallace and Loffi 2015; Sathyamoorthy 
2015; Solodov et al. 2018; Friese et al. 2016; Card 2018; Dronebouncer 2018).

The development of wireless technology and microelectronics has led to the emergence and widespread use of wireless sensor 
networks (WSN), which are distributed networks self-organizing from miniature sensors that exchange information through 
wireless technology. One of the main uses of WSN is the creation of various monitoring and tracking systems of moving radio 
sources, including UAVs (Gemayel et al. 2014; Wan et al. 2016).

To determine the UAV location using wireless sensor networks, TDOA measurements are widely used (Rullan-Lara et al. 2013; 
Makki et al. 2016). At TDOA measurement, synchronization between WSN and a radio source is not necessary, which allows its 
use for positioning the unknown UAV.
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The UAV trajectory as a rule consists of non-overlapping sections with different types of movement. It can be presented in the 
form of stochastic process from which probability characteristics change at random instants of time. A convenient mathematical 
model of such processes are stochastic discrete dynamic systems with a random structure, which are adequate to solvable tasks 
when realization of algorithms on digital computers. To increase the accuracy of the UAV coordinates estimate on sections with 
different types of movement, various measurement processing algorithms must be used. However, the type of movement is, as a rule, 
unknown. Therefore, besides estimating the UAV coordinates, it is also necessary to solve the task of recognizing its motion type.

In the work of Tovkach and Zhuk (2017a) the adaptive algorithm is synthesized, with estimation of the UAV movement 
parameters and its movement type. Observations at synthesis of the algorithm are the UAV location coordinates in the rectangular 
coordinate system, which are determined on the basis of TDOA measurements using the least squares method. The disadvantage 
of the obtained algorithm is that definition the UAV location is carried out after arrival of measurements from all sensors, which 
leads to the necessity inversion of large-dimensional matrices.

Therefore, the synthesis of adaptive algorithms for the UAV movement parameters estimate based on the TDOA-measurement 
sensor networks, which provide serial processing of measurements, is important and do not require the inversion of large-
dimensional matrices.

PROBLEM DEFINITION

The UAV movement with various types of maneuver in rectangular system of coordinates can be described by a stochastic 
dynamic system with random structure (Eq. 1) (Zhuk 1989):
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the measurements of the differences of distances between the sensors and the reference sensor are received in the k-th moment 
of time. The moment of receipt of a signal to the basic sensor with coordinates of x0, y0, z0 is used as the k-th moment of time.

Distance difference measurement errors are correlated because they contain reference sensor measurement error. The presence 
of correlated errors makes it difficult to use traditional recurrent target coordinates evaluation algorithms. This difficulty can be 
avoided through the introduction of error υ0(k) into the state vector of the estimated parameters (Tovkach and Zhuk 2017b), which 
can be represented in the form uT(k) = (utrT(k), υ0(k)). In this case, the model of the process to be filtered is transformed to Eq. 2:

where ωT(k) = (ωtrT(k), ωΔ(k)); ωΔ(k) is the uncorrelated sequence of Gaussian values with a single dispersion;

In this case, the observation equation that describes the process of measuring the coordinates of UAV by sensor network is Eq. 3:
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s = 1,S; υs(k) is the measurement error of s-th sensor with dispersion ds; hs(u) is the nonlinear function, described by Eq. 4:
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where: x(k), y(k), z(k) are coordinates of the UAV position; xs, ys, zs are coordinates of the s-th sensor 
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Equation 2 describes the process to be estimated, and Eq. 3 the formation process of data accessible to observation. For a 
description of the type of maneuver there is used the random variable aj(k), j = 1,M which belongs to chains of Markov, accepting 
the M values with a matrix of probabilities of transitions Πij (k, k – 1) i, j = 1,M and initial probabilities pi (0), i = 1,M. 
Measurement errors υ5 (k), s = 1,S are independent.

Applying the technique of a condition vector expansion (Zhuk 1988) it is possible to show that the expanded process 
(u(k), aj(k)) belongs to the class of the mixed Markov processes in discrete time with transition probability density (PD) (Eq. 5):

where Π(u(k) | u(k – 1), aj(k)) is the conditional PD defined by Eq. 2.
The problem of synthesis of an optimal algorithm comes down to calculation of aposteriori PD of expanded process W(u(k), 

aj(k)) = P(u(k), aj(k) | UΔ(k)), where UΔ(k) = uΔ(1),…,uΔ(k) are the sequences of measurements received to till k-th moment, 
included. Introducing also designation of the extrapolated PD P(u(k), aj(k) | UΔ(k – 1)) for the expanded process and following 
the technique of synthesis (Zhuk 1989), the optimal algorithm of a filtration can be presented in the form of two the recurrent 
Eqs. 6 and 7:
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 Equation 6 describes evolution of the extrapolated PD W*(u(k), aj(k)) and is also an optimal 

algorithm of extrapolation of mixed Markov processes (u(k), aj(k)) for one step. With the help of Eq. 7 the 

clarifying of extrapolated PD based on the obtained measurement uΔ(k) is made and a posteriori PD 

W(u(k), aj(k)) is defined. 

 Further transformation of Eqs. 6 and 7 can be executed by means of the theorem of multiplication 

of probabilities. In this case the optimal filtering algorithm can be represented as the following system of 

recurrent Eqs. 8 to 11 
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Equation 6 describes evolution of the extrapolated PD W*(u(k), aj(k)) and is also an optimal algorithm of extrapolation of 
mixed Markov processes (u(k), aj(k)) for one step. With the help of Eq. 7 the clarifying of extrapolated PD based on the obtained 
measurement uΔ(k) is made and a posteriori PD W(u(k), aj(k)) is defined.
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the optimal filtering algorithm can be represented as the following system of recurrent Eqs. 8 to 11:
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where: W*j(u(k)) = P(u(k) | aj(k), UΔ(k – 1)) and Wj(u(k)) = P(u(k) | aj(k), UΔ(k)) are the conditional 

extrapolated and a posteriori PD of the vector u(k) on condition aj(k); W*j(k) = P(aj(k), UΔ(k – 1)) and 

Wj(k) = P(aj(k), UΔ(k)) are extrapolated and a posteriori probabilities aj(k); P(u(k) | aj(k), UΔ(k – 1)) is the 

conditional PD determined by the formula 
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 The initial conditions for the algorithm Eqs. 8 to 11 have the form Wi(0) = pi(0), Wi(u(0)) = 

P(u(0)), 1,i M= . 

 Using theEqs. 8 and 11, extrapolated W*j(k) and a posteriori Wj(k) probabilities are calculated and 

Eqs. 9 and 10 are conditional extrapolated W*j(u(k)) and a posteriori Wj(k) PD. The optimal adaptive filter 

(Eqs. 8 to 11) contains M channels and belongs to the class of devices with feedbacks between channels 

(Zhuk 1988; 1989). 
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Calculation of conditional a posteriori PD Wj(u(k)) (Eq. 10) at sequentially processing of the arriving measurements Δl (k), 
l = 1,S comes down to calculation of its first ûj(k) and second P ˆ

j(k) moments using the recurrent procedure (Eqs. 14 to 16) (Evlanov 
and Zhuk 1990):
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 The quasi-optimal device that implements the algorithm Eqs. 8, 11 to 16 is also multichannel with 

number of channels M and generally keeps the structure of the optimal device. Their difference is that in 

quasi-optimal device only the first and second moments of conditional PD W*j(u(k)) and Wj(u(k)) are 

calculated. In this case the quasi-optimal algorithm allows keeping representation of a posteriori PD 

Wj(u(k)) in the form of the sum of the M Gaussian densities. 

 The block diagram of the j-th channel of such quasi-optimal filter is shown in Fig. 1. 
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Figure 1. Block diagram of one channel quasi-optimal filter at consecutive calculations.
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THE EFFECTIVENESS OF THE ALGORITHM ANALYSIS

The operability of the obtained quasi-optimal adaptive algorithm of the UAV movement parameters estimate on the basis of 
TDOA measurements Eqs. 8, 11 to 16 is checked by the Monte Carlo method.

The sensor network (Fig. 2) consists of nine sensors with coordinates S0(0; 0; 0), S1(0; 100; 44), S2(70.71; 70.71; 6), S3(100; 0; 48), 
S4(70.71; –70.71; 10), S5(0; –100; 52), S6(–70.71; –70.71; 14), S7(–100; 0; 56), and S8(–70.71; 70.71; 18).

Figure 2. Configuration of the sensor network with nine sensors and the trajectory of UAV movement.
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The created test trajectory of the movement UAV (Fig. 1) consists of nine sections: first 1 ≤ k ≤ 19 – uniform motion; second 
20 ≤ k ≤ 27 – maneuver, height reduction; third 28 ≤ k ≤ 42– uniform motion; fourth 43 ≤ k ≤ 45 – maneuver; fifth 46 ≤ k ≤ 59 – 
uniform motion; sixth 60 ≤ k ≤ 67 – maneuver, rise to height; seventh 68 ≤ k ≤ 85 – uniform motion; eighth 85 ≤ k ≤ 114 – hanging; 
ninth 115 ≤ k ≤ 130 – uniform motion. Error RMS of measurement sensors of sensor network σv = 2.4 m, step of sampling Т = 1 s. 
The simulation was carried out in a hundred realizations with various measurement errors.

A model with a random structure (Eq. 2) takes into account the three main types of UAV movement M = 3: hanging j = 1, 
almost uniform motion j = 2, movement with maneuver j = 3.

The state vector uT(k) = (x(k), x . (k), x ..(k), y(k), y . (k),y ..(k), z(k), z . (k), z ..(k), v0(k)) includes position coordinates, velocity and 
acceleration along the axes X, Y, Z. The matrixes Fj(k, k – 1), Gj(k), j = 1,3 have the form:
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are RMS of random fluctuations of speed, acceleration and speed of change of acceleration of the UAV, 

respectively. When modeling relied: a1 = 0.05 m/s; a2 = 0.01 m/s2; a3 = 6 m/s3. 
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estimates the distance between the reference sensor and the UAV.
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j(0), j = 1,3 for the first hypothesis j = 1 were created on the current measurements, and for 

j =  2,3 according to the observations at the two neighboring steps.
Figure 3 shows the dependences of recognition probability of movement of the first, second and third types, respectively, 

curves 1, 2, 3, obtained by statistical modeling. The probability of recognizing the hovering and almost uniform motion of 
the UAV is close to unity by the algorithm obtained. The probability of recognizing the maneuver is lower due to its short 
duration.

Figure 4 shows dependences of expected value (curve 1) and RMS (curve 2) errors of the position estimation of the UAV 
along coordinates of X, Y, Z and also RMS (curve 3) errors of assessment calculated by the adaptive algorithm obtained 
experimentally. Figure 4 also shows dependences of RMS error of measurement of the UAV position, which corresponds to 
the lower bound of Cramer-Rao (curve 4). Accumulation of measurements of a trajectory filtration allows to reduce RMS 
error of location definition of the UAV in comparison with the lower bound of Cramer-Rao (Tovkach and Zhuk 2017b) by 
2 to 4 times.

Algorithms of estimating the UAV movement parameters using two Kalman filters using models of almost uniform 
motion j = 2 and motion with maneuver j = 3 were also investigated.  Estimation errors of the UAV position of the 
Kalman filter based on the model j = 2 (Fig. 5) contain systematic components, which in some sections of the trajectory 
are 2 times higher than the RMS error of the position estimation due to the presence of maneuvers. The developed 
adaptive algorithm allows to increase the accuracy of the UAV movement parameters estimate on hover and motion 
without maneuver sections in comparison with the Kalman filter based on the model j = 3 (Fig. 6) more than 2 to 3 
times.

Figure 3. The probability of determining maneuvers.
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Figure 4. RMS errors of the UAV position estimate using adaptive filter.

Figure 5. RMS errors of the UAV position estimate using Kalman filter based on the model of j = 2.
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Figure 6. RMS errors of the UAV position estimate using Kalman filter based on the model of j = 3.

CONCLUSIONS

The optimal algorithm of adaptive filtration of UAV motion parameters based on TDOA measurements (Eqs. 8 to 11) obtained 
on the basis of a mathematical apparatus of mixed Markov processes in discrete time allows to recurrently calculate the joint 
PD of a continuously-valued vector and the switching variable at each step. The optimal device that realizes the algorithm (Eq. 8 
to 11) has M channels. There is no growth of channels number due to the Markov property of the mixed process.

In the quasi-optimal algorithm of adaptive filtration of UAV movement parameters based on TDOA measurements (Eqs. 8, 
11 to 16) obtained by linearization of the equation of measurement (Eq. 3), Gaussian approximation of conditional a posteriori 
distributions of a continuous-valued component is carried out. At the same time, it estimates the measurement error of the reference 
sensor, which allows to realize serial processing of measurements and to avoid the inversion of large-dimensional matrices.

Application of a trajectory filtration allows to reduce RMS of errors of definition of the UAV location in comparison with RMS 
of errors of location definition by TDOA method (the lower bound of Cramer-Rao) by 2 to 4 times. For the reviewed example 
the developed adaptive algorithm allows to increase the accuracy of estimating the UAV movement parameters on hover and 
motion without maneuver sections in comparison with the Kalman filter based on the model j = 3 more than 2 to 3 times and to 
avoid the occurrence of systematic error estimates. At the same time, the probability of recognizing these areas is close to unity.
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