
J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

Abstract: The growing countries that have carried out the
development of CubeSat missions for academic purposes
do not offer aerospace engineering programs at their
universities. This causes difficulties for traditional engineers
upon the formal use of different standards and frameworks for
aerospace development, such as the European Cooperation
for Space Standardization and Space Mission Analysis and
Design . One way in which traditional software engineers can
easily understand the structure of an aerospace framework,
in order to apply it on the development of CubeSat mission
software parts, is comparing its most important elements in
relation to the elements suggested by a more familiar method.
In this paper, we present a hybrid framework between the
ECSS-E-ST-40C standard and the Rational Unified Process,
which can be used by traditional software engineers as a guide
model for the development of software elements in academic
nanosatellite missions. The model integrates the processes
and documentation suggested by the ECSS-E-ST-40C
with the disciplines, workflows and artifacts suggested in
Rational Unified Process. This simplifies the structure of
ECSS-E-ST-40C and allows traditional software engineers to
easily understand its work elements. The paper describes
as study case the implementation of the hybrid model in the
analysis and design of ground monitoring and control software
for the Libertad-2 satellite mission, which is currently being
developed by the Universidad Sergio Arboleda in Colombia.

Keywords: CubeSat, European Cooperation for Space
Standardization, Rational Unified Process, Monitoring,
Graphical User Interface, 3D.

Design of a Nanosatellite Ground Monitoring
and Control Software – a Case Study
Freddy Alexander Díaz González1, Pablo Roberto Pinzón Cabrera1, Claudio Marcel Hernández Calderón1

Introduction

The development of academic satellites projects, mostly
based on the CubeSat standard, has become the best alternative
for those countries who want to start research and development
on aerospace themes (Woellert et al. 2011). The feasibility of
using Commercial off-the-shelf (COTS) components for the
development of satellite modules and the possibility to be
secondary cargo on the rocket launchers, through modules
as the Poli-Picosatellite Orbital Deployer (P-POD), allow
the launch of small satellites (1 – 10 kg) (Buchen 2014) with
shoestring budgets (Woellert et al. 2011); however, due to the
lack of experience that growing countries have in research and
development of satellite technology, their universities do not have
yet specific programs to train aerospace engineers; for this reason,
academic satellite missions such as CubeSat should be developed
with local engineers, trained in conventional development of
hardware (HW) and software (SW), with assistance of aerospace
experts trained in the United States (US) and Europe (Nader
et al. 2014). The only country in Latin America that provides
aerospace engineering programs is Brazil, at the Universidade
Federal de Minas Gerais, Universidade de Brasília and
the Universidade do Vale do Paraíba (Armellini et al. 2012). The
nearest approaches to aerospace programs in Latin America
are aeronautical engineering degrees offered in Ecuador,
Argentina, Peru, among others. Currently in Colombia, satellite
missions aim to generate experience in the development of
aerospace technology in medium term, through the training
of professionals with the concept of learning by doing (Villamil
and Mayorga 2013), and the creation of university programs
focused on the aerospace theme; however, as this process

doi: 10.5028/jatm.v8i2.553

1.Universidad Sergio Arboleda – Escuela de Ciencias Exactas e Ingeniería – Bogotá – Colombia.

Author for correspondence: Freddy Alexander Díaz González | Universidad Sergio Arboleda – Escuela de Ciencias Exactas e Ingeniería | Calle 74 14-14 | Zip Code:
110221201 – Bogotá – Colombia | Email: freddy.diaz@correo.usa.edu.co

Received: 9/15/2015 | Accepted: 02/15/2016

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

212
González FAD, Cabrera PRP, Calderón CMH

figure 1. Partial view of the Libertad-2 satellite structural design.

matures, local engineers are responsible for the development
of the fi rst satellite missions.

Due to the peculiarity that exists in the operational context
of a satellite system, it is necessary the use of development
methodologies that address the characteristics of aerospace type,
to guide the diff erent stages of analysis, design, implementation,
validation and operation of each subsystem of the mission.
Th e most commonly used are those proposed by the National
Aeronautics and Space Administration (NASA), called Space
Mission Analysis and Design (SMAD) (Webster and Corcoran
2007; Puschell 2011), and standards of the European Cooperation
for Space Standardization (ECSS), proposed by the European
Space Agency (ESA) (Raphael et al. 2014). Nevertheless, these
models are oversized for small academic missions as CubeSat
ones. One way to provide local engineers with the appropriation
of aerospace concepts suggested by these models is by identifying
relationships between common elements of conventional
development methodologies known by local engineers and
aerospace development models, such as milestones, steps,
artifacts, suggested activities and life cycles.

Given that SMAD and ECSS have a similar structure,
a comparative analysis of the life cycle phases, milestones,
artifacts and activities defi ned, among ECSS and the Rational
Unifi ed Process (RUP), is presented in this study (Ramos et al.
2010). RUP is one of the best known SW development
methodologies and it is commonly used by local engineers.
Th e proposed analysis results in a hybrid framework, whereby
local engineers can appropriate and guide the development
process of the diff erent academic satellite SW elements. To
validate the proposed hybrid model, the design of the ground
monitoring and control SW for Libertad-2 nanosatellite – as the
main component of the Mission Control Center (MCC) – is
taken as a study case.

The paper is presented in the following order: first, a
description of Libertad-2 satellite mission; the importance
of developing SW as a fundamental element of a nanosatellital
system is explained; the presentation of SMAD and ECSS
standards is done; ECSS-E-ST-40C standard is specifi cally
described; and a presentation of commercial SW development
methodologies is made. Then, the life cycles of RUP and
ECSS-E-ST-40C are compared, the milestones, artifacts and
activities are shown and the hybrid model is structured. Finally,
the design process of the ground monitoring and control SW
for Libertad-2 MCC is explained, applying the proposed model;
results and conclusions are presented, and future research arises.

metHodology

Th e Libertad-2 nanosatellite mission of the Universidad
Sergio Arboleda, in Colombia, aims to continue with the
development of academic satellites, started in 2007 with
the launch of the Libertad-1 picosatellite (Llorente and
Leguizamón 2014), by developing a 3U CubeSat-type nanosatellite
with an Optical Payload (OPL) to carry out remote sensing (RS)
on agricultural areas of Colombia. In addition, the Libertad-2
will use an S-Band frequency in order to send the OPL data to
the Earth (Díaz et al. 2015).

Figure 1 represents an external visual of Libertad-2. Th e OPL
will be located in the left unit, consisting of an embedded system,
a multispectral complementary metal-oxide-semiconductor
(CMOS)-type sensor, and a lens with approximately 80 ground
sample distance (GSD) to obtain images of the Earth’s surface
from a low Earth orbit (LEO), accompanied by the microstrip
antenna, used for S-Band transmission. Th e on-board computer
(OBC) and electrical power system (EPS) embedded systems
will be placed on the central unit, as well as the HW of the
UHF/VHF and S-Band radios. At the moment, Libertad-2
satellite mission of the Universidad Sergio Arboleda is in
Preliminary Design Review (PDR) phase of the ECSS model,
and functional prototypes and some fl ying prototypes of the
OBC, OPL, EPS subsystems and microstrip antenna have been
developed (Díaz et al. 2015).

SW development is an activity of great importance in the
life cycle of nanosatellite mission, because both the nanosatellite
spacecraft (SC) and the MCC should integrate parts of SW
applications, fi tted to the operational requirements of each
mission. Th is makes it diffi cult to use standard or commercial
SW in the nanosatellite subsystems (Sand et al. 2013). Th ese
soft ware pieces in conjunction with HW devices should fulfi ll
the main fl ight operations. In the case of a CubeSat-type SC,

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

213
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

figure 2. Interaction of operators with the CubeSat through
MCC (Braxton Tech 2015).

embedded soft ware components with real time subsystem control
are needed (Díaz et al. 2014); in the case of MCC, desktop
soft ware applications are required, whereby it is possible to
control the devices of the ground station (GS) communications
system (Díaz et al. 2015).

Th e MCC is the ground system that allows mission operators
to manage the SC life cycle operations (Funase et al. 2007). It
consists of a series of SW applications that allow the execution
of standard operations, such as the SC trajectory prediction or
the SC tracking, by rotating antennas in azimuth and elevation
values; and also the management of telecommands and telemetry
data through communication with UHF/VHF and S-Band
radios. In addition, the MCC can integrate SW applications for
processing images captured by the payload, using tools such
as MATLAB. Front-end applications are also used to display
the operation data (Fischer and Scholtz 2010). Figure 2 shows
the example of an MCC for a CubeSat mission.

SW elements of the SC and MCC should consider non-
functional quality requirements such as reliability, robustness and
fault tolerance in their operations (Laizans et al. 2014). Th us, the
processes of analysis, design, implementation and validation of
the elements of the satellite system are a fundamental requirement
to the mission and should consider the characteristics of the
critical systems. To guide the overall life cycle of the mission
and the development of all subsystems, there are two main
AM or work proposals that can be used: the SMAD, proposed
by NASA, and standards of the ECSS, proposed by the ESA.

SMAD proposes a methodology to develop aerospace
missions, beginning with the definition of the objectives of
the mission, followed by the design, construction, launch and
operation of the SC, and ending with the de-orbit. Its main
objective is to guide the development of an aerospace system
in a quickly, effi ciently and cheaply way. Its life cycle is based
on the defi nition given by NASA in NPR7120.5E (Webster and
Corcoran 2007) and consists of seven phases, each defi ned by key
decision points (KDP) and a series of major revisions (Puschell
2011). Th e purpose of each review varies according to the stage
and the section of the mission in which one is working. Four
groups of processes are identifi ed: (a) Exploration of concepts;
(b) Detailed development; (c) Production and deployment; and
(d) Operation and support. Th e Exploration of concepts results in
the defi nition of the mission, its components, cost and schedule.
Th e Detailed development provides a detailed defi nition of the
system, its components and technologies. In the Production and
deployment, building of fl ight HW and SW and the launch of the
SC are performed. Finally, Operation and support is related to the
day-to-day space mission, maintenance and closing operations.

As SMAD, ECSS proposes a life cycle of seven phases for
developing the entire aerospace project. Th e ECSS standard
covers the main aspects related to development of aerospace
systems and seeks to off er a user-friendly guide to the procedures
in each of the subsystems.

Th e ECSS-E-ST-40C standard from the engineering branch pro-
vides guidance for the development of aerospace SW, in which the
mission ground segment SW is included. ECSS suggests six major
revisions to develop SW: (a) System Requirements Review (SRR);
(b) PDR; (c) Critical Design Review (CDR); (d) Quality Review
(QR); (e) Acceptance Review (AR); and (f) Operational Readiness
Review (ORR), which must be executed during the proposed
life cycle, divided into nine groups of processes, which consider
requirements defi nition activities, design, implementation and
validation of SW: (5.2) soft ware related system requirements process;

In the same way that happens with most engineering projects,
development of SW applications requires the use of a methodology
to structure, plan and control the various tasks and activities of
the development process, through a specifi c framework. Th e most
widely used frameworks for developing SW are the processes of
design and implementation, as detailed in traditional or robust
methodologies; in this paper, we call these methodologies as
commercial methodologies (CM), which use the unifi ed modeling
language (UML) as the main tool for modeling (Th üm et al. 2014);
however, for the development of computer parts as elements
of an aerospace system, there are specifi c methodologies for
these aerospace modules. In this paper, we call these methods
as aerospace methodologies (AM), which describe the detailed
processes for SW development that is required in the SC and
MCC (Webster and Corcoran 2007; Puschell 2011; Raphael
et al. 2014; European Cooperation for Space Standardization 2009a).

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

214
González FAD, Cabrera PRP, Calderón CMH

(5.4) software requirements and architecture design process; (5.5)
software design and implementation engineering process;
(5.6) software validation process; (5.7) software delivery and
acceptance process; (5.8) software verification process; (5.3)
software management process; (5.9) software operation pro-
cess; and (5.10) software maintenance process. Each of these
processes is responsible for a group of specific activities of the
aerospace software development life cycle and produces a series
of specific artifacts that support the documentation (European
Cooperation for Space Standardization 2009b).

For the development of commercial SW applications, either
embedded type, desktop or web, there are several methods of
work, which can be divided into two main categories: agile or
robust methodologies.

Agile methodologies are flexible to change, based on close
interaction with the customer looking for their feedback; it is
not rigid in terms of roles, working groups and offers only the
necessary documentation. Methodologies such as Extreme
Programming (XP), Scrum, Lean Software Development (LSD),
Kanban, Open Unified Process (OpenUP), Rapid Application
Development (RAD), among others, are being widely used in
recent times for SW application development where a quick-
to-market is required (Dingsoyr et al. 2012).

These methodologies have characteristics like robustness
in terms of activities, iterations, tasks, detailed documentation
and constant revisions; they are rigid and inflexible and, in the
recent decades, have ceased to be used in the commercial field.
However, the RUP, which uses a heavyweight and traditional
methodology, is the best known method in SW development
(Lopez and Blobel 2009).

The RUP is a full-guided SW engineering methodology with a
disciplined approach to assign tasks and responsibilities for the SW
development. Its goal is to ensure the production of SW with high
-quality attributes that meet the needs of the final user within an
established budget and schedule. This is an iterative and incremental
process that guides the development of a standard SW product
focused on architecture and led by the UML (Jacobson et al. 2000).

 RUP defines four phases for the development of SW: (a)
Inception; (b) Elaboration; (c) Construction; and (d) Transition.
Every phase is defined by a milestone; these are: (a) Life
cycle Objective Vision; (b) Life cycle Architecture; (c) Initial
Operational Capability; and (d) Product Release, which aims to
ensure that core workflows (business modeling, requirements,
analysis, design, implementation, testing and deployment)
evolve evenly over the entire SW life cycle (Jacobson et al. 2000).

Academic satellite missions

In the last decade, after the start of the CubeSat era, several
authors have made approaches to frameworks which help to
guide the development process of SW pieces as elements of the
SC, identifying activities, defining life cycles, general process
structures etc.

These researches (Spangelo et al. 2012, 2013; Kaslow et al.
2015) explain a fully-structured framework based on Model-Based
Systems Engineering (MBSE) and Systems Modeling Language
(SysML) to guide the modeling of CubeSat missions, in which
both the space segment and the ground segment are considered.
Moreover, Kaslow et al. 2014 explains how the MBSE model can be
used for a simulation of the operation of a CubeSat using Matlab.
Anderson et al. (2014) incorporates to it a standard property for
the development of business satellites; however, the MBSE model
is focused on the system modeling only and does not include the
entire development life cycle. Additionally, the framework does
not address the ECSS or SMAD methodologies, which guides
the development from an aerospace perspective and incorporates
neither activities distribution elements nor defined artifacts, such
as those presented in RUP, in which management, organization
and control processes for the whole software project are included.

Huang et al. (2012) explain the use of agile methodologies
like SCRUM and XP for development of HW and SW elements
of academic satellites and consider as study case the Multi-
Mission Bus Demonstrator Project (MBD), conducted by
The Johns Hopkins University – Applied Physics Laboratory
(JHU – APL). However, any of the characteristics and properties
of aerospace development are taken into account.

Asundi and Fitz-Coy (2013) propose a framework for CubeSat
mission design based on a systems engineering approach.
The model intends to use a flow-down in order to model the
requirements, subsystems operations, components interfaces and
tasks flows, but also ignores aerospace development processes.

Ziemke et al. (2011) present a framework of SW development
for embedded systems in small SC, integrating examples of
development tools, programming language, design patterns and
concepts of Service Oriented Architecture (SOA), aligned with
the ECSS processes, but its purpose is to suggest a technical
model in terms of design and programming operations and
does not propose activities, deliverables or development phases,
related to development management.

Pradels et al. (2012) explain the process for developing a
reusable ground segment to monitor and control the payload of a

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

215
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

small satellite, using a framework that includes the ESCC-E-ST-70
standard and where a life cycle phase with activities and specific
documentation based on experience gained from earlier satellite
missions is proposed, something similar to the objective of this study;
however, its purpose is not to make an approach to commercial SW
development methodology through the proposed model in order
to facilitate the assimilation by traditional development engineers.

Bürger et al. (2014) present the systems engineering process
used to develop the first Brazilian CubeSat launch platform
called AESP14 and a CubeSat with the same name, in which
the activities of the project and a series of documents related to
engineering systems, technical specifications and procedures are
described. Although the described process takes into account
the ECSS standard, an approach is not made to any specific
development methodology.

Chaieb et al. (2015) explain how is possible to use the System-
of-Systems (SoS) and SOS Engineering (SOSE) methodology
to design and operate a CubeSat-type SC; however, it is not
focused on the SW for SC subsystems and does not propose a
life cycle, activities or artifacts to the development.

 Mohammad et al. (2013) propose a systems engineering
framework for the design of CubeSat missions called Open
Space Box Modeling (OPEN-SBM), based on the System
Requirements Design (SRD) methodology, in which modeling
graphic components are used. Nevertheless, no standard for
aerospace development is contemplated.

Finally, Brandstätter and Eckl (2009) present a model
for compatibility management in the development of SC
components, aligned with ECSS-M-30A standard, based on
a multidisciplinary approach to systems engineering. The
authors propose activities and processes, as well as the usage
of UML for the design; however, the model does not focus on
the development of SW elements for an academic SC.

On the other hand, some studies support the academic
development of satellites as the axis of the formation of
undergraduate, master’s and doctorate students from different
programs and also as the improvement of educational processes
within universities. Schilling (2006) explains the manner in which
the development of CubeSat picosatellites has been integrated
into the curricula of Computer Science and Spacemaster –
Master’s Program in Space Science and Technology at the
University of Würzburg and gives as an example the design of
the ground control center of one of the CanSat missions. Bürger
et al. (2014) describe how the main activities and disciplines
of AESP14 mission are coupled with the semester courses of

college, using the program to teach undergraduate students
systems engineering concepts applicable to an aerospace mission.

The review of the state-of-the-art allows identifying the
existence of several models or frameworks applicable to
the development of the various subsystems of an academic SC
(HW/SW) and their integration, using as a methodological
basis recent systems engineering concepts or theories as MBSE.
Nonetheless, there are few focused specifically to provide traditional
software engineers and ownership of the development process of
the SC SW parts. The papers that have this approach contemplate
agile methodologies, propose their own frameworks and some
of them align the proposed models to aerospace development
standards as ECSS. The studies propose from simple organizational
structures of mission work teams, flow activities proposals and
engineering processes to complex project structures that include
life cycles, artifacts, activities, and even introduce concepts of design
patterns and SW programming. However, after this literature
review, we could not find a study that integrates the features of a
commercial SW development methodology as used in RUP with
a methodical proposal of a SW development model for aerospace
applications as ECSS, allowing the local engineers in developing
countries to use a work guide that eases the development of the
different SW elements of CubeSat mission, performing specific
activities, consolidating specific artifacts, and running a series
of revisions during the phases of a certain life cycle.

Hybrid-Academic-Aerospace
Model for SD

The approach of a Hybrid-Academic-Aerospace Model for
Software Development (H4ASD) aims to provide traditional
engineers with the understanding of the different processes of
aerospace engineering that must be taken into account in the
development of SW parts, fundamental in an academic SC. A
working model is clear if a life cycle consisting of certain phases
is defined, in which a set of activities associated with artifacts
or documents by each executed activity is proposed.

Aerospace engineering frameworks proposed in SMAD
and ECSS include specific processes for the development of the
different mission SW applications. Nevertheless, their main feature,
as standards, is that they are structured to operate in aerospace
missions such as industrial satellites and launches of ferries with
crew; so these models are robust and require experienced aerospace
engineers who can lead the different development processes. In

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

216
González FAD, Cabrera PRP, Calderón CMH

this sense, it is inefficient to use them strictly as a methodological
guide in the development of academic SC. Although both models,
SMAD and ECSS, include the development of the SC along the
life cycle of the mission, that is, taking into account the stages
of pre-launch, launch and operation, the ECSS standard is a bit
more open to describe activities for the development of SW
elements in its ECSS-E-ST-40C document.

At present, agile type methodologies are the most used for
the development of commercial SW that must be quick-to-
market, since their features are fast teamwork, consolidating
only the necessary documentation and obtaining functional
SW parts. However, these are not robust enough to be applied
in the development of aerospace SW. Due to the characteristics
of critical systems, the development of SW parts for aerospace
missions needs to be supported in sufficient documentation, on
which it would be possible to make traceability, modifications and
new requirements that arise during the development of the SC.
If the mission does not have the formality and documentation,
like as that provides a heavyweight methodology, it would
not be possible to develop future missions with the aim of
obtaining knowledge and engineering development. That work
would be lost. Conversely, RUP model, presenting a detailed
description of the entire SW life cycle, specifying each of the
iterations, artifacts and activities, both in the structural model
of the system and the dynamic one, typical characteristics of a

robust model, makes it the best alternative to be applied in the
development of aerospace SW. The robustness of RUP is the
product of formalism that exists in the documentation process
described through its artifacts tree, compared with lightweight
(agile) methodologies, where there is much less documentation.

Considering the above, the structuring of H4ASD is based
on a “match” between ECSS-E-ST-40C model, as aerospace SW
approach, and RUP, as commercial SW approach, as well as on
identifying their common, comparable and complementary
elements, obtaining a ECSS + RUP model.

The base of the H4ASD is associated with the similarity
between both life cycles and workflows or disciplines. This
means that both RUP and ECSS-E-ST-40C suggest similar
processes and groups of activities that can be linked to form
a single life cycle, to guide the development process. Figure 3
shows the overlap between life cycles, intensity or duration
of workflows and respective revisions or milestones in the
development process in both models. The top part of Fig. 3
shows the seven stages (0, A, B, C, D, E, F) of the ECSS life cycle
project to develop a complete aerospace mission in order to
show the way in which RUP and SW development project fits
within the aerospace project (gray columns).

The characteristics of the RUP’s Inception phase are accura-
tely aligned with phase A (Feasibility); Elaboration phase
corresponds to the phase B (Preliminary definition), in which

Figure 3. ECSS-E-ST-40C and RUP life cycles match.

Phase 0:
Mission analysis/ needs

identi�cation

Phase A:
Feasibility

Phase B:
Preliminary
De�nition

Phase C:
Detailed

de�nition

Phase D:
Quali�cation

and Production

Phase E:
Utilization

So�ware related system requirement
process (5.2)

Inception Elaboration
Life cycle

objetive vision
Life architecture Initial operational

capability Product release

ORRARQRCDR (DDR)PDR(SWRR)SRR

Construction Transition ECSS+RUP Milestones

ECSS-E-ST-40C Processes

So�ware related and archtecture design
process (5.4)

So�ware design & implementation
engineering process (5.5)

So�ware delivery and acceptance
process (5.7)

So�ware veri�cation process (5.8)

So�ware management process (5.3)

Initial Elab #1 Elab #2 Const#1 Const#2 Const#3 Tran #1 Tran #2 So�ware operation process (5.9)

Iterations So�ware maintenance process (5.10)

So�ware validation process (5.6)

Life cycle

Business modeling

RUP Life cycle

RUP Disciplines

Requirements

Analysis and Design

Implementation

Test

Deployment

Project management

Enviroment

Con�guration & Change
management

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

217
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

the preliminary design of the subsystems is performed, and half
of phase C (Detailed definition), in which the final designs are
consolidated; the Construction phase runs between the second
half of phase C, in which the flying prototypes of subsystems
are manufactured and other mission elements are implemented,
and the first half of phase D (Qualification and Production),
in which the full integrated SC is obtained. Finally, there is the
SW Transition, which corresponds to the second half of phase
D, in which the SC is released and deployed in orbit. The RUP
life cycle does not include phase 0 (mission analysis/needs
identification), where the definition of the mission is carried out,
and neither phases E (Utilization) and F (Disposal).

The second part of the match is the association between the
RUP disciplines (workflows) and ECSS-E-ST-40C processes.
The RUP workflows are represented in duration and inten-
sity of activities for each phase (blue curves), considering its
iterations, and ECSS represents the processes in extent relative
to the total development of SW life cycle (red bars). The RUP
business modeling and requirements workflows are similar
to the workflow proposed in ECSS-E-ST-40C: 5.2 (software
related systems requirement process); the RUP analysis and
design workflow is the same process described in 5.4 (software
requirements and architecture design process); the RUP imple-
mentation workflow is analogous to 5.5 (software design and
implementation engineering process); the RUP test work-
flow corresponds to 5.6 (software validation process); and the
RUP deployment workflow aligns to 5.7 (software delivery and
acceptance process). The additional RUP disciplines or work-flows
also coincide with ECSS-E-ST-40C processes. The configuration
and change management flow refers to the 5.8 (software verifi-
cation process), and the project management and environment
flow can be associated to 5.3 (software management process).
In software, verification processes are intended to confirm if the
application is being made based on the design that was approved.
For this, it is necessary that effective management of the artifacts
that were generated during the analysis design and implemen-
tation phases takes place. Thus, the configuration and change
management discipline may be associated with 5.8 (software
verification process), because it is responsible for managing
the process of release of such artifacts, including documentation.
On the other hand, the discipline proposed integration tasks
are strongly related to the process of SW verification.

The comparative analysis of the life cycles of both models ends
with revisions or milestones that each one suggests. Although
the times when they are running are similar — at the end of each

phase —, and some reviews collected similar information, ECSS
suggests a greater number of revisions. At the end of the Inception
phase, RUP suggests the execution of life objective vision, which
is aligned with the ECSS System Requirement Review (SRR). At
the end of the Elaboration phase, RUP proposes the life cycle
architecture, with a similar purpose to the ECSS PDR. After the
first iteration of the Construction phase, ECSS intends to conduct
the CDR milestone that is not covered in RUP. Then, at the end of
this phase, RUP proposes the initial operational capability, which
is aligned with the ECSS QR. Finally, at the end of the Transition
phase, an AR is executed by ECSS-E-ST-40C and the product
release, by RUP. The last revision proposed by ECSS is the ORR,
but its implementation is given for phase E of SMAD in which RUP
and the development of SW element must be already completed.

RUP defines in general terms a number of activities for each
phase of the SW life cycle. The activities are related to one of the
different disciplines of the methodology, organized as follows: in
the Inception phase, the SW scope must be formulated, the main
constraints to technological, operational and administrative levels
must be defined, a requirements baseline must be consolidated,
business cases (use cases) are planned, a candidate SW architecture
is synthesized according to the use cases, and finally the preparation
of the application development environment is performed. In the
Elaboration phase, RUP suggests planning the Construction phase
iterations, refining the most critical use cases for the application,
refining the proposed architecture, choosing the components that
should be developed, selecting those to be reused and picking
those which definitely should be bought; finally, the installation
of the development platform must be performed. Then, in the
Construction phase, the first thing that should be done is the
technological, human and time resources management; after
this, in an iterative way, the different components must be coded
according to a detailed design, and unit testing must be performed
to get the first version of the SW, where a product evaluation must
be carried out. Finally, for the Transition phase, RUP suggests
executing testing on the entire piece of SW; based on these results,
a refinement of the application performance characteristics must
be done, correcting bugs and improving usability features. A final
version of the user’s manuals and general documentation must be
obtained, the SW deployment process is done, the user’s training
is conducted related to the system management, and, finally, an
evaluation of the final product in relation to the vision, scope,
limitations and requirements baseline is performed.

Meanwhile, ECSS-E-ST-40C defines a set of grouped activities,
according to the different processes. For the software related

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

218
González FAD, Cabrera PRP, Calderón CMH

systems requirement process (5.2), the standard suggests an
analysis of the requirements baseline and makes the definition of
the verification and SW integration requirements. In the software
management process (5.3), the SW life cycle, development phases,
the checkpoints and the technology budget must be defined,
and the development and coding tools must be selected. In the
software requirements and architecture design process (5.4),
the following should be done: to define the modeling, integration
and verification process, analyze the requirements baseline, and,
finally, perform the preliminary design of the SW components.
In the software design and implementation engineering process
(5.5), the following must be performed: to execute the detailed
design of the components, design the internal and external
communication SW interfaces according to the system, create
algorithms (business flow) of each of the components, code the
flows, build applets, integrate the different SW layers, perform
functional testing, and, finally, develop the first version of
the application manual. For software validation process (5.6), the
following must be done: to define components test cases, validate
the requirements baseline, run the components test cases, verify
SW project documentation, verify the technology budget, and
verify the validation regarding the requirements baseline.

In the software delivery and acceptance process (5.7), the
following must be accomplished: to create the application
installation package, define the installation process, install
the SW in the system, verify proper installation, document the
installation process in an installation manual, support operators
and users, define the acceptance process, perform the acceptance
activity, and, finally, verify the results of acceptance activity. The
last of the ECSS-E-ST-40C processes aligned within the RUP
life cycle is the software verification process (5.8), in which the
design of test cases, the source code, the integration of the SW
layers, and navigation must be verified — in the case that it is
a GS SW element — to, finally, generate the final version of
the application user’s manual. Figure 4 shows all the activities
proposed by ECSS-E-ST-40C (red), grouped by process, and
the activities proposed by RUP (blue), grouped by phase.

In addition to the proposed revisions and milestones for
each working model, both ECSS-E-ST-40C and RUP suggest
a basic structure of artifacts that must be generated during SW
development project. Although they differ in technical approach,
both documentation structures have similar information artifacts
that can be linked to create a hybrid artifacts structure in which
the approaches of aerospace engineering and SW engineering
are taken into account. Figure 4. Activities proposed by ECSS-E-ST-40C and RUP.

So�ware management
process (5.3)

So�ware requirements
and architecture

process (5.4)

RUP Inception activities

Manage so�ware lifestyle

Design preliminary
components

Analyze requirements
baseline

De�ne veri�cation
process

De�ne integration
process

De�ne modeling
process

Formulate
scope

De�ne
constraints

De�ne
requirements

Plan
business case

Synthesize candidate
architecture

Prepare
environment

RUP Elaboration
 activities

Plan construction
phase interations

Re�ne critical
use cases

Re�ne
archtecture

Decide/make/
reuse/buy components

Install IDE
and coding tools

RUP Construction
 activities

Manage resources

Codify components

Perform
components tests

Evaluate
product release

RUP Transition
 activities

Test product

Fine-tune performance

Fiz so�ware bugs

Fine-tune usability

Finish user material

Deploy so�ware

Train users

Compare vision
with �nal product

De�ne review points

De�ne
technological budget

Select IDE
and coding tools

So�ware design
and implementation

engineering process (5.5)

Design in-detail
components

Design
internal/external comm

interfaces

Create components
algorithms

Codify components

Execute compilation
process

Integrate so�ware layers

Perform functional tests

Elaborate user manuals

So�ware related
system requirements

process (5.2)

Analyze requirements

De�ne veri�cation
requirements

De�ne integration
requirements

So�ware validation
process (5.6)

De�ne tests cases

Validate requirements
base line

Perform tests cases

Verify documentation

Verify technichal budget

Verify validation ×
requirements Baseline

So�ware veri�cation
process (5.8)

Verify archtecture

Verify detailed design

Verify test cases

Verify integration

Verify GUI navegation

Finish user material

So�ware delivery and
acceptance process (5.7)

Generate so�ware
package

De�ne installation
process

Install so�ware

Check installation

Document install
process

Perform user support

De�ne acceptance
process

Perform acceptance
process

Verify acceptance
process results

Figure 5 shows an alignment of the various artifacts proposed
by each working model, separated according to each of the four
phases of RUP. Most RUP artifacts can be associated to ECSS-
E-ST-40C documentation, since the information contained is
similar. For instance, the View artifact of RUP must contain the
description of the needs and expectations of the SW to develop,
much like the ECSS Software System Specification (SSS), where

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

219
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

the definition of the SW is proposed as part of the mission. In
the same way, artifacts as RUP Software Architecture Document
(SAD) and ECSS Design Definition File (DDF) can be associated.

In other artifacts, the information is the same in both
models, and even their names are the same, for instance, the
ECSS Software Requirements Specification (SRS), Software
Development Plan (SDP) and Software Design Document
(SDD), which corresponds to the RUP analysis, design and
implementation models. Finally, although most documentation
can be linked with each other, some RUP artifacts are so typical of
conventional SW development methodology that does not have
similar artifacts in ECSS structure, such as SW use case model.

Using the comparison results between the two models, a joint
work structure for the development of SW parts as elements of an
academic-type aerospace mission is defined, in which considerations
as critical system properties and SW engineering conventional
concepts are taken into account. The H4ASD proposes to execute
sequentially and in an interrelated manner the activities proposed
in ECSS-E-ST-40C and RUP, on the basis of the RUP life cycle
and flows, to which one can associate the execution of different
ECSS-E-ST-40C processes. It also defines a hybrid artifacts
structure in which it is possible to consolidate all SW development
project information. Next, the H4ASD is presented, describing the
coupling of ECSS-E-ST-40C processes with the RUP life cycle and
the hybrid activities flows for each phase. Finally, the structure of
artifacts and documentation is provided.

Figure 5. Comparison between ECSS-E-ST-40C and RUP artifacts.

Inception

ECSS-E-ST-40C

ECSS + RUP Aircra�s

Reviews

CDR

PDR
LCA

LCOVSRR

QR

PR
AR

IOC

Interface Requirements Document (IRD)
So�ware System Speci�cation (SSS)

So�ware Requirements Speci�cation (SRS)

So�ware Development Plan (SRS)
Interface Control Document (ICD)

Design De�nition File (DDF)

So�ware Design Document (SDD)

So�ware Source Code and Media Labels
So�ware User Manual (SUM)

So�ware Validation Speci�cation (SVS)
So�ware Veri�cation Plan (SVerP) (SVaIP)

So�ware Release Document (SRel)
So�ware Con�guration File (SCF)

RUP

Stakeholders request
View

So�ware Requirements Speci�cation (SRS)
Glossary

Business case
Risk list

Use case model
So�ware Development Plan (SDP)

Deployment plan

So�ware Archtecture Document (SAD)
Analysis model
Design model

Implementation Model

Executable
Handbooks

Test plan

Product
Installation documents

Elaboration

Construction

Transition

RUP Phases

The H4ASD life cycle (Fig. 6) seeks to ease the understanding
of different aerospace SW development processes suggested by the
ECSS-E-ST-40C and the order in which these can be run during
the four phases of RUP. In order to see the details of the meaning

Inception

Elaboration

CDR

PDRLCA

LCOV SRR

QR

ARPR

IOC

Business modeling
Requirements

Construction

Implementations

Deployment

Test

Project management
Enviroment

Analysis and design

So�ware related system
requirements process (5.2)

So�ware requirements
and architecture

design process (5.4)

Transition
So�ware delivery and

acceptance process (5.7)

So
�w

ar
e

ve
ri�

ca
rt

io
n

pr
oc

es
s (

5.
8)

So
�w

ar
e

m
an

ag
em

en
t p

ro
ce

ss
 (5

.3
)

So�ware management
process (5.3)

So�ware design and
implementation

engineering process (5.5)
So�ware validation

process (5.6)

Figure 6. H4ASD Life Cycle.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

220
González FAD, Cabrera PRP, Calderón CMH

of all abbreviations in the triangles (Fig. 6), consult the ECSS-E-ST-
40C document. Considering the results of the comparison between
the life cycles of both work methodologies, and not forgetting that
both are based on a concept of iterative and incremental execution,
the H4ASD life cycle simplifies the working model, combining the
disciplines or workflows that are carried out with greater intensity
during each phase of RUP with its ECSS-E-ST-40C analogues
processes. Although a sequential life cycle is proposed, seeking
to facilitate the understanding of the activities order, RUP as a
methodology and framework can be supported on models such as
waterfall or V model to structure the iterative workflows. Selecting
a model (waterfall or V) to map the processes of an aeroespacial
framework as ECSS would not be correct because ECSS is also
structured as a methodology and not only as a model. The model is
only the skeleton of methodology life cycle. Workflows and processes
associated with H4ASD RUP phases are described next.

•	 Inception: In this phase, two ECSS-E-ST-40C processes
must be carried out; the (5.2) process, referred to the
business modeling and requirements RUP flows, and
the (5.3) process, referred to the project management
and environment RUP flows.

•	 Elaboration: At this stage, one should run the ECSS-
E-ST-40C (5.4) process; it is aligned with the RUP
analysis and design flow.

•	 Construction: In this phase, two ECSS-E-ST-40C
processes must be performed; the (5.5) process, referred
to the implementation flow, and the (5.6) process,
referred to the RUP test flow.

•	 Transition: In the last phase, the ECSS-E-ST-40C
process to be executed is the (5.7), which is aligned
with the RUP deployment flow.

The ECSS-E-ST-40C (5.8) and (5.3) processes are more
related to the management, control, and organization of SW
development project as a whole; so that the implementation of
ECSS-E-ST-40C should be done throughout the RUP life cycle.

H4ASD activities correspond to a link the activities proposed
by RUP for each of the four phases, and between activities of the
ECSS-E-ST-40C processes which are aligned with these phases,
according to the life cycle described in Fig. 5, and the results of
the previous comparison. The H4ASD proposed in this paper
suggests the following integration activities for each RUP phase:

•	 In the Inception phase, the activities proposed by RUP
and the activities suggested in the ECSS-E-ST-40C (5.3)
and (5.2) processes are integrated. The flow begins with
the definition of the SW management, its life cycle and the

review points (5.3); then, it carries out RUP SW engineering
activities, as the definition of the scope and limitations,
the first version of the business cases (use cases) and the
candidate architecture. The most important activity of
this phase is the requirements definition, which must be
supported in the activities of (5.2) process, as this not only
suggests the definition of the design requirements as RUP
does, but also proposes verification requirements and
integration requirements definition. The (5.2) process is
also very specific in defining the requirements related to
Human Machine Interface (HMI), database (DB), real-time
processing, security, data formats, among others. Figure 7
shows the flow of activities for H4ASD Inception phase.

•	 For the Elaboration phase, there are the activities sug-
gested in the ECSS-E-ST-40C (5.3), (5.4), (5.5), (5.6), and
(5.8) processes, which are integrated with the RUP activities
flow. The main result of the execution of this phase is the
detailed design of the SW element, using the results of
the first phase. The (5.4) process is the one with a major
role in the Elaboration, since it begins with the definition of
the modeling, integration, testing and test cases processes.
After this first part, it starts the design, the refinement of
use cases and the components preliminary design. The
(5.5) process runs with the components detailed design
using UML, and the first version of program algorithms is
created. The final part of this stage is the preparation and
installation of the Integrated Development Environment
(IDE); (5.6) and (5.8) processes enable a continuous
validation of the major design activities in the phase, such
as the refinement of the requirements, architecture and
components detailed design. Figure 8 shows the flow of
activities for the H4ASD Elaboration phase.

•	 The Construction phase aims to make the implementation
and coding of the detailed design, resulting from the
Elaboration phase. For this phase, a combination of
the activities suggested in the ECSS-E-ST-40C (5.5), (5.6)
and (5.8) processes is carried out; however, the (5.5) process
is the one with the greatest impact on the workflow. The
first activity of this phase is suggested by RUP, related to the
initial management of deployment resources (technology/
work hours/component/developer). After that, the iterative
and incremental coding process formally begins: first with
the coding — an activity suggested by both RUP and
the (5.5) process —; then, subprograms are compiled,
and unit tests suggested by RUP and the (5.6) process

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

221
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

So�ware management process (5.3)

Manage so�ware Life cycle

De�ne review points

Analyze requirements

De�ne veri�cation
requirements

De�ne integration
requirements

De�ne constraints

Formulate scope

De�ne requirements

Plan business case

Synthesize candidate architecture

Prepare environment
De�ne technolo�cal budget

So�ware related system
equirements process (5.2)

RUP Inception activities

figure 7. Inception phase activities for the H4ASD.

are executed, SW layers (business/logic, user interfaces
and data) are integrated to obtain the fi rst version of the
application, general functional tests are performed on the
program, and, fi nally, the fi rst version of the SW manual
is consolidated. Th e (5.8) process is executed in parallel
for each iteration of coding, verifying the source code,
soft ware versions and the fi nal product. Figure 9 shows
the fl ow of activities for the H4ASD construction phase.

•	 Th e Transition phase of the model aims at refi ning the
full version of the application, prior to delivery to
the customer, that is, prior to the launch of the SC
and the start of the operation phase, and it should run in
parallel with the integration phase of the mission. In this
last workfl ow, the activities in ECSS-E-ST-40C (5.6) and
(5.8) processes are performed; however, the (5.7) process
and the activities of RUP are the most relevant, because
they run at fi rst on the activities fl ow. In the fi rst part, one
must perform a refi nement of the SW element in diff erent
levels, as performance, usability and also fi xing of the bugs
found in the results of functional tests. Th en, the activities
suggested by the (5.7) process, related to the installation,
training for users — if it is the case of MCC SW —, and
acceptance by the mission leaders, must be completed. Th e
(5.8) process is important as the fi nal part of the Transition
fl ow, as the fi nal stage of SW development project, and as
complement for the acceptance activity, proposing to verify

the documentation, the compliance of technological budget
and requirements. Th e activities of the SW life cycle end
with a comparison of the vision outlined at the beginning,
in connection with the fi nal product, and the verifi cation
of the acceptance process. Figure 10 shows the activities
fl ow for H4ASD Transition phase.

Th e artifacts structure of the H4ASD shows a connection
between the documentation suggested by RUP and ECSS-E-
ST-40C throughout the life cycle of the SW element, as seen
in Fig. 11.

Most artifacts have the same goal in the presentation of
information and can be worked as a single document, such as
SRS and the SDP, or the RUP SAD and ECSS DDF.

Th e structure is complemented by RUP own documentation
that is not specifi ed in ECSS, as the glossary and the business case.
Th e use case model is a key-element in the structure of the proposed
documentation, because, within a SW engineering process, the
use cases are the ones that determine the scope of application
within the system and its initial design. For an academic aerospace
mission, the use case model should include all operations of the
system, whether the embedded SW of a SC subsystem or a MCC
SW element. Th e UML modeling for SW, such as analysis, design,
and implementation models, can be included in the SDD. Finally,
the specifi cation of executable SW element may be included as
part of the Soft ware Release (SRel) and Soft ware Confi guration
File (SCF) documents. Following the philosophy of H4ASD, it is

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

222
González FAD, Cabrera PRP, Calderón CMH

required that, for each pair of artifacts (Fig. 11), at least one version
or each of the documents is built up. However, it is possible to
choose which UML diagrams are used to model the soft ware. Th e
only compulsory diagram is the use case diagram. In order to see
the details of the meaning of all abbreviations in the red boxes
(Fig. 11), consult the ECSS-E-ST-40C document.

desIgn of tHe gscm&c

Th e sequence of tasks of the GSCM&C as the main element
of the MCC arises due to the movement that the satellite does
on a LEO and its relative position with GS aft er it has been
deployed, resulting in three pass phases: (a) pre-pass; (b)

real-time; and (c) post-pass. In phase (a), the trajectory of the
SC should be predicted, and the operator must be allowed to
program the telecommands to be sent. In phase (b), the antennas’
auto tracking is activated, pre-programmed telecommands are
sent, and their receptions are confi rmed by the SC. Th e Beacon
and telemetry-on-demand data are received, and, fi nally, each
of the received parameters is evaluated in relation to their
operating ranges in order to determine the state of the SC. In
phase (c), the GSCM&C should display on screen the results
of the satellite assessment, generate bug reports or alerts, and
save the operation data (telecommands, telemetry and OPL)
in the DB. Finally, operators must perform the analysis of the
SC operation in the pass, using simulations, statistical graphs
and data records through the GSCM&C GUI.

figure 8. Elaboration phase activities for the H4ASD.

De�ne moeling process

De�ne integration process

De�ne veri�cation process

Analyze requirements baseline

Design preliminary components

De�ne tests cases

Validate requirements Baseline

Plan construction phase iterations

Re�ne critical use cases

Re�ne architecture

Decide/make/reuse/buy componentsVerify architecture

Verify detailed design Design in-detail components

Create components algorithms

Select IDE and coding tools Install IDE and coding tools

Design internal/external
Comm interfaces

RUP Elaboration activities

So�ware design and
implementation engineering

process (5.5)

So�ware validation process (5.6)

So�ware requirements and
architecture design process (5.4)

So�ware veri�cation process (5.8)

So�ware management
process (5.3)

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

223
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

sd incePtion PhAse
Th e purpose of the Libertad-2 mission is to capture images of

the Earth’s surface by using an OPL with a multispectral sensor
and a set of custom made lenses. Th e data that the sensor will
deliver will be raw and compressed using the Huff man algorithm
and wavelet transforms, so that the processing will take place on
the ground through a MATLAB application. Th is application
should be part of GS MCC. Th e data will be downloaded from
the SC, by a 2.2-GHz S-Band downlink with a custom protocol,
which must be integrated to the UHF/VHF communication. Th e
GSCM&C should then receive the OPL RAW data and deliver them
to MATLAB for reconstruction. To perform specifi c tasks as the
satellite “tracking”, in which the prediction path of the nanosatellite
on LEO and the antennas’ rotation are integrated, it was decided to
use the Systems ToolKit (STK), a soft ware application developed
by Analytical Graphics Incorporated (AGI) Company. Because the
GSCM&C GUI represents the “front-end” of the entire mission,

it was decided to perform a system design based on interaction
with 3-D elements, through which the operator can dynamically
select the diff erent elements and components of the nanosatellite
to display their operating data and thus perform monitoring. From
the defi nitions of this activity, the Stakeholders Request (IRD) and
Vision (SSS) artifacts were generated.

A list of requirements for each mission subsystem (attitude
determination and control subsystem, electrical power subsystem,
command and data handling, OPL, Communication subsystem
S-Band and UHF/VHF) and an additional list of general
requirements were defi ned. Th e consolidated requirements
structure for the development of the GSCM&C is composed
of the following groups of requirements: <<Passes data>>,
<<Telecommand>>, <<Telemetry>>, <<OPL S-Band>>,
<<Beacon UHF/VHF>>, <<GUI Control>> and <<GUI
Monitoring>>. From the results of this activity, the SRS artifacts
were generated.

Codify components

Execute compilation process

Verify test cases

Verify integrations

Verify GUI navegation

Perform functional tests

Elaborate user manuals

Verify source codeIntegrate so�ware layers

Codify components

Perform components tests

Evaluate product release

Perform tests cases

Manage resources

RUP Construction activities

So�ware veri�cation process (5.8)

So�ware validation process (5.6)

So�ware requirements and
implementation engineering

process (5.4)

figure 9. Construction phase activities for the H4ASD.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

224
González FAD, Cabrera PRP, Calderón CMH

In Fig. 12, six primary use cases are shown, associated with
two actors: the SW operator and the GS communications radios
(UHF/VHF and S-Band). Th e operator can perform three main
tasks: “Send Data”, “Mission Monitoring”, and “View Payload
Images”. For these operations to be executed by the operator, the
UHF/VHF radio must be able to send and receive information
to and from the SC using the AX.25 protocol, and S-Band radio
must be able to receive data from the SC using a custom made
link protocol, as shown in the box “COMM”. In addition, the
operator must confi gure the system to perform the antennas’
rotation. Th is is possible through the use of a commercial “Tracking
Application” or by adding records of trajectory calculations made

by the STK. From each one of the primary use cases, “extends”
or “include” cases are linked, involving an additional operation
for their execution or depending of a prior execution of other
operations. From the result of this activity, the glossary, business
case, and use case model artifacts were generated.

Th e GSCM&C must be run on a server, which must be directly
connected to the communications devices, such as transceivers
and antenna’s rotors. Furthermore, it should implement a DB, in
order to save all information obtained from the mission operation.
With these elements defi ned, the Libertad-2 GSCM&C architecture
is set as shown in Fig. 13. Th e system consists of three logical
layers, the basic layered model for soft ware development: “User

figure 10. Transition phase activities for the H4ASD.

Generate so�ware package

De�ne installation process

Install so�ware

Check installation

Document install process

Perform user support

De�ne acceptance process

Perform acceptance process

Verify acceptance
process results

Verify documentation

Verify technichal budget

Verify validation
× requirements baseline Compare vision with �nal product

RUP Transition activities

So�ware delivery
and acceptance process (5.7)

So�ware veri�cation process (5.8)

So�ware validation process (5.6)

Test product

Finish user material

Deploy so�ware

Train users

Finish user material

Fix so�ware bugsFine-tune performance Fine-tune usability

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

225
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

Stakeholders request

Vision

Glossary

User case model

Deployment plan

Business case

Risk list

So�ware
development

plan

So�ware
architecture
document

So�ware requirements speci�cation

Analysis model Design model

Test plan

User manuals

Implementation
model

EXE

Srel SCF

SUM

SVSSVR

SDD

DDF

ICD

SDP

SSS

IRD

SRS

SVerP
SVaiP

Tracking Alternative
Application

Mission monitoring

GSCM&C

COMM

Send data

Rotate antennas

Manage AX.25/S-Band
custom protocols

TX UHF/VHF Telecommands

RX UHF/VHF Telemetry

RX S-bBand data

Manage STK data

Receive data

View payload imagesOperator
Radios

<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<extend>> <<extend>>

Figure 11. H4ASD artifacts tree.

layer contains all of the robust functional code — in this case,
written in Java using the Java Development Kit (JDK8u5). The
main components of the software are the “CORE” commissioned
to the temporary control of the entire system, calculated with
respect to the satellite passes over the GS, the control of the
antennas in horizontal coordinate system, the link protocol that
manages the data transmission and reception using the radios,
and finally the “Java Database Connectivity” component, which
manages the data control in the repository.

The business and user layers act on the client and the data
layer, on the server. This forms a client-server architecture.
Although both client and server can run on the same computer,
it is also possible to have a separate data engine in a different
physical server, so that it is possible to connect several client
applications to the data structure. From the result of this
activity, the SDP and SAD artifacts were generated.

SD Elaboration Phase
Figure 14 corresponds to the composite structure diagram for

the Libertad-2 MCC. The system can be divided into three main
parts: the mission team, the MCC server, and the communication
peripheral devices. The mission team refers to the elements that
have to interact with the GSCM&C. These elements have direct
influence on the GS operation, as in the case of the group of flight
dynamics analysis (GFDA), the system operators (SO), and the
group on satellite images research (GSIR), or even an indirectly
influence, in the case of mission directors (MD). Each one has
its specific functions and responsibilities.

The GFDA is the actor in charge of operating the STK
software; in the SO actor, the users interact directly with the
GSCM&C; and the GSIR is in charge of operating MATLAB.
The second part of the diagram shows the main components
of the GS server, where the STK, the GSCM&C, and MATLAB
must be executed. The third part of the diagram represents the

Figure 12. GSCM&C general use cases.

Layer”, “Business Layer”, and “Data Layer”. Each layer operates
individually, but interacts with specific components of the others.

The user layer of the architecture presents data on the screen
through a GUI, composed by Extensible Markup Language
(XML) and XML-based (FXML) files built with a specific IDE
for GUI design, 3-D Java libraries and OpenGL. The business

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

226
González FAD, Cabrera PRP, Calderón CMH

physical devices that compose the GS, which also becomes
in the operational context of the GSCM&C. Th e GSCM&C
should interact with the S-Band, UHF/VHF rotors, the UHF/
VHF transceiver, and S-Band receiver.

To establish communications between the server and the
communication devices, “RS232C”-type serial communications
are needed in most cases; the interfaces can be USB or Ethernet,
as in the case of some S-Band radios. From the result of this
activity, a more complete version of the case model and the fi rst
version of the SDD were generated as part of the analysis model.

In order for station operators to analyze, monitor and process
the information downloaded from the satellite, it is required
a DB that allows the storage and retrieval of information in a

MCC
GSCM & C

Authentication

Authentication

U
se

r l
ay

er
Bu

si
ne

ss
 la

ye
r

D
at

a
la

ye
r

Model-view-controller

Java FX8
Scene Builder 2.0

Java 3D

Controllers

Model

FXML

GUI

JDK

TT&C

COMM

Antenna
Rotator

MySQL community server 5.6.23

JDBC

JDK8u5

MCC

Mission
team

Rotation TrackingPasses
prediction

GUI

MD

GFDA

SO

GSIR

GUI CORE

Image
processing

Image
decompression

COMM

GSCM&C

MATLAB

Communications
TNC Radios Rotors

STK

GUI

S-Band S-Band S-Band

VHF/
UHF

VHF/
UHF

UHF/
VHF

Text �les

Se
ria

l
Se

ria
l

Serial
Audio

Ethernet

Text �le Image �le

figure 13. GSCM&C architecture with respect to MCC.

practical and effi cient way. Th e data of the satellite mission refl ect
the results of the satellite in operation, so its value is immense.

Th e CORE module of the GSCM&C centralizes its operation
based on the passes predictions that are loaded from the STK,
since all soft ware operations during the mission life cycle,
especially those having to do with communication, depend on the
start, extent, and end data of each pass. Th e Entity Relationship
Model (ERM) for the Libertad-2 mission GSCM&C consists
of fi ve functional business chains associated to a principal one
called “Passes”. Figure 15 shows one of the fi ve functional chains
of the ERM: the S-Band reception business chain (1), in which
both the frames received by the receiver radio and the RAW
image data, associated with a given number of frames, are stored.

Th e other chains of functional dependencies in the model
are related to: (2) the overall system data and the SC general
status; (3) the antennas’ rotation; (4) the telemetry on demand
and Beacon data as well as the evaluation of state in each
telemetry parameter; (5) the last programmed telecommands
and a relationship between sent telecommands and received
data. From the result of this activity, the version of SDD was
improved as part of the design model.

figure 14. Composed structure of the GSCM&C as part of
the MCC.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

227
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

No_capture

isMosaic

No_pass

OptimalDate

UTC_End

UTC_Begin

Path_JPEG

RAW
No_Image

No_Frame

String_Frame

Percentage

isActive

String_COMM

ImagesS-Band_FRames Composed
by

[*;1]

[*;1]

[1;*]

[1;1]

is
received

in

Passes

Figure 16 shows the GSCM&C main screen layout, in which
the positioning of the various controls, panels, and data labels

Figure 15. Some entities of the GSCM&C data model.

Figure 16. GUI design for the GSCM&C main window.

was defined, so that the different operations and use cases were
included. From this window, the access to the telecommands
programming, the STK data management, and the monitoring
of each of the SC subsystems with a 3-D model interaction were
contemplated. The implementation of a dynamic GUI, with
visually pleasing elements of user interaction, such as the use of
3-D objects, ensures the usability of the application to perform
the tasks of satellite mission monitoring and ground control.

The design of the GUI also provides: the possibility to observe
the trajectory prediction data; control of the operating parameters
of the GS radios; a window to program the telecommands to
send and consult the telemetry data records; observation of
the monitoring charts and the tracing of special operations.
The version of SDD is improved with the results of this activity.

As show in Fig. 17, the MCC operations flow begins with the
execution of satellite trajectory simulations in the STK (1). The
data provided by the STK must be saved in text files in a specific
location on the server file system, in order to be uploaded to the
GSCM&C then (2). The first file delivery the records of each one
of the satellite passes over the GS, specifying the “Start time”, “Stop
time”, and the duration of the last pass in seconds. After the STK
files are generated, the Operation System (OS) opens the GSCM&C
and loads the passes prediction and rotation (AZ/EL) data (3) (4).
The “DataManager” entity manages the loaded data using the DB
and provides the prediction data to the “TimeControl” entity (5).

This entity is responsible for controlling the execution time of
each operation during the mission life cycle through the MCC. The
OS can program the telecommands to send through the GUI (6),
and the “DataManager” feature saves them in the DB (7). At the
right time, the “TimeControl” and “AntennaControl” entities are
activated, so that these entities begin to track the SC in real time (8).

Figure 17. GSCM&C MCC operations sequence.

1: Generate simulation

GFDA

GSIR

SO

2: Generate �les

14: Generate image13: Rebuild image
MATLAB

COMM

STK

3: Select STK �les 4: Save STK data

CORE

MCC

GSCM&C

Antenna controlPL data manager

11: deliver OPL data 8: Start rotation
Time controlData manager

10: Deliver data

9: Write data5: Load STK data

7: Save
telecommands

12: Generate
RAW data

GUI6: Program
telecommands

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

228
González FAD, Cabrera PRP, Calderón CMH

Immediately afterwards, the entity actives the “COMM” module and
delivers the Uplink data, so this module begins the transmission (9).
In parallel, the “COMM” receives the telemetry, Beacon and OPL
data and delivers them to the “DataManager” entity (10), which
organizes the RAW data frames for each individual image (11)
and then generates the corresponding files in a specified location
of the server file system (12). With this operation, the GSCM&C
completes the tasks of the SC real-time phase.

With the RAW files on the server, the GUI runs the MATLAB
program and rebuilds the image of the selected file (13). MATLAB
generates a file in image format and saves it into a new directory
location. Thus, the data captured by the nanosatellite OPL can
be displayed on the screen of the GSCM&C. Figure 17 shows
the flow of the GSCM&C main tasks regarding the MCC,
through which it is possible to display the OPL reconstructed
images based on the received RAW data. From this activity,
the version of SDD was improved as part of the design model.

SD Construction Phase
The construction phase is directly related to the implementa-

tion or coding of the SW element. In the case of the GSCM&C,
a complete version of the application must be obtained, in
which all the operations defined in the requirements, related
to the SC monitoring and control, are included.

For the Libertad-2 GSCM&C implementation, several
development applications were used. NetBeans 8.0.1 was used
as IDE, MySQL Workbench 6.1 CE was used as Computer
Aided Software Engineering (CASE) tool, in order to build
the DB Structured Query Language (SQL) script, and the Java
Development Kit (JDK) Standard Edition (SE) 8u51 was used
as primary language. The whole environment was installed on a
Windows operating system. This activity results in a deployment
diagram corresponding to the GSCM&C implementation model.

The implementation of the Liberatd-2 GSCM&C results
in a JavaFX application with the following navigation features:
the operator can access only with a username and password
provided by the (MySQL) DB administrator; when the operator
enters into the application, a main window is presented (Fig. 18).

In the left side, the Libertad-2 3-D (Java3D) model is displayed,
with which the operator can interact using the computer’s mouse
or touchscreen in order to visualize general information such as the
structure faces temperature, the state of OPL lens, the power from
the solar panels, and the output power of the Microstrip antenna.
On the right side, operating statistics, such as the number of sent
telecommands, the number of received Beacons, the duration of

the last and next pass, the number of received S-Band frames,
and other data, is displayed. By using the 3-D model, it is possible
to select the different hardware components in order to observe
the microcontrollers, memories, and sensors operation data in
detail, using the telemetry data that have been received by UHF
and have been stored in the DB. The subsystems shown in the
3-D model are: the OBC, the ADCS, EPS, OPL, magnetometer,
UHF/VHF radio, and the S-Band radio.

If the operator wants to view the data in a more dynamic way,
in order to make comparative analysis between the operation
of two or more components, with a double-click selection on
one of the (PCB) cards in the 3-D model, the application shows
the subsystem monitoring panel, in which the operator is able
to visualize N customizable charts and the records list of N
components simultaneously, as shown in Fig. 19.

At the top of the application, there is a series of tabs controls
whereby the operator can access the different operations, as the
management of STK passes data, the scheduling of telecommands
according to six operation modes, the visualization of behavior
data in the UHF/VHF radios kit, the visualization of behavior
data in the S-Band radios kit, and, finally, the records of historical

Figure 18. Libertad-2 3-D view on the GSCM&C main window.

Figure 19. Charts view on the GSCM&C monitoring window.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

229
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

image captures made by the OPL. As a result of this phase, the
program executable files, the versions of the SRel, SCF, and
Software User Manual (SUM) documents were obtained.

RESULTS AND CONCLUSION

In order to assess the functionality of H4ASD as a metho-
dological tool for developing SW elements for academic satellite
missions, some points are discussed ahead, which reflects
the scope and limitations on the applicability of the model.

The use of RUP within the approach was aimed in order that
traditional engineers, especially computer science engineers,
could have clear concepts of software engineering that allowed
them to easily assimilate and understand the proposed model,
when using it for the development of a SW element in an
academic-type aerospace mission. Being RUP the best known
software development model, above the agile methodologies, it
is easier for traditional engineers to understand the operation of
at least a part of the ECSS standard. In addition, RUP suggests
the use of UML, the most used modeling language, which also
represents an advantage for the traditional engineer.

The structuring of the RUP elements is very similar to the
ECSS-E-ST-40C; however, each one has different approaches
(aerospace/commercial) that are complementary. This results in
a work model in which the conventional software engineering
concepts are applied using UML, and also the operating
constraints of space context are incorporated, which allows
the model to be used to guide the development process of both
 the SC embedded SW and MCC SW pieces.

The H4ASD integrates elements of both models and should
not be seen as something that increases the difficulty, because
the aim was to help it by taking a sequential life line to organize
the activities, i.e. without losing the focus of the iterative and
incremental method, an essential feature in order to refine
and improve the analysis, design, and implementation models.
The flow of activities for each phase of H4ASD is sequential,
considering that the team for the development of academic
satellite missions consists of a small group of students and
traditional engineers, where there is not a complex team
hierarchy as the commercial aerospace missions; for this reason,
a roles model was not contemplated in the H4ASD approach.

The description of the GSCM&C development process for
the Libertad-2 satellite mission as a study case of the H4ASD
was mostly focused on the analysis and design phases, as they

correspond to the most critical phases in the development
process. If a design is correct and includes all system operations
as an assembly, the implementation will be successful too. The
use of 3-D objects in the GSCM&C Look&Field was performed
in order that MCC operators could dynamically display and
visualize information about Libertad-2 in-orbit operation. This
was made following the proposals of design concepts as User
Experience (UX) and Getting Real (GR).

The best way to validate the contribution made by the H4ASD
is describing the results it has generated in the development
of various software elements of the Libertad-2 satellite system,
including the GSCM&C, which was described as a case study.

The H4ASD has allowed students of industrial, electronics,
systems, and telecommunications engineering at the University
Sergio Arboleda to be able to work together with local project
engineers in the development of various software elements of
the mission, specifically the following:, in the OPL — Huffman
algorithm, wavelet transform compression, and OPL embedded
control module; in the OBC — the on-board communication
module and the C&DH; finally, the image reconstruction
software for the MCC.

The model was presented to the developing team of the
Libertad-2, was successfully received by two experts in aerospace
engineering (mission director and engineering dean), and was
clearly understood by research professors. It was also presented
in the following undergraduate courses: software engineering,
real-time operating systems, and embedded software for satellite
applications, with a total of 18 students, of which 12 are currently
working with specific development tasks.

The development process of SW parts from an academic
aerospace system runs between A and D ECSS phases, i.e.
Feasibility and Qualification and Production, regardless of the
SW development model that is decided to use. In this sense, the
SW part must be developed in parallel with the other mission
subsystems, with iterative and incremental tasks.

The H4ASD approach allows traditional software engineers
to easily understand how ECSS-E-ST-40C work model is
structured for the development of SW in aerospace missions,
as well as all processes, activities, and tasks suggested, using
RUP as a comparator.

Leaving aside the level of effort that RUP describes for
workflows, the periods of execution of each discipline during the
life cycle are aligned similarly to the ECSS-E-ST-40C processes.
This is what allows the coupling of both models into a single
structure. The match between the ECSS-E-ST-40C processes

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

230
González FAD, Cabrera PRP, Calderón CMH

and RUP workflows, the complementary activities diagrams, and
the artifacts tree breakdowns the ECSS-E-ST-40C structure
and reduces its complexity, so that traditional software engineers
can apply it as a complement of the suggested work in model in
a conventional and known SW development methodology,
in this case, RUP. Although the engineer try to be strict when using
the ECSS-E-ST-40C, the most critical tasks for the development
of the SW part, such as analysis and design, depend on the
use of UML and RUP model. Therefore, artifacts, such as business
cases, are complementary to ECSS-E-ST-40C and a vital part
of the process.

Future work

The aim of the research was to propose a working structure
that would allow traditional SW engineers to guide the
development of any SW part in the aerospace system, which is why
the ECSS-E-ST-40C standard was selected. For the mission MCC

SW, the ECSS-E-ST-70C standard can be contemplated, which
contains specific processes descriptions for the development
of ground stations. The study should be aimed at breaking
down the rest of the work models of the ECSS “E” branch
(Engineering Policy and Principles), as ECSS-E-ST-20C
(Electrical and Electronics) or ECSS-E-ST-50C (Communi-
cations), using conventional models for the development of
electronic or telecommunications systems.

Acknowledgement

The H4ASD approach presented in this paper is framed
within the “Satellite Libertad-2” program, which is currently
carried out at the Escuela de Ciencias Exactas e Ingeniería of the
Universidad Sergio Arboleda, in Bogotá, Colombia, in which
it is expected to deploy in LEO a CubeSat-type nanosatellite
of 4 kg with OPL that allows to capture images of Colombian
surface in order to perform precision agriculture studies.

REFERENCES

Anderson L, Cole B, Yntema R, Bajaj M, Spangelo S, Kaslow
D, Friedenthal S (2014) Enterprise modeling for CubeSats.
Proceedings of the 2014 IEEE Aerospace Conference; Big Sky,
USA.

Armellini F, Kaminski PC, Beaudry C (2012) Integrating open
innovation to new product development — the case of the Brazilian
aerospace industry. Int J Technol Learn Innovat Dev 5(4):367-
384. doi: 10.1504/IJTLID.2012.050738

Asundi SA, Fitz-Coy NG (2013) CubeSat mission design based on
a systems engineering approach. Proceedings of the 2013 IEEE
Aerospace Conference; Big Sky, USA.

Brandstätter M, Eckl C (2009) Multi-disciplinary system
engineering and the Compatibility Modeling Language (U)CML.
Journal of Systemics, Cybernetics & Informatics 7(2):11-16.

Braxton Tech (2015) Telemetry, Tracking and Commanding (TT&C)
ControlPoint™ (AceCP) [accessed 2015 Jun 10]. http://www.
braxtontech.com/products/satellite-ttc/

Buchen E (2014) SpaceWorks’ 2014 Nano/Microsatellite Market
Assessment; [accessed 2016 Mar 16]. http://www.sei.aero/
eng/papers/uploads/archive/SpaceWorks_Nano_Microsatellite_
Market_Assessment_January_2014.pdf

Bürger EE, Loureiro G, Lacava PT, Carrera DHZ, Hoffmann CT
(2014) The CubeSat AESP14 and its systems engineering
development process. Proceedings of the 1st Latin American IAA
CubeSat WorkShop; Brasília, Brazil.

Chaieb S, Wegerson M, Straub J, Marsh R, Kading B, Whalen D
(2015) The OpenOrbiter CubeSat as a System-of-Systems (SoS)

and how SoS Engineering (SoSE) aids CubeSat design. Proceedings
of the 10th Annual System of Systems Engineering Conference;
San Antonio, USA.

Díaz F, Camargo C, Pinzón P (2015) Software de monitoreo y
control para la estación terrena de un nanosatélite. Bogotá: Fondo
de Publicaciones de la Universidad Sergio Arboleda.

Díaz F, Quintero S, Triana J, Morón D (2014) Aproximación a
los sistemas de percepción remota en satélites pequeño. Bogotá:
Fondo de Publicaciones de la Universidad Sergio Arboleda.

Dingsoyr T, Nerur S, Balijepally V, Moe NB (2012) A decade of agile
methodologies: towards explaining agile software development. J
Syst Software 85(6):1213-1221. doi: 10.1016/j.jss.2012.02.033

European Cooperation for Space Standardization (2009a);
[accessed 2015 Jun 10]. http://www.ecss.nl/

European Cooperation for Space Standardization. Secretariat
ESA-ESTEC (2009b) Space project management project planning
and implementation ECSS-M-30B Draft 14. Noordwijk, The
Netherlands: Requirements & Standards Division.

Fischer M, Scholtz AL (2010) Design of a multi-mission satellite
ground station for education and research. Proceedings of the
Second International Conference on Advances in Satellite and
Space Communications; Athens, Greece.

Funase R, Takei E, Nakamura Y, Nagai M, Enokuchi A, Yuliang C,
Nakada K, Nojiri Y, Sasaki F, Funane T, Eishima T, Nakasuka S (2007)
Technology demonstration on University of Tokyo’s pico-satellite “XI-V”
and its effective operation result using ground station network. Acta
Astronaut 61(7-8):707-711.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.211-231, Apr.-Jun., 2016

231
Design of a Nanosatellite Ground Monitoring and Control Software – a Case Study

Huang PM, Darrin AG, Knuth A (2012) Agile hardware and
software system engineering for innovation. Proceedings of the
2012 IEEE Aerospace Conference; Big Sky, USA.

Jacobson I, Booch G, Rumbaugh J (2000) El proceso unificado de
desarrollo de software. Madrid: Addison Wesley.

Kaslow D, Anderson L, Asundi D, Ayres B, Iwata C, Shiotani B,
Thompson R (2015) Developing a CubeSat Model-Based System
Engineering (MBSE) Reference Model-interim status. Proceedings
of the 2015 IEEE Aerospace Conference; Big Sky, USA.

Kaslow D, Soremekun G, Kim H, Spangelo S (2014) Integrated
model-based systems engineering (MBSE) applied to the simulation
of a CubeSat mission. Proceedings of the 2014 IEEE Aerospace
Conference; Big Sky, USA.

Laizans K, Sünter I, Zalite K, Kuuste H, Valgur M, Tarbe K, Noorma
M (2014) Design of the fault tolerant command and data handling
subsystem for ESTCube-1. Proc Est Acad Sci 63(2S):222-231.
doi: 10.3176/proc.2014.2S.03

Llorente JDG, Leguizamón GAP (2014) Estimación de la cantidad
de potencia suministrada por las celdas fotovoltaicas de un
CubeSat. Tecnura 18(41):53-63. doi: 10.14483/udistrital.jour.
tecnura.2014.3.a04

Lopez DM, Blobel BGME (2009) A development framework for
semantically interoperable health information systems. Int J Med
Inf 78(2):83-103. doi: 10.1016/j.ijmedinf.2008.05.009

Mohammad A, Straub J, Korvald C, Grant E (2013) Model-based
software engineering for an imaging CubeSat and its extrapolation
to other missions. Proceedings of the 2013 IEEE Aerospace
Conference; Big Sky, USA.

Nader MR, Carrion MH, Uriguen MM (2014) The Ecuadorian
experience in space: the nee satellite constellation. Proceedings of the
21st IAA Symposium on Small Satellite Missions (B4); Toronto, CA.

Pradels G, Baroukh J, Queyrut O, Sellé A, Malapert JC (2012) CNES
solution for a reusable payload ground segment. Acta Astronaut
81(2):610-622. doi: 10.1016/j.actaastro.2012.08.036

Puschell JJ (2011) Formal requirements definition. In: Wertz JR,
Everett DF, Puschell JJ, editors. Space mission engineering: the
new SMAD. Hawthorne: Space Technology Library. p. 105-123.

Ramos DB, Loubach DS, da Cunha AM (2010) Developing
a distributed real-time monitoring system to track UAVs.
IEEE Aero Electron Syst Mag 25(9):18-25. doi: 10.1109/
MAES.2010.5592987

Raphael D, Stone R, Guevara D, Fraction J (2014) Command
& Data Handling for the magnetospheric multiscale mission.
Proceedings of the 2014 IEEE Aerospace Conference; Big Sky,
USA.

Sand J, Goehner K, Korvald C, Berk J, Straub J (2013) Payload
processing aboard an open source software CubeSat. Proccedings
of the Spring 2013 CubeSat Workshop; San Diego, USA.

Schilling K (2006) Design of pico-satellites for education in
systems engineering. IEEE Aero Electron Syst Mag 21(7):S9-S14.
doi: 10.1109/MAES.2006.1684269

Spangelo S, Cutler J, Anderson L, Fosse E, Cheng L, Yntema R,
Kaslow D (2013) Model based systems engineering (MBSE) applied
to Radio Aurora Explorer (RAX) CubeSat mission operational
scenarios. Proceedings of the 2013 IEEE Aerospace Conference;
Big Sky, USA.

Spangelo S, Kaslow D, Delp C, Cole C, Anderson L, Fosse E, Gilbert
B, Hartman L, Kahn T, Cutler J (2012) Applying Model Based
Systems Engineering (MBSE) to a standard CubeSat. Proceedings
of the 2012 IEEE Aerospace Conference; Big Sky, USA.

Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T
(2014) FeatureIDE: an extensible framework for feature-oriented
software development. Sci Comput Program 79:70-85. doi:
10.1016/j.scico.2012.06.002

Villamil DCC, Mayorga JAA (2013) Análisis de rendimiento
de dos sistemas operativos en tiempo real implementados en
dos arquitecturas de hardware para la selección del sistema
embebido que soportará el Software Command And Data Handling
de la Misión Satelital Libertad 2. Proceedings of the 11th
Latin American and Caribbean Conference for Engineering and
Technology (LACCEI’2013); Cancun, Mexico.

Webster J, Corcoran P (2007) NPR 7120.5 and NASA’s
Program/Project On-line Library and Resource Information System
(POLARIS). Proceedings of the 2007 IEEE Aerospace Conference;
Big Sky, USA.

Woellert K, Ehrenfreund P, Ricco AJ, Hertzfeld H (2011)
Cubesats: cost-effective science and technology platforms for
emerging and developing nations. Adv Space Res 47(4):663-684.
doi: 10.1016/j.asr.2010.10.009

Ziemke C, Kuwahara T, Kossev I (2011) An integrated development
framework for rapid development of platform-independent and
reusable satellite on-board software. Acta Astronaut 69(7-8):583-
594. doi: 10.1016/j.actaastro.2011.04.011

