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Abstract: The growing countries that have carried out the 
development of CubeSat missions for academic purposes 
do not offer aerospace engineering programs at their 
universities. This causes difficulties for traditional engineers 
upon the formal use of different standards and frameworks for 
aerospace development, such as the European Cooperation 
for Space Standardization and Space Mission Analysis and 
Design . One way in which traditional software engineers can 
easily understand the structure of an aerospace framework, 
in order to apply it on the development of CubeSat mission 
software parts, is comparing its most important elements in 
relation to the elements suggested by a more familiar method. 
In this paper, we present a hybrid framework between the 
ECSS-E-ST-40C standard and the Rational Unified Process, 
which can be used by traditional software engineers as a guide 
model for the development of software elements in academic 
nanosatellite missions. The model integrates the processes 
and documentation suggested by the ECSS-E-ST-40C 
with the disciplines, workflows and artifacts suggested in 
Rational Unified Process. This simplifies the structure of 
ECSS-E-ST-40C and allows traditional software engineers to 
easily understand its work elements. The paper describes 
as study case the implementation of the hybrid model in the 
analysis and design of ground monitoring and control software 
for the Libertad-2 satellite mission, which is currently being 
developed by the Universidad Sergio Arboleda in Colombia.

Keywords: CubeSat, European Cooperation for Space 
Standardization, Rational Unified Process, Monitoring, 
Graphical User Interface, 3D.
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Introduction

The development of academic satellites projects, mostly 
based on the CubeSat standard, has become the best alternative 
for those countries who want to start research and development 
on aerospace themes (Woellert et al. 2011). The feasibility of 
using Commercial off-the-shelf (COTS) components for the 
development of satellite modules and the possibility to be 
secondary cargo on the rocket launchers, through modules 
as the Poli-Picosatellite Orbital Deployer (P-POD), allow 
the launch of small satellites (1 – 10 kg) (Buchen 2014) with 
shoestring budgets (Woellert et al. 2011); however, due to the 
lack of experience that growing countries have in research and 
development of satellite technology, their universities do not have 
yet specific programs to train aerospace engineers; for this reason, 
academic satellite missions such as CubeSat should be developed 
with local engineers, trained in conventional development of 
hardware (HW) and software (SW), with assistance of aerospace 
experts trained in the United States (US) and Europe (Nader 
et al. 2014). The only country in Latin America that provides 
aerospace engineering programs is Brazil, at the Universidade 
Federal de Minas Gerais, Universidade de Brasília and 
the Universidade do Vale do Paraíba (Armellini et al. 2012). The 
nearest approaches to aerospace programs in Latin America 
are aeronautical engineering degrees offered in Ecuador, 
Argentina, Peru, among others. Currently in Colombia, satellite 
missions aim to generate experience in the development of 
aerospace technology in medium term, through the training 
of professionals with the concept of learning by doing (Villamil 
and Mayorga 2013), and the creation of university programs 
focused on the aerospace theme; however, as this process 
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figure 1. Partial view of the Libertad-2 satellite structural design.

matures, local engineers are responsible for the development 
of the fi rst satellite missions. 

Due to the peculiarity that exists in the operational context 
of a satellite system, it is necessary the use of development 
methodologies that address the characteristics of aerospace type, 
to guide the diff erent stages of analysis, design, implementation, 
validation and operation of each subsystem of the mission. 
Th e most commonly used are those proposed by the National 
Aeronautics and Space Administration (NASA), called Space 
Mission Analysis and Design (SMAD) (Webster and Corcoran 
2007; Puschell 2011), and standards of the European Cooperation 
for Space Standardization (ECSS), proposed by the European 
Space Agency (ESA) (Raphael    et al. 2014). Nevertheless, these 
models are oversized for small academic missions as CubeSat 
ones. One way to provide local engineers with the appropriation 
of aerospace concepts suggested by these models is by identifying 
relationships between common elements of conventional 
development methodologies known by local engineers and 
aerospace development models, such as milestones, steps, 
artifacts, suggested activities and life cycles.

Given that SMAD and ECSS have a similar structure, 
a comparative analysis of the life cycle phases, milestones, 
artifacts and activities defi ned, among ECSS and the Rational 
Unifi ed Process (RUP), is presented in this study (Ramos et al.
2010). RUP is one of the best known SW development 
methodologies and it is commonly used by local engineers. 
Th e proposed analysis results in a hybrid framework, whereby 
local engineers can appropriate and guide the development 
process of the diff erent academic satellite SW elements. To 
validate the proposed hybrid model, the design of the ground 
monitoring and control SW for Libertad-2 nanosatellite – as the
main component of the Mission Control Center (MCC) – is
taken as a study case.

The paper is presented in the following order: first, a 
description of Libertad-2 satellite mission; the importance
of developing SW as a fundamental element of a nanosatellital 
system is explained; the presentation of SMAD and ECSS 
standards is done; ECSS-E-ST-40C standard is specifi cally 
described; and a presentation of commercial SW development 
methodologies is made. Then, the life cycles of RUP and
ECSS-E-ST-40C are compared, the milestones, artifacts and 
activities are shown and the hybrid model is structured. Finally, 
the design process of the ground monitoring and control SW 
for Libertad-2 MCC is explained, applying the proposed model; 
results and conclusions are presented, and future research arises.

metHodology

Th e Libertad-2 nanosatellite mission of the Universidad 
Sergio Arboleda, in Colombia, aims to continue with the 
development of academic satellites, started in 2007 with
the launch of the Libertad-1 picosatellite (Llorente and 
Leguizamón 2014), by developing a 3U CubeSat-type nanosatellite 
with an Optical Payload (OPL) to carry out remote sensing (RS) 
on agricultural areas of Colombia. In addition, the Libertad-2 
will use an S-Band frequency in order to send the OPL data to 
the Earth   (Díaz et al. 2015).

Figure 1 represents an external visual of Libertad-2. Th e OPL 
will be located in the left  unit, consisting of an embedded system, 
a multispectral complementary metal-oxide-semiconductor 
(CMOS)-type sensor, and a lens with approximately 80 ground 
sample distance (GSD) to obtain images of the Earth’s surface 
from a low Earth orbit (LEO), accompanied by the microstrip 
antenna, used for S-Band transmission. Th e on-board computer 
(OBC) and electrical power system (EPS) embedded systems 
will be placed on the central unit, as well as the HW of the 
UHF/VHF and S-Band radios. At the moment, Libertad-2 
satellite mission of the Universidad Sergio Arboleda is in 
Preliminary Design Review (PDR) phase of the ECSS model, 
and functional prototypes and some fl ying prototypes of the 
OBC, OPL, EPS subsystems and microstrip antenna have been 
developed (Díaz et al. 2015).

SW development is an activity of great importance in the 
life cycle of nanosatellite mission, because both the nanosatellite 
spacecraft  (SC) and the MCC should integrate parts of SW 
applications, fi tted to the operational requirements of each 
mission. Th is makes it diffi  cult to use standard or commercial 
SW in the nanosatellite subsystems (Sand et al. 2013). Th ese 
soft ware pieces in conjunction with HW devices should fulfi ll 
the main fl ight operations. In the case of a CubeSat-type SC, 
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figure 2. Interaction of operators with the CubeSat through 
MCC (Braxton Tech 2015).

embedded soft ware components with real time subsystem control 
are needed (Díaz   et al. 2014); in the case of MCC, desktop 
soft ware applications are required, whereby it is possible to 
control the devices of the ground station (GS) communications 
system (Díaz et al. 2015).

Th e MCC is the ground system that allows mission operators 
to manage the SC life cycle operations (Funase et al. 2007). It 
consists of a series of SW applications that allow the execution 
of standard operations, such as the SC trajectory prediction or 
the SC tracking, by rotating antennas in azimuth and elevation 
values; and also the management of telecommands and telemetry 
data through communication with UHF/VHF and S-Band 
radios. In addition, the MCC can integrate SW applications for 
processing images captured by the payload, using tools such 
as MATLAB. Front-end applications are also used to display 
the operation data (Fischer and Scholtz 2010). Figure 2 shows 
the example of an MCC for a CubeSat mission.

SW elements of the SC and MCC should consider non-
functional quality requirements such as reliability, robustness and 
fault tolerance in their operations (Laizans et al. 2014). Th us, the 
processes of analysis, design, implementation and validation of 
the elements of the satellite system are a fundamental requirement 
to the mission and should consider the characteristics of the 
critical systems. To guide the overall life cycle of the mission 
and the development of all subsystems, there are two main 
AM or work proposals that can be used: the SMAD, proposed 
by NASA, and standards of the ECSS, proposed by the ESA. 

SMAD proposes a methodology to develop aerospace
missions, beginning with the definition of the objectives of 
the mission, followed by the design, construction, launch and 
operation of the SC, and ending with the de-orbit. Its main 
objective is to guide the development of an aerospace system 
in a quickly, effi  ciently and cheaply way. Its life cycle is based 
on the defi nition given by NASA in NPR7120.5E (Webster and 
Corcoran 2007) and consists of seven phases, each defi ned by key 
decision points (KDP) and a series of major revisions (Puschell 
2011). Th e purpose of each review varies according to the stage 
and the section of the mission in which one is working. Four 
groups of processes are identifi ed: (a) Exploration of concepts; 
(b) Detailed development; (c) Production and deployment; and 
(d) Operation and support. Th e Exploration of concepts results in 
the defi nition of the mission, its components, cost and schedule. 
Th e Detailed development provides a detailed defi nition of the 
system, its components and technologies. In the Production and 
deployment, building of fl ight HW and SW and the launch of the 
SC are performed. Finally, Operation and support is related to the 
day-to-day space mission, maintenance and closing operations.

As SMAD, ECSS proposes a life cycle of seven phases for 
developing the entire aerospace project. Th e ECSS standard 
covers the main aspects related to development of aerospace 
systems and seeks to off er a user-friendly guide to the procedures 
in each of the subsystems.

Th e ECSS-E-ST-40C standard from the engineering branch pro-
vides guidance for the development of aerospace SW, in which the 
mission ground segment SW is included. ECSS suggests six major 
revisions to develop SW: (a) System Requirements Review (SRR); 
(b) PDR; (c) Critical Design Review (CDR); (d) Quality Review 
(QR); (e) Acceptance Review (AR); and (f) Operational Readiness 
Review (ORR), which must be executed during the proposed
life cycle, divided into nine groups of processes, which consider 
requirements defi nition activities, design, implementation and
validation of SW: (5.2) soft ware related system requirements process;

In the same way that happens with most engineering projects, 
development of SW applications requires the use of a methodology 
to structure, plan and control the various tasks and activities of 
the development process, through a specifi c framework. Th e most 
widely used frameworks for developing SW are the processes of 
design and implementation, as detailed in traditional or robust 
methodologies; in this paper, we call these methodologies as 
commercial methodologies (CM), which use the unifi ed modeling 
language (UML) as the main tool for modeling (Th üm et al. 2014); 
however, for the development of computer parts as elements 
of an aerospace system, there are specifi c methodologies for 
these aerospace modules. In this paper, we call these methods 
as aerospace methodologies (AM), which describe the detailed 
processes for SW development that is required in the SC and 
MCC (Webster and Corcoran 2007; Puschell 2011; Raphael
et al. 2014; European Cooperation for Space Standardization 2009a).
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(5.4) software requirements and architecture design process; (5.5) 
software design and implementation engineering process; 
(5.6) software validation process; (5.7) software delivery and 
acceptance process; (5.8) software verification process; (5.3) 
software management process; (5.9) software operation pro-
cess; and (5.10) software maintenance process. Each of these 
processes is responsible for a group of specific activities of the 
aerospace software development life cycle and produces a series 
of specific artifacts that support the documentation (European 
Cooperation for Space Standardization 2009b).

For the development of commercial SW applications, either 
embedded type, desktop or web, there are several methods of 
work, which can be divided into two main categories: agile or 
robust methodologies.

Agile methodologies are flexible to change, based on close 
interaction with the customer looking for their feedback; it is 
not rigid in terms of roles, working groups and offers only the 
necessary documentation. Methodologies such as Extreme 
Programming (XP), Scrum, Lean Software Development (LSD), 
Kanban, Open Unified Process (OpenUP), Rapid Application 
Development (RAD), among others, are being widely used in 
recent times for SW application development where a quick-
to-market is required (Dingsoyr et al. 2012).

These methodologies have characteristics like robustness 
in terms of activities, iterations, tasks, detailed documentation 
and constant revisions; they are rigid and inflexible and, in the 
recent decades, have ceased to be used in the commercial field. 
However, the RUP, which uses a heavyweight and traditional 
methodology, is the best known method in SW development 
(Lopez and Blobel 2009).

The RUP is a full-guided SW engineering methodology with a 
disciplined approach to assign tasks and responsibilities for the SW 
development. Its goal is to ensure the production of SW with high 
-quality attributes that meet the needs of the final user within an 
established budget and schedule. This is an iterative and incremental 
process that guides the development of a standard SW product 
focused on architecture and led by the UML (Jacobson et al. 2000).

 RUP defines four phases for the development of SW: (a) 
Inception; (b) Elaboration; (c) Construction; and (d) Transition. 
Every phase is defined by a milestone; these are: (a) Life 
cycle Objective Vision; (b) Life cycle Architecture; (c) Initial 
Operational Capability; and (d) Product Release, which aims to 
ensure that core workflows (business modeling, requirements, 
analysis, design, implementation, testing and deployment) 
evolve evenly over the entire SW life cycle (Jacobson et al. 2000). 

Academic satellite missions

In the last decade, after the start of the CubeSat era, several 
authors have made approaches to frameworks which help to 
guide the development process of SW pieces as elements of the 
SC, identifying activities, defining life cycles, general process 
structures etc. 

These researches (Spangelo et al. 2012, 2013; Kaslow et al. 
2015) explain a fully-structured framework based on Model-Based 
Systems Engineering (MBSE) and Systems Modeling Language 
(SysML) to guide the modeling of CubeSat missions, in which 
both the space segment and the ground segment are considered. 
Moreover, Kaslow et al. 2014 explains how the MBSE model can be 
used for a simulation of the operation of a CubeSat using Matlab. 
Anderson et al. (2014) incorporates to it a standard property for 
the development of business satellites; however, the MBSE model 
is focused on the system modeling only and does not include the 
entire development life cycle. Additionally, the framework does 
not address the ECSS or SMAD methodologies, which guides 
the development from an aerospace perspective and incorporates 
neither activities distribution elements nor defined artifacts, such 
as those presented in RUP, in which management, organization 
and control processes for the whole software project are included.

Huang et al. (2012) explain the use of agile methodologies 
like SCRUM and XP for development of HW and SW elements 
of academic satellites and consider as study case the Multi-
Mission Bus Demonstrator Project (MBD), conducted by 
The Johns Hopkins University – Applied Physics Laboratory 
(JHU – APL). However, any of the characteristics and properties 
of aerospace development are taken into account. 

Asundi and Fitz-Coy (2013) propose a framework for CubeSat 
mission design based on a systems engineering approach. 
The model intends to use a flow-down in order to model the 
requirements, subsystems operations, components interfaces and 
tasks flows, but also ignores aerospace development processes. 

Ziemke et al. (2011) present a framework of SW development 
for embedded systems in small SC, integrating examples of 
development tools, programming language, design patterns and 
concepts of Service Oriented Architecture (SOA), aligned with 
the ECSS processes, but its purpose is to suggest a technical 
model in terms of design and programming operations and 
does not propose activities, deliverables or development phases, 
related to development management. 

Pradels et al. (2012) explain the process for developing a 
reusable ground segment to monitor and control the payload of a 
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small satellite, using a framework that includes the ESCC-E-ST-70 
standard and where a life cycle phase with activities and specific 
documentation based on experience gained from earlier satellite 
missions is proposed, something similar to the objective of this study; 
however, its purpose is not to make an approach to commercial SW 
development methodology through the proposed model in order 
to facilitate the assimilation by traditional development engineers. 

Bürger et al. (2014) present the systems engineering process 
used to develop the first Brazilian CubeSat launch platform 
called AESP14 and a CubeSat with the same name, in which 
the activities of the project and a series of documents related to 
engineering systems, technical specifications and procedures are 
described. Although the described process takes into account 
the ECSS standard, an approach is not made to any specific 
development methodology. 

Chaieb et al. (2015) explain how is possible to use the System-
of-Systems (SoS) and SOS Engineering (SOSE) methodology 
to design and operate a CubeSat-type SC; however, it is not 
focused on the SW for SC subsystems and does not propose a 
life cycle, activities or artifacts to the development.

 Mohammad et al. (2013) propose a systems engineering 
framework for the design of CubeSat missions called Open 
Space Box Modeling (OPEN-SBM), based on the System 
Requirements Design (SRD) methodology, in which modeling 
graphic components are used. Nevertheless, no standard for 
aerospace development is contemplated. 

Finally, Brandstätter and Eckl (2009) present a model 
for compatibility management in the development of SC 
components, aligned with ECSS-M-30A standard, based on 
a multidisciplinary approach to systems engineering. The 
authors propose activities and processes, as well as the usage 
of UML for the design; however, the model does not focus on 
the development of SW elements for an academic SC.

On the other hand, some studies support the academic 
development of satellites as the axis of the formation of 
undergraduate, master’s and doctorate students from different 
programs and also as the improvement of educational processes 
within universities. Schilling (2006) explains the manner in which 
the development of CubeSat picosatellites has been integrated 
into the curricula of Computer Science and Spacemaster – 
Master’s Program in Space Science and Technology at the 
University of Würzburg and gives as an example the design of 
the ground control center of one of the CanSat missions. Bürger 
et al. (2014) describe how the main activities and disciplines 
of AESP14 mission are coupled with the semester courses of 

college, using the program to teach undergraduate students 
systems engineering concepts applicable to an aerospace mission.

The review of the state-of-the-art allows identifying the 
existence of several models or frameworks applicable to 
the development of the various subsystems of an academic SC 
(HW/SW) and their integration, using as a methodological 
basis recent systems engineering concepts or theories as MBSE. 
Nonetheless, there are few focused specifically to provide traditional 
software engineers and ownership of the development process of 
the SC SW parts. The papers that have this approach contemplate 
agile methodologies, propose their own frameworks and some 
of them align the proposed models to aerospace development 
standards as ECSS. The studies propose from simple organizational 
structures of mission work teams, flow activities proposals and 
engineering  processes to complex project structures that include 
life cycles, artifacts, activities, and even introduce concepts of design 
patterns and SW programming. However, after this literature 
review, we could not find a study that integrates the features of a 
commercial SW development methodology as used in RUP with 
a methodical proposal of a SW development model for aerospace 
applications as ECSS, allowing the local engineers in developing 
countries to use a work guide that eases the development of the 
different SW elements of CubeSat mission, performing specific 
activities, consolidating specific artifacts, and running a series 
of revisions during the phases of a certain life cycle.

Hybrid-Academic-Aerospace 
Model for SD

The approach of a Hybrid-Academic-Aerospace Model for 
Software Development (H4ASD) aims to provide traditional 
engineers with the understanding of the different processes of 
aerospace engineering that must be taken into account in the 
development of SW parts, fundamental in an academic SC. A 
working model is clear if a life cycle consisting of certain phases 
is defined, in which a set of activities associated with artifacts 
or documents by each executed activity is proposed.

Aerospace engineering frameworks proposed in SMAD 
and ECSS include specific processes for the development of the 
different mission SW applications. Nevertheless, their main feature, 
as standards, is that they are structured to operate in aerospace 
missions such as industrial satellites and launches of ferries with 
crew; so these models are robust and require experienced aerospace 
engineers who can lead the different development processes. In 
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this sense, it is inefficient to use them strictly as a methodological 
guide in the development of academic SC. Although both models, 
SMAD and ECSS, include the development of the SC along the 
life cycle of the mission, that is, taking into account the stages 
of pre-launch, launch and operation, the ECSS standard is a bit 
more open to describe activities for the development of SW 
elements in its ECSS-E-ST-40C document.

At present, agile type methodologies are the most used for 
the development of commercial SW that must be quick-to-
market, since their features are fast teamwork, consolidating 
only the necessary documentation and obtaining functional 
SW parts. However, these are not robust enough to be applied 
in the development of aerospace SW. Due to the characteristics 
of critical systems, the development of SW parts for aerospace 
missions needs to be supported in sufficient documentation, on 
which it would be possible to make traceability, modifications and 
new requirements that arise during the development of the SC. 
If the mission does not have the formality and documentation, 
like as that provides a heavyweight methodology, it would 
not be possible to develop future missions with the aim of 
obtaining knowledge and engineering development. That work 
would be lost. Conversely, RUP model, presenting a detailed 
description of the entire SW life cycle, specifying each of the 
iterations, artifacts and activities, both in the structural model 
of the system and the dynamic one, typical characteristics of a 

robust model, makes it the best alternative to be applied in the 
development of aerospace SW. The robustness of RUP is the 
product of formalism that exists in the documentation process 
described through its artifacts tree, compared with lightweight 
(agile) methodologies, where there is much less documentation.

Considering the above, the structuring of H4ASD is based 
on a “match” between ECSS-E-ST-40C model, as aerospace SW 
approach, and RUP, as commercial SW approach, as well as on 
identifying their common, comparable and complementary 
elements, obtaining a ECSS + RUP model. 

The base of the H4ASD is associated with the similarity 
between both life cycles and workflows or disciplines. This 
means that both RUP and ECSS-E-ST-40C suggest similar 
processes and groups of activities that can be linked to form 
a single life cycle, to guide the development process. Figure 3 
shows the overlap between life cycles, intensity or duration 
of workflows and respective revisions or milestones in the 
development process in both models. The top part of Fig. 3 
shows the seven stages (0, A, B, C, D, E, F) of the ECSS life cycle 
project to develop a complete aerospace mission in order to 
show the way in which RUP and SW development project fits 
within the aerospace project (gray columns).

The characteristics of the RUP’s Inception phase are accura- 
tely aligned with phase A (Feasibility); Elaboration phase 
corresponds to the phase B (Preliminary definition), in which 

Figure 3. ECSS-E-ST-40C and RUP life cycles match.
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the preliminary design of the subsystems is performed, and half 
of phase C (Detailed definition), in which the final designs are 
consolidated; the Construction phase runs between the second 
half of phase C, in which the flying prototypes of subsystems 
are manufactured and other mission elements are implemented, 
and the first half of phase D (Qualification and Production), 
in which the full integrated SC is obtained. Finally, there is the 
SW Transition, which corresponds to the second half of phase 
D, in which the SC is released and deployed in orbit. The RUP 
life cycle does not include phase 0 (mission analysis/needs 
identification), where the definition of the mission is carried out, 
and neither phases E (Utilization) and F (Disposal).

The second part of the match is the association between the 
RUP disciplines (workflows) and ECSS-E-ST-40C processes. 
The RUP workflows are represented in duration and inten-
sity of activities for each phase (blue curves), considering its 
iterations, and ECSS represents the processes in extent relative 
to the total development of SW life cycle (red bars). The RUP 
business modeling and requirements workflows are similar 
to the workflow proposed in ECSS-E-ST-40C: 5.2 (software 
related systems requirement process); the RUP analysis and 
design workflow is the same process described in 5.4 (software 
requirements and architecture design process); the RUP imple-
mentation workflow is analogous to 5.5 (software design and 
implementation engineering process); the RUP test work- 
flow corresponds to 5.6 (software validation process); and the 
RUP deployment workflow aligns to 5.7 (software delivery and 
acceptance process). The additional RUP disciplines or work-flows 
also coincide with ECSS-E-ST-40C processes. The configuration 
and change management flow refers to the 5.8 (software verifi-
cation process), and the project management and environment 
flow can be associated to 5.3 (software management process). 
In software, verification processes are intended to confirm if the 
application is being made based on the design that was approved. 
For this, it is necessary that effective management of the artifacts 
that were generated during the analysis design and implemen-
tation phases takes place. Thus, the configuration and change 
management discipline may be associated with 5.8 (software 
verification process), because it is responsible for managing 
the process of release of such artifacts, including documentation. 
On the other hand, the discipline proposed integration tasks 
are strongly related to the process of SW verification.

The comparative analysis of the life cycles of both models ends 
with revisions or milestones that each one suggests. Although 
the times when they are running are similar — at the end of each 

phase —, and some reviews collected similar information, ECSS 
suggests a greater number of revisions. At the end of the Inception 
phase, RUP suggests the execution of life objective vision, which 
is aligned with the ECSS System Requirement Review (SRR). At 
the end of the Elaboration phase, RUP proposes the life cycle 
architecture, with a similar purpose to the ECSS PDR. After the 
first iteration of the Construction phase, ECSS intends to conduct 
the CDR milestone that is not covered in RUP. Then, at the end of 
this phase, RUP proposes the initial operational capability, which 
is aligned with the ECSS QR. Finally, at the end of the Transition 
phase, an AR is executed by ECSS-E-ST-40C and the product 
release, by RUP. The last revision proposed by ECSS is the ORR, 
but its implementation is given for phase E of SMAD in which RUP 
and the development of SW element must be already completed.

RUP defines in general terms a number of activities for each 
phase of the SW life cycle. The activities are related to one of the 
different disciplines of the methodology, organized as follows: in 
the Inception phase, the SW scope must be formulated, the main 
constraints to technological, operational and administrative levels 
must be defined, a requirements baseline must be consolidated, 
business cases (use cases) are planned, a candidate SW architecture 
is synthesized according to the use cases, and finally the preparation 
of the application development environment is performed. In the 
Elaboration phase, RUP suggests planning the Construction phase 
iterations, refining the most critical use cases for the application, 
refining the proposed architecture, choosing the components that 
should be developed, selecting those to be reused and picking 
those which definitely should be bought; finally, the installation 
of the development platform must be performed. Then, in the 
Construction phase, the first thing that should be done is the 
technological, human and time resources management; after 
this, in an iterative way, the different components must be coded 
according to a detailed design, and unit testing must be performed 
to get the first version of the SW, where a product evaluation must 
be carried out. Finally, for the Transition phase, RUP suggests 
executing testing on the entire piece of SW; based on these results, 
a refinement of the application performance characteristics must 
be done, correcting bugs and improving usability features. A final 
version of the user’s manuals and general documentation must be 
obtained, the SW deployment process is done, the user’s training 
is conducted related to the system management, and, finally, an 
evaluation of the final product in relation to the vision, scope, 
limitations and requirements baseline is performed.

Meanwhile, ECSS-E-ST-40C defines a set of grouped activities, 
according to the different processes. For the software related 
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systems requirement process (5.2), the standard suggests an 
analysis of the requirements baseline and makes the definition of 
the verification and SW integration requirements. In the software 
management process (5.3), the SW life cycle, development phases, 
the checkpoints and the technology budget must be defined, 
and the development and coding tools must be selected. In the 
software requirements and architecture design process (5.4), 
the following should be done: to define the modeling, integration 
and verification process, analyze the requirements baseline, and, 
finally, perform the preliminary design of the SW components. 
In the software design and implementation engineering process 
(5.5), the following must be performed: to execute the detailed 
design of the components, design the internal and external 
communication SW interfaces according to the system, create 
algorithms (business flow) of each of the components, code the 
flows, build applets, integrate the different SW layers, perform 
functional testing, and, finally, develop the first version of 
the application manual. For software validation process (5.6), the 
following must be done: to define components test cases, validate 
the requirements baseline, run the components test cases, verify 
SW project documentation, verify the technology budget, and 
verify the validation regarding the requirements baseline. 

In the software delivery and acceptance process (5.7), the 
following must be accomplished: to create the application 
installation package, define the installation process, install 
the SW in the system, verify proper installation, document the 
installation process in an installation manual, support operators 
and users, define the acceptance process, perform the acceptance 
activity, and, finally, verify the results of acceptance activity. The 
last of the ECSS-E-ST-40C processes aligned within the RUP 
life cycle is the software verification process (5.8), in which the 
design of test cases, the source code, the integration of the SW 
layers, and navigation must be verified — in the case that it is 
a GS SW element — to, finally, generate the final version of 
the application user’s manual. Figure 4 shows all the activities 
proposed by ECSS-E-ST-40C (red), grouped by process, and 
the activities proposed by RUP (blue), grouped by phase.

In addition to the proposed revisions and milestones for 
each working model, both ECSS-E-ST-40C and RUP suggest 
a basic structure of artifacts that must be generated during SW 
development project. Although they differ in technical approach, 
both documentation structures have similar information artifacts 
that can be linked to create a hybrid artifacts structure in which 
the approaches of aerospace engineering and SW engineering 
are taken into account. Figure 4. Activities proposed by ECSS-E-ST-40C and RUP.
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Figure 5 shows an alignment of the various artifacts proposed 
by each working model, separated according to each of the four 
phases of RUP. Most RUP artifacts can be associated to ECSS-
E-ST-40C documentation, since the information contained is 
similar. For instance, the View artifact of RUP must contain the 
description of the needs and expectations of the SW to develop, 
much like the ECSS Software System Specification (SSS), where 
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the definition of the SW is proposed as part of the mission. In 
the same way, artifacts as RUP Software Architecture Document 
(SAD) and ECSS Design Definition File (DDF) can be associated.

In other artifacts, the information is the same in both 
models, and even their names are the same, for instance, the 
ECSS Software Requirements Specification (SRS), Software 
Development Plan (SDP) and Software Design Document 
(SDD), which corresponds to the RUP analysis, design and 
implementation models. Finally, although most documentation 
can be linked with each other, some RUP artifacts are so typical of 
conventional SW development methodology that does not have 
similar artifacts in ECSS structure, such as SW use case model.

Using the comparison results between the two models, a joint 
work structure for the development of SW parts as elements of an 
academic-type aerospace mission is defined, in which considerations 
as critical system properties and SW engineering conventional 
concepts are taken into account. The H4ASD proposes to execute 
sequentially and in an interrelated manner the activities proposed 
in ECSS-E-ST-40C and RUP, on the basis of the RUP life cycle 
and flows, to which one can associate the execution of different 
ECSS-E-ST-40C processes. It also defines a hybrid artifacts 
structure in which it is possible to consolidate all SW development 
project information. Next, the H4ASD is presented, describing the 
coupling of ECSS-E-ST-40C processes with the RUP life cycle and 
the hybrid activities flows for each phase. Finally, the structure of 
artifacts and documentation is provided.

Figure 5. Comparison between ECSS-E-ST-40C and RUP artifacts.
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The H4ASD life cycle (Fig. 6) seeks to ease the understanding 
of different aerospace SW development processes suggested by the 
ECSS-E-ST-40C and the order in which these can be run during 
the four phases of RUP. In order to see the details of the meaning 
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of all abbreviations in the triangles (Fig. 6), consult the ECSS-E-ST-
40C document. Considering the results of the comparison between 
the life cycles of both work methodologies, and not forgetting that 
both are based on a concept of iterative and incremental execution, 
the H4ASD life cycle simplifies the working model, combining the 
disciplines or workflows that are carried out with greater intensity 
during each phase of RUP with its ECSS-E-ST-40C analogues 
processes. Although a sequential life cycle is proposed, seeking 
to facilitate the understanding of the activities order, RUP as a 
methodology and framework can be supported on models such as 
waterfall or V model to structure the iterative workflows. Selecting 
a model (waterfall or V) to map the processes of an aeroespacial 
framework as ECSS would not be correct because ECSS is also 
structured as a methodology and not only as a model. The model is 
only the skeleton of methodology life cycle. Workflows and processes 
associated with H4ASD RUP phases are described next.

•	 Inception: In this phase, two ECSS-E-ST-40C processes 
must be carried out; the (5.2) process, referred to the 
business modeling and requirements RUP flows, and 
the (5.3) process, referred to the project management 
and environment RUP flows.

•	 Elaboration: At this stage, one should run the ECSS-
E-ST-40C (5.4) process; it is aligned with the RUP 
analysis and design flow.

•	 Construction: In this phase, two ECSS-E-ST-40C 
processes must be performed; the (5.5) process, referred 
to the implementation flow, and the (5.6) process, 
referred to the RUP test flow.

•	 Transition: In the last phase, the ECSS-E-ST-40C 
process to be executed is the (5.7), which is aligned 
with the RUP deployment flow.

The ECSS-E-ST-40C (5.8) and (5.3) processes are more 
related to the management, control, and organization of SW 
development project as a whole; so that the implementation of 
ECSS-E-ST-40C  should be done throughout the RUP life cycle.

H4ASD activities correspond to a link the activities proposed 
by RUP for each of the four phases, and between activities of the 
ECSS-E-ST-40C processes which are aligned with these phases, 
according to the life cycle described in Fig. 5, and the results of 
the previous comparison. The H4ASD proposed in this paper 
suggests the following integration activities for each RUP phase:

•	 In the Inception phase, the activities proposed by RUP 
and the activities suggested in the ECSS-E-ST-40C (5.3) 
and (5.2) processes are integrated. The flow begins with 
the definition of the SW management, its life cycle and the 

review points (5.3); then, it carries out RUP SW engineering 
activities, as the definition of the scope and limitations, 
the first version of the business cases (use cases) and the 
candidate architecture. The most important activity of 
this phase is the requirements definition, which must be 
supported in the activities of (5.2) process, as this not only 
suggests the definition of the design requirements as RUP 
does, but also proposes verification requirements and 
integration requirements definition. The (5.2) process is 
also very specific in defining the requirements related to 
Human Machine Interface (HMI), database (DB), real-time 
processing, security, data formats, among others. Figure 7 
shows the flow of activities for H4ASD Inception phase.

•	 For the Elaboration phase, there are the activities sug- 
gested in the ECSS-E-ST-40C (5.3), (5.4), (5.5), (5.6), and 
(5.8) processes, which are integrated with the RUP activities 
flow. The main result of the execution of this phase is the 
detailed design of the SW element, using the results of 
the first phase. The (5.4) process is the one with a major 
role in the Elaboration, since it begins with the definition of 
the modeling, integration, testing and test cases processes. 
After this first part, it starts the design, the refinement of 
use cases and the components preliminary design. The 
(5.5) process runs with the components detailed design 
using UML, and the first version of program algorithms is 
created. The final part of this stage is the preparation and 
installation of the Integrated Development Environment 
(IDE); (5.6) and (5.8) processes enable a continuous 
validation of the major design activities in the phase, such 
as the refinement of the requirements, architecture and 
components detailed design. Figure 8 shows the flow of 
activities for the H4ASD Elaboration phase.

•	 The Construction phase aims to make the implementation 
and coding of the detailed design, resulting from the 
Elaboration phase. For this phase, a combination of 
the activities suggested in the ECSS-E-ST-40C (5.5), (5.6) 
and (5.8) processes is carried out; however, the (5.5) process 
is the one with the greatest impact on the workflow. The 
first activity of this phase is suggested by RUP, related to the 
initial management of deployment resources (technology/
work hours/component/developer). After that, the iterative 
and incremental coding process formally begins: first with 
the coding — an activity suggested by both RUP and 
the (5.5) process —; then, subprograms are compiled, 
and unit tests suggested by RUP and the (5.6) process 
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are executed, SW layers (business/logic, user interfaces 
and data) are integrated to obtain the fi rst version of the 
application, general functional tests are performed on the 
program, and, fi nally, the fi rst version of the SW manual 
is consolidated. Th e (5.8) process is executed in parallel 
for each iteration of coding, verifying the source code, 
soft ware versions and the fi nal product. Figure 9 shows 
the fl ow of activities for the H4ASD construction phase.

•	 Th e Transition phase of the model aims at refi ning the
full version of the application, prior to delivery to
the customer, that is, prior to the launch of the SC
and the start of the operation phase, and it should run in 
parallel with the integration phase of the mission. In this 
last workfl ow, the activities in ECSS-E-ST-40C (5.6) and 
(5.8) processes are performed; however, the (5.7) process 
and the activities of RUP are the most relevant, because 
they run at fi rst on the activities fl ow. In the fi rst part, one 
must perform a refi nement of the SW element in diff erent 
levels, as performance, usability and also fi xing of the bugs 
found in the results of functional tests. Th en, the activities 
suggested by the (5.7) process, related to the installation, 
training for users — if it is the case of MCC SW —, and 
acceptance by the mission leaders, must be completed. Th e 
(5.8) process is important as the fi nal part of the Transition 
fl ow, as the fi nal stage of SW development project, and as 
complement for the acceptance activity, proposing to verify 

the documentation, the compliance of technological budget 
and requirements. Th e activities of the SW life cycle end 
with a comparison of the vision outlined at the beginning, 
in connection with the fi nal product, and the verifi cation 
of the acceptance process. Figure 10 shows the activities 
fl ow for H4ASD Transition phase.

Th e artifacts structure of the H4ASD shows a connection 
between the documentation suggested by RUP and ECSS-E-
ST-40C throughout the life cycle of the SW element, as seen 
in Fig. 11.  

Most artifacts have the same goal in the presentation of 
information and can be worked as a single document, such as 
SRS and the SDP, or the RUP SAD and ECSS DDF. 

Th e structure is complemented by RUP own documentation 
that is not specifi ed in ECSS, as the glossary and the business case. 
Th e use case model is a key-element in the structure of the proposed 
documentation, because, within a SW engineering process, the 
use cases are the ones that determine the scope of application 
within the system and its initial design. For an academic aerospace 
mission, the use case model should include all operations of the 
system, whether the embedded SW of a SC subsystem or a MCC 
SW element. Th e UML modeling for SW, such as analysis, design, 
and implementation models, can be included in the SDD. Finally, 
the specifi cation of executable SW element may be included as 
part of the Soft ware Release (SRel) and Soft ware Confi guration 
File (SCF) documents. Following the philosophy of H4ASD, it is 
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required that, for each pair of artifacts (Fig. 11), at least one version 
or each of the documents is built up. However, it is possible to 
choose which UML diagrams are used to model the soft ware. Th e 
only compulsory diagram is the use case diagram. In order to see 
the details of the meaning of all abbreviations in the red boxes 
(Fig. 11), consult the ECSS-E-ST-40C document.

desIgn of tHe gscm&c

Th e sequence of tasks of the GSCM&C as the main element 
of the MCC arises due to the movement that the satellite does 
on a LEO and its relative position with GS aft er it has been 
deployed, resulting in three pass phases: (a) pre-pass; (b) 

real-time; and (c) post-pass. In phase (a), the trajectory of the 
SC should be predicted, and the operator must be allowed to 
program the telecommands to be sent. In phase (b), the antennas’ 
auto tracking is activated, pre-programmed telecommands are 
sent, and their receptions are confi rmed by the SC. Th e Beacon 
and telemetry-on-demand data are received, and, fi nally, each 
of the received parameters is evaluated in relation to their 
operating ranges in order to determine the state of the SC. In 
phase (c), the GSCM&C should display on screen the results 
of the satellite assessment, generate bug reports or alerts, and 
save the operation data (telecommands, telemetry and OPL) 
in the DB. Finally, operators must perform the analysis of the 
SC operation in the pass, using simulations, statistical graphs 
and data records through the GSCM&C GUI.

figure 8. Elaboration phase activities for the H4ASD.
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sd incePtion PhAse
Th e purpose of the Libertad-2 mission is to capture images of 

the Earth’s surface by using an OPL with a multispectral sensor 
and a set of custom made lenses. Th e data that the sensor will 
deliver will be raw and compressed using the Huff man algorithm 
and wavelet transforms, so that the processing will take place on 
the ground through a MATLAB application. Th is application 
should be part of GS MCC. Th e data will be downloaded from 
the SC, by a 2.2-GHz S-Band downlink with a custom protocol, 
which must be integrated to the UHF/VHF communication. Th e 
GSCM&C should then receive the OPL RAW data and deliver them 
to MATLAB for reconstruction. To perform specifi c tasks as the 
satellite “tracking”, in which the prediction path of the nanosatellite 
on LEO and the antennas’ rotation are integrated, it was decided to 
use the Systems ToolKit (STK), a soft ware application developed 
by Analytical Graphics Incorporated (AGI) Company. Because the 
GSCM&C GUI represents the “front-end” of the entire mission, 

it was decided to perform a system design based on interaction 
with 3-D elements, through which the operator can dynamically 
select the diff erent elements and components of the nanosatellite 
to display their operating data and thus perform monitoring. From 
the defi nitions of this activity, the Stakeholders Request (IRD) and 
Vision (SSS) artifacts were generated.

A list of requirements for each mission subsystem  (attitude 
determination and control subsystem, electrical power subsystem, 
command and data handling, OPL, Communication subsystem 
S-Band and UHF/VHF) and an additional list of general 
requirements were defi ned. Th e consolidated requirements 
structure for the development of the GSCM&C is composed 
of the following groups of requirements: <<Passes data>>, 
<<Telecommand>>, <<Telemetry>>, <<OPL S-Band>>, 
<<Beacon UHF/VHF>>, <<GUI Control>> and <<GUI 
Monitoring>>. From the results of this activity, the SRS artifacts 
were generated.
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figure 9. Construction phase activities for the H4ASD.
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In Fig. 12, six primary use cases are shown, associated with 
two actors: the SW operator and the GS communications radios 
(UHF/VHF and S-Band). Th e operator can perform three main 
tasks: “Send Data”, “Mission Monitoring”, and “View Payload 
Images”. For these operations to be executed by the operator, the 
UHF/VHF radio must be able to send and receive information 
to and from the SC using the AX.25 protocol, and S-Band radio 
must be able to receive data from the SC using a custom made 
link protocol, as shown in the box “COMM”. In addition, the 
operator must confi gure the system to perform the antennas’ 
rotation. Th is is possible through the use of a commercial “Tracking 
Application” or by adding records of trajectory calculations made 

by the STK. From each one of the primary use cases, “extends” 
or “include” cases are linked, involving an additional operation 
for their execution or depending of a prior execution of other 
operations. From the result of this activity, the glossary, business 
case, and use case model artifacts were generated. 

Th e GSCM&C must be run on a server, which must be directly 
connected to the communications devices, such as transceivers 
and antenna’s rotors. Furthermore, it should implement a DB, in 
order to save all information obtained from the mission operation. 
With these elements defi ned, the Libertad-2 GSCM&C architecture 
is set as shown in Fig. 13. Th e system consists of three logical 
layers, the basic layered model for soft ware development: “User 

figure 10. Transition phase activities for the H4ASD.
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Figure 11. H4ASD artifacts tree.

layer contains all of the robust functional code — in this case, 
written in Java using the Java Development Kit (JDK8u5). The 
main components of the software are the “CORE” commissioned 
to the temporary control of the entire system, calculated with 
respect to the satellite passes over the GS, the control of the 
antennas in horizontal coordinate system, the link protocol that 
manages the data transmission and reception using the radios, 
and finally the “Java Database Connectivity” component, which 
manages the data control in the repository.

The business and user layers act on the client and the data 
layer, on the server. This forms a client-server architecture. 
Although both client and server can run on the same computer, 
it is also possible to have a separate data engine in a different 
physical server, so that it is possible to connect several client 
applications to the data structure. From the result of this 
activity, the SDP and SAD artifacts were generated.

SD Elaboration Phase
Figure 14 corresponds to the composite structure diagram for 

the Libertad-2 MCC. The system can be divided into three main 
parts: the mission team, the MCC server, and the communication 
peripheral devices. The mission team refers to the elements that 
have to interact with the GSCM&C. These elements have direct 
influence on the GS operation, as in the case of the group of flight 
dynamics analysis (GFDA), the system operators (SO), and the 
group on satellite images research (GSIR), or even an indirectly 
influence, in the case of mission directors (MD). Each one has 
its specific functions and responsibilities.

The GFDA is the actor in charge of operating the STK 
software; in the SO actor, the users interact directly with the 
GSCM&C; and the GSIR is in charge of operating MATLAB. 
The second part of the diagram shows the main components 
of the GS server, where the STK, the GSCM&C, and MATLAB 
must be executed. The third part of the diagram represents the 

Figure 12. GSCM&C general use cases.

Layer”, “Business Layer”, and “Data Layer”. Each layer operates 
individually, but interacts with specific components of the others.

The user layer of the architecture presents data on the screen 
through a GUI, composed by Extensible Markup Language 
(XML) and XML-based (FXML) files built with a specific IDE 
for GUI design, 3-D Java libraries and OpenGL. The business 
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physical devices that compose the GS, which also becomes 
in the operational context of the GSCM&C. Th e GSCM&C 
should interact with the S-Band, UHF/VHF rotors, the UHF/
VHF transceiver, and S-Band receiver.

To establish communications between the server and the 
communication devices, “RS232C”-type serial communications 
are needed in most cases; the interfaces can be USB or Ethernet, 
as in the case of some S-Band radios. From the result of this 
activity, a more complete version of the case model and the fi rst 
version of the SDD were generated as part of the analysis model.

In order for station operators to analyze, monitor and process 
the information downloaded from the satellite, it is required 
a DB that allows the storage and retrieval of information in a 
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figure 13. GSCM&C architecture with respect to MCC.

practical and effi  cient way. Th e data of the satellite mission refl ect 
the results of the satellite in operation, so its value is immense.

Th e CORE module of the GSCM&C centralizes its operation 
based on the passes predictions that are loaded from the STK, 
since all soft ware operations during the mission life cycle, 
especially those having to do with communication, depend on the 
start, extent, and end data of each pass. Th e Entity Relationship 
Model (ERM) for the Libertad-2 mission GSCM&C consists 
of fi ve functional business chains associated to a principal one 
called “Passes”. Figure 15 shows one of the fi ve functional chains 
of the ERM: the S-Band reception business chain (1), in which 
both the frames received by the receiver radio and the RAW 
image data, associated with a given number of frames, are stored.

Th e other chains of functional dependencies in the model 
are related to: (2) the overall system data and the SC general 
status; (3) the antennas’ rotation; (4) the telemetry on demand 
and Beacon data as well as the evaluation of state in each 
telemetry parameter; (5) the last programmed telecommands 
and a relationship between sent telecommands and received 
data. From the result of this activity, the version of SDD was 
improved as part of the design model.

figure 14. Composed structure of the GSCM&C as part of 
the MCC.
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Figure 16 shows the GSCM&C main screen layout, in which 
the positioning of the various controls, panels, and data labels 

Figure 15. Some entities of the GSCM&C data model.

Figure 16. GUI design for the GSCM&C main window.

was defined, so that the different operations and use cases were 
included. From this window, the access to the telecommands 
programming, the STK data management, and the monitoring 
of each of the SC subsystems with a 3-D model interaction were 
contemplated. The implementation of a dynamic GUI, with 
visually pleasing elements of user interaction, such as the use of 
3-D objects, ensures the usability of the application to perform 
the tasks of satellite mission monitoring and ground control.

The design of the GUI also provides: the possibility to observe 
the trajectory prediction data; control of the operating parameters 
of the GS radios; a window to program the telecommands to 
send and consult the telemetry data records; observation of 
the monitoring charts and the tracing of special operations. 
The version of SDD is improved with the results of this activity.

As show in Fig. 17, the MCC operations flow begins with the 
execution of satellite trajectory simulations in the STK (1). The 
data provided by the STK must be saved in text files in a specific 
location on the server file system, in order to be uploaded to the 
GSCM&C then (2). The first file delivery the records of each one 
of the satellite passes over the GS, specifying the “Start time”, “Stop 
time”, and the duration of the last pass in seconds. After the STK 
files are generated, the Operation System (OS) opens the GSCM&C 
and loads the passes prediction and rotation (AZ/EL) data (3) (4). 
The “DataManager” entity manages the loaded data using the DB 
and provides the prediction data to the “TimeControl” entity (5).

This entity is responsible for controlling the execution time of 
each operation during the mission life cycle through the MCC. The 
OS can program the telecommands to send through the GUI (6), 
and the “DataManager” feature saves them in the DB (7). At the 
right time, the “TimeControl” and “AntennaControl” entities are 
activated, so that these entities begin to track the SC in real time (8). 

Figure 17. GSCM&C MCC operations sequence.
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Immediately afterwards, the entity actives the “COMM” module and 
delivers the Uplink data, so this module begins the transmission (9). 
In parallel, the “COMM” receives the telemetry, Beacon and OPL 
data and delivers them to the “DataManager” entity (10), which 
organizes the RAW data frames for each individual image (11) 
and then generates the corresponding files in a specified location 
of the server file system (12). With this operation, the GSCM&C 
completes the tasks of the SC real-time phase.

With the RAW files on the server, the GUI runs the MATLAB 
program and rebuilds the image of the selected file (13). MATLAB 
generates a file in image format and saves it into a new directory 
location. Thus, the data captured by the nanosatellite OPL can 
be displayed on the screen of the GSCM&C. Figure 17 shows 
the flow of the GSCM&C main tasks regarding the MCC, 
through which it is possible to display the OPL reconstructed 
images based on the received RAW data. From this activity, 
the version of SDD was improved as part of the design model.

SD Construction Phase
The construction phase is directly related to the implementa-

tion or coding of the SW element. In the case of the GSCM&C, 
a complete version of the application must be obtained, in 
which all the operations defined in the requirements, related 
to the SC monitoring and control, are included.

For the Libertad-2 GSCM&C implementation, several 
development applications were used. NetBeans 8.0.1 was used 
as IDE, MySQL Workbench 6.1 CE was used as Computer 
Aided Software Engineering (CASE) tool, in order to build 
the DB Structured Query Language (SQL) script, and the Java 
Development Kit (JDK) Standard Edition (SE) 8u51 was used 
as primary language. The whole environment was installed on a 
Windows operating system. This activity results in a deployment 
diagram corresponding to the GSCM&C implementation model. 

The implementation of the Liberatd-2 GSCM&C results 
in a JavaFX application with the following navigation features: 
the operator can access only with a username and password 
provided by the (MySQL) DB administrator; when the operator 
enters into the application, a main window is presented (Fig. 18). 

In the left side, the Libertad-2 3-D (Java3D) model is displayed, 
with which the operator can interact using the computer’s mouse 
or touchscreen in order to visualize general information such as the 
structure faces temperature, the state of OPL lens, the power from 
the solar panels, and the output power of the Microstrip antenna. 
On the right side, operating statistics, such as the number of sent 
telecommands, the number of received Beacons, the duration of 

the last and next pass, the number of received S-Band frames, 
and other data, is displayed. By using the 3-D model, it is possible 
to select the different hardware components in order to observe 
the microcontrollers, memories, and sensors operation data in 
detail, using the telemetry data that have been received by UHF 
and have been stored in the DB. The subsystems shown in the 
3-D model are: the OBC, the ADCS, EPS, OPL, magnetometer, 
UHF/VHF radio, and the S-Band radio.

If the operator wants to view the data in a more dynamic way, 
in order to make comparative analysis between the operation 
of two or more components, with a double-click selection on 
one of the (PCB) cards in the 3-D model, the application shows 
the subsystem  monitoring  panel, in which the operator is able 
to visualize N customizable charts and the records list of N 
components simultaneously, as shown in Fig. 19.

At the top of the application, there is a series of tabs controls 
whereby the operator can access the different operations, as the 
management of STK passes data, the scheduling of telecommands 
according to six operation modes, the visualization of behavior 
data in the UHF/VHF radios kit, the visualization of behavior 
data in the S-Band radios kit, and, finally, the records of historical 

Figure 18. Libertad-2 3-D view on the GSCM&C main window.

Figure 19. Charts view on the GSCM&C monitoring window.
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image captures made by the OPL. As a result of this phase, the 
program executable files, the versions of the SRel, SCF, and 
Software User Manual (SUM) documents were obtained.

RESULTS AND CONCLUSION

In order to assess the functionality of H4ASD as a metho- 
dological tool for developing SW elements for academic satellite 
missions, some points are discussed ahead, which reflects 
the scope and limitations on the applicability of the model.

The use of RUP within the approach was aimed in order that 
traditional engineers, especially computer science engineers, 
could have clear concepts of software engineering that allowed 
them to easily assimilate and understand the proposed model, 
when using it for the development of a SW element in an 
academic-type aerospace mission. Being RUP the best known 
software development model, above the agile methodologies, it 
is easier for traditional engineers to understand the operation of 
at least a part of the ECSS standard. In addition, RUP suggests 
the use of UML, the most used modeling language, which also 
represents an advantage for the traditional engineer.

The structuring of the RUP elements is very similar to the 
ECSS-E-ST-40C; however, each one has different approaches 
(aerospace/commercial) that are complementary. This results in 
a work model in which the conventional software engineering 
concepts are applied using UML, and also the operating 
constraints of space context are incorporated, which allows 
the model to be used to guide the development process of both 
 the SC embedded SW and MCC SW pieces. 

The H4ASD integrates elements of both models and should 
not be seen as something that increases the difficulty, because 
the aim was to help it by taking a sequential life line to organize 
the activities, i.e. without losing the focus of the iterative and 
incremental method, an essential feature in order to refine 
and improve the analysis, design, and implementation models. 
The flow of activities for each phase of H4ASD is sequential, 
considering that the team for the development of academic 
satellite missions consists of a small group of students and 
traditional engineers, where there is not a complex team 
hierarchy as the commercial aerospace missions; for this reason, 
a roles model was not contemplated in the H4ASD approach.

The description of the GSCM&C development process for 
the Libertad-2 satellite mission as a study case of the H4ASD 
was mostly focused on the analysis and design phases, as they 

correspond to the most critical phases in the development 
process. If a design is correct and includes all system operations 
as an assembly, the implementation will be successful too. The 
use of 3-D objects in the GSCM&C Look&Field was performed 
in order that MCC operators could dynamically display and 
visualize information about Libertad-2 in-orbit operation. This 
was made following the proposals of design concepts as User 
Experience (UX) and Getting Real (GR).

The best way to validate the contribution made by the H4ASD 
is describing the results it has generated in the development 
of various software elements of the Libertad-2 satellite system, 
including the GSCM&C, which was described as a case study.

The H4ASD has allowed students of industrial, electronics, 
systems, and telecommunications engineering at the University 
Sergio Arboleda to be able to work together with local project 
engineers in the development of various software elements of 
the mission, specifically the following:, in the OPL — Huffman 
algorithm, wavelet transform compression, and OPL embedded 
control module; in the OBC — the on-board communication 
module and the C&DH; finally, the image reconstruction 
software for the MCC.

The model was presented to the developing team of the 
Libertad-2, was successfully received by two experts in aerospace 
engineering (mission director and engineering dean), and was 
clearly understood by research professors. It was also presented 
in the following undergraduate courses: software engineering, 
real-time operating systems, and embedded software for satellite 
applications, with a total of 18 students, of which 12 are currently 
working with specific development tasks. 

The development process of SW parts from an academic 
aerospace system runs between A and D ECSS phases, i.e. 
Feasibility and Qualification and Production, regardless of the 
SW development model that is decided to use. In this sense, the 
SW part must be developed in parallel with the other mission 
subsystems, with iterative and incremental tasks.

The H4ASD approach allows traditional software engineers 
to easily understand how ECSS-E-ST-40C work model is 
structured for the development of SW in aerospace missions, 
as well as all processes, activities, and tasks suggested, using 
RUP as a comparator.

Leaving aside the level of effort that RUP describes for 
workflows, the periods of execution of each discipline during the 
life cycle are aligned similarly to the ECSS-E-ST-40C processes. 
This is what allows the coupling of both models into a single 
structure. The match between the ECSS-E-ST-40C processes 
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and RUP workflows, the complementary activities diagrams, and 
the artifacts tree breakdowns the ECSS-E-ST-40C structure 
and reduces its complexity, so that traditional software engineers 
can apply it as a complement of the suggested work in model in 
a conventional and known SW development methodology, 
in this case, RUP. Although the engineer try to be strict when using 
the ECSS-E-ST-40C, the most critical tasks for the development 
of the SW part, such as analysis and design, depend on the 
use of UML and RUP model. Therefore, artifacts, such as business 
cases, are complementary to ECSS-E-ST-40C and a vital part 
of the process.

Future work

The aim of the research was to propose a working structure 
that would allow traditional SW engineers to guide the 
development of any SW part in the aerospace system, which is why 
the ECSS-E-ST-40C standard was selected. For the mission MCC 

SW, the ECSS-E-ST-70C standard can be contemplated, which 
contains specific processes descriptions for the development 
of ground stations. The study should be aimed at breaking 
down the rest of the work models of the ECSS “E” branch 
(Engineering Policy and Principles), as ECSS-E-ST-20C 
(Electrical and Electronics) or ECSS-E-ST-50C (Communi-
cations), using conventional models for the development of 
electronic or telecommunications systems.
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