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ABSTRACT: This paper presents a comprehensive study 
on the performance analysis of 8 conceptual guidance laws 
for exoatmospheric interception of ballistic missiles. The 
problem is to find the effective thrust direction of interceptor 
for interception of short-to-super range ballistic missiles. The 
zero-effort miss and the generalized required velocity concept 
are utilized for interception of moving targets. By comparison 
of the 8 conceptual guidance laws, the thrust direction is 
suggested to be in the direction of generalized velocity-to-be-
gained, or constant velocity-to-be-gained direction, rather than 
to be in the direction along zero-effort miss, or that of linear 
optimal solution for long-to-super range interception. Even for 
short coasting ranges, the generalized velocity-to-be-gained 
may be utilized because of reasonable computational burden 
for required velocity rather than the numerical computation 
for zero-effort miss or linear optimal solution with the same 
miss distance error. In addition, the fuel consumption of the 
suggested direction has less sensitivity due to estimation 
error in intercept time. The guidance law based on constant 
velocity-to-be-gained direction and the optimal solution are 
suitable for satellites launch vehicles and space missions.

KEYWORDS: Exoatmospheric midcourse guidance, Effective 
thrust direction, Zero-effort miss, Velocity-to-be-gained, 
Long-range interceptor, Anti-ballistic guidance.
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INTRODUCTION

Exoatmospheric intercept guidance improvements are of 
high interest in anti-ballistic air defense systems. The main 
subjects in this area are focused on midcourse and terminal 
phases of flight for anti-ballistic interceptors. The design 
considerations for the midcourse guidance are different from 
the terminal phase one. In the midcourse phase, the on-board 
trajectory optimization and trajectory shaping are the main 
issues, whereas the noise contamination and hit probability 
against very-high speed targets are the key issues for a terminal 
guidance law (Zarchan 2012).

The literature on exoatmospheric intercept guidance 
laws can be categorized into intercept guidance laws against 
moving targets and guidance laws for space missions including 
ballistic missiles. Since the concepts and guidance algorithms 
of ballistic missiles are similar to space vehicle guidance laws, 
we put them in the same category. The early literature on the 
subject of optimal 2-point guidance for interception of moving 
targets is based on zero-effort miss (ZEM) in flat-Earth model 
(Bryson and Ho 1975). In this case, the acceleration command 
in the optimal energy problems is obtained proportional to 
ZEM vector. Precisely speaking, the commanded acceleration 
of optimal energy guidance laws with final constraints in linear 
systems is obtained in the form of the predicted error vector 
pre-multiplied by a gain matrix. In the case that the final 
position vector is only constrained, the solution simplifies to 
ZEM vector pre-multiplied by a time-varying gain matrix (Rusnak 
and Meir 1991). In a special case, if the airframe and control 
systems are assumed to be identical for 3 axes, the matrix gain 
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simplifi es to a scalar, i.e. the commanded acceleration becomes 
proportional to ZEM (Rusnak and Meir 1991). Two classes of 
explicit guidance laws based on ZEM have been developed 
with diff erent assumptions for interceptor dynamics and types 
of target maneuvers (Jalali-Naini 2004).

In spherical-Earth model, in spite of the assumption 
of a perfect control system, the optimal maneuver is not 
obtained in the direction of ZEM because of the non-linear 
nature of the gravitational acceleration. Most literature on 
exoatmospheric intercept problems utilized the ZEM vector 
as an eff ective direction for thrust vectoring of the interceptor 
(Massoumnia 1995; Feng et al. 2009; Li et al. 2013). Th e ZEM 
can be approximated in an inverse-square gravity fi eld (Li et al. 
2013; Mohammad-abadi and Jalali-Naini 2016) or numerically 
computed on-board with a reasonable integration time step as 
in predictive guidance scheme (Zarchan 2012). As mentioned 
before, even ZEM is computed exactly in the spherical-Earth 
model; the acceleration command along the ZEM is not, 
mathematically, an optimal solution.

On the other hand, guidance laws for space missions are 
based on the concept of required velocity and velocity-to-be-
gained (Battin 1999; Martin 1965, 1966). At a fi rst glance, the 
concepts of the 2 guidance categories seem to be diff erent.
Th e concepts of required velocity and velocity-to-be-gained 
can also be utilized or generalized for interception of moving 
targets (Jalali-Naini and Pourtakdoust 2005; Chen et al. 2010). 
Th e velocity-to-be-gained vector becomes proportional to ZEM 
when the gravitational acceleration is assumed to be constant. 
In a linearized inverse square gravity fi eld, the velocity-to-be-
gained vector is obtained in the form of ZEM pre-multiplied 
by a time-varying gain matrix (Jalali-Naini and Pourtakdoust 
2007). Both ZEM and required velocity can be calculated for a 
linearized gravity fi eld. Several solutions have been presented 
using a linearized gravity with diff erent assumptions as treated 
by Newman (1996) and Deihoul and Massoumnia (2003) for 
interception of ballistic missiles. Th e ZEM was also obtained 
for a linear gravity considering control system dynamics and 
target maneuvers (Jalali-Naini 2008). 

Several anti-ballistic guidance schemes were presented based 
on ZEM, as mentioned earlier. In these guidance schemes, the 
corrective maneuver is applied in the direction proportional 
to ZEM, but the guidance gain is modified, manipulated,
and/or theoretically or empirically designed. For space missions, 
Battin (1999) introduced a guidance scheme in order to keep 
the direction of velocity-to-be-gained constant, and Sokkappa 

(1966) obtained an approximate optimal guidance assuming 
Q-matrix to be constant. Circi (2004) compared Battin’s formula 
with the numerical optimal solution for a satellite launch vehicle. 
For short-range anti-ballistic interception, guidance laws 
based on ZEM perform well whereas for long-to-super range 
interception, the maneuvering direction needs to be modifi ed 
to the direction of velocity-to-be-gained or possibly an optimal 
one. Th e question is: what direction should be utilized for what 
ranges. Th e present study focuses on quantifying the answer 
to this question, based on accuracy and some implementation 
issues. Fortunately, several effi  cient algorithms are available 
for on-board computation of required velocity and Q-matrix 
(Zarchan 2012; Arora et al. 2015; Ahn et al. 2015).

Th ere is another type of guidance laws for space missions or 
interception in exoatmosphere, referred to as General Energy 
Management (GEM) for solid rocket motors without cut-off  
capability (Zarchan 2012). In this class of guidance schemes, 
the maneuvering direction is somewhat deviated from a desired 
direction, ZEM or velocity-to-be-gained, in order to manage 
the wasting of extra fuel of the rocket so as the space vehicle 
reaches the required velocity at burnout. Since our study focuses 
on optimal energy guidance, GEM-type guidance schemes are 
beyond its scope.

In this article, the performance of the midcourse phase 
of exoatmospheric interceptors is compared for 8 conceptual 
guidance schemes. It is assumed that this midcourse phase is 
followed by a coasting phase. In other words, the interceptor 
is due to reach near the target position, coasting ballistically, 
where a small kinetic kill vehicle (KKV) is due to separate in 
order to intercept its target with minimum eff ort.

BASIC FORMULATION

The governing equations of motion for a particle P
(interceptor or target) with a given acceleration vector, ap(t), 
are given by:

where: rp, vp, and ap denote position, velocity, and acceleration 
vectors at current time t in an inertial reference, respectively; 
the subscript p also represents the particle P. 

(1a)

(1b)
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Th e fi nal position (at fi nal time tf) is obtained by integrating 
twice with respect to the time as follows:

(2)

(3)

(4)

(5)

(6a)

(6b)

(7a)

(7b)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

where: τ and ξ are dummy indices for time. By converting the 
preceding double integral to the single one, we have:

 

where: tgo = tf – t is the time-to-go until the fi nal time.
In an exoatmospheric free-fl ight motion, we have ap = Gp, 

where Gp is the gravitational acceleration, i.e. Gp = –μrp/|rp|3 
for a spherical-Earth model, and μ is the Earth’s gravitational 
constant. Th erefore, Eq. 3 may be written in the following form:

Th e preceding equation simplifi es for a special case of constant 
gravity, that is, 

Th e 3-D intercept geometry with respect to an inertial 
reference (Oxyz) is shown in Fig. 1, in which the interceptor 
I, having velocity vI, is pursuing its target T, with velocity vT. 
Th e interceptor and target position vectors are denoted by rI 
and rT, respectively. Th e relative position r and velocity v for 
the interception problem are defi ned as:

Th e relative equations of motion are then given by:

where: aT and al are the respective target and interceptor  
accelerations in inertial reference. Using Eqs. 3 and 6a, the 
fi nal relative position is written as:

Figure 1. Engagement geometry.
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Th erefore, the relative formulation for miss distance is expressed 
as follows:

In an exoatmospheric free-fl ight motion, we have aT = GT and 
aI = GI, and the substitution yields: 

Th e solution of the preceding equation is not straightforward. 
One approach to the problem is the linearization of its
non-linear term, i.e. gravitational acceleration, that is,

where:

Th erefore, the linearized state-space form for an exoatmospheric 
interceptor having thrust acceleration, ath (aI = GI + ath), is 
obtained as (Newman 1996):

where: I is a 3 × 3 identity matrix, and
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Several assumptions can be made for the parameter R such 
as R = rI (Newman 1996) and R = rT, R = (rI + rT)/2, R = rT (tf) or
R = rI + rT + rT (tf))/3 as treated by Deihoul (2003). Th e author 
claimed that the last relation for R gives better results, so it is 
used in our comparison study. 

The solution of the homogenous differential equation
(r 
..

 + Er = 0) is obtained in terms of the state-transition matrix, 
Ф(t,t0), as treated by Newman (1996) when E is assumed to be 
a constant matrix, that is,

Th e substitution of Eq. 22 into Eq. 21 yields: 

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

where: Фij is a 3 × 3 submatrix (i, j = 1, 2) in the following 
partitioned matrix form:

and

Th erefore, the linearized relation of the miss distance vector 
in terms of the current states is given by:

ZERO-EFFORT MISS
Th e ZEM at the current time, ZEM(t), is the distance that 

the interceptor would miss its target position if the interceptor 
made no corrective maneuver (ath) aft er the time t (Zarchan 
2012), that is, 

where: rI
*(tf) is the desired fi nal position of the interceptor.

For an exoatmospheric interceptor (aI = GI + ath), we have: 

(23)

(24)

(25)

(26)

(27)

For a free-falling target, i.e. aT = GT, using Eq. 10, the ZEM 
relation can also be expressed in relative coordinates as follows:

where: rI
*(tf) = rT(tf). 

Th e preceding relation simplifi es for a special case of constant 
gravity or for the case that the interceptor is assumed to be near 
its target as treated by Massoumnia (1995), that is, 

Using Eq. 20, the linearized ZEM relation is given by:

Two different definitions of ZEM are utilized in the 
guidance theory. In basic defi nition, the ZEM is defi ned as 
a miss distance vector without further control eff ort. Th e 
intercept time is not imposed to the intercept problem and 
it is the time of the nearest distance between an interceptor 
and its target without further control effort. The second 
defi nition is based on a specifi ed fi nal time and comes from 
linear optimal guidance laws with the assumption of a fi xed 
fi nal time. Th e ZEM vector for the basic defi nition is, here, 
denoted by ZEMmin whereas it is denoted by ZEM for the 
second definition. The final time, the time of the nearest 
distance denoted by t*

fZEM
 , for the basic defi nition is obtained 

by ∂ | ZEM | / ∂tf = 0. For example, in a special case of constant 
gravity, from Eq. 25, we have: 

where: t*
goZEM = t* 

fZEM
 – t. 

It is worth noting that the component of ZEM perpendicular 
to the interceptor-target line-of-sight (LOS), ZEMPLOS, may 
be replaced for ZEM in a guidance formulation as treated by 
Zarchan (2012).
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GENERALIZED REQUIRED VELOCITY
Th e required velocity, vR, for Lambert’s problem is defi ned 

as an instantaneous velocity, required to satisfy the final 
position constraint in a specifi ed fi nal time (Battin 1999). Th is 
concept is well-known in space missions and surface-to-surface 
applications. Th e implementation of guidance laws based on 
the required velocity may be implicit or explicit.

Th e required velocity concept may be generalized for an 
intercept problem against a moving target in the endoatmosphere 
considering interceptor dynamics. Th e interceptor desired 
velocity v* is the velocity that makes ZEM equal to zero. Th is 
desired velocity is referred to as generalized required velocity 
(Jalali-Naini and Pourtakdoust 2005). Th e interceptor dynamics 
is, here, assumed to be perfect, the interceptor moves in the 
exoatmosphere, and a moving target is considered. For brevity, 
we use the term “required velocity” instead of “generalized 
required velocity”.

For example, the required velocity for the case of constant 
gravity is obtained from Eq. 23 as:

a conceptual guidance law (GL). After calculation of the 
eff ective thrust direction, a steering law is needed to convert 
the errors into commended body rates. The interceptor is 
assumed to be non-throttleable with thrust cutoff  capability. Th e
conceptual guidance laws are, here, categorized in 5 main classes, 
namely, guidance laws based on ZEM, guidance laws based on 
linearized ZEM, guidance laws based on generalized velocity-
to-be-gained, guidance laws based on constant direction for 
velocity-to-be-gained, and optimal solution. 

GUIDANCE LAWS BASED ON ZERO-EFFORT MISS
In this case, the thrust acceleration is assumed to be applied 

perfectly in the direction of ZEM. Th ree guidance schemes may 
be considered regarding to 2 defi nitions of ZEM and also the 
component of ZEM perpendicular to LOS as follows:

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

Th erefore, the relation between the required velocity and ZEM 
for the case of constant gravity is simply obtained as: 

where: vg is referred to as the velocity-to-be-gained
(vg = vR − vI).

For a spherical-Earth model, the required velocity causes 
Eq. 23 equal to zero, that is,

Th e preceding relation may be solved approximately for the 
guidance problem, which is beyond the scope of the present study.

CONCEPTUAL GUIDANCE LAWS

It is necessary to determine the eff ective direction of inter-
ceptor thrust vector for short-to-super range exoatmospheric 
intercept problem. The thrust direction is determined by 

where: eZEM, eZEMmin
 and eZEMPLOS

 are the unit vectors along 
ZEM, ZEMmin, and ZEMPLOS, respectively; ε is an allowable 
miss distance, determined from practical considerations. 

In each guidance law, the powered phase of fl ight is terminated 
when its corresponding | ZEM | becomes equal or less than ε 
and then it is followed by a coasting phase until intercept. Th e 
component of ZEM normal to LOS is calculated by:

where: er = r/r is the unit vector along LOS (r = | r |).
To calculate the time-to-go until intercept in ZEMPLOS 

relation, the component of ZEM along LOS is imposed to be zero. 
For a special case of a free-falling target in a fl at-Earth model, 
the relation tgo = –r/r . zeros out the LOS component of ZEM.

GUIDANCE LAWS BASED ON LINEARIZED
ZERO-EFFORT MISS

Here, conceptual guidance laws are given using linearized 
relations for the problem. Th e fi rst is similar to Eq. 31, but with 
linearized relation for ZEM, that is,
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where: eZEMLin
is the unit vector along ZEMLin. 

Th e second conceptual guidance is based on the linear optimal 
guidance law (OGL) obtained by Deihoul and Massoumnia 
(2003). Th eir linearized OGL may be expressed in the following 
form: 

GUIDANCE BASED ON CONSTANT DIRECTION 
OF VELOCITY-TO-BE-GAINED 

An effective direction of thrust acceleration in space 
missions is obtained by satisfying the relation v 

.
g × v 

 
g = 0 as 

follows (Battin 1999):

(36)

(37)

(38)

(39)

(40)

where: ULin is the optimal thrust vector for a throttleable rocket 
motor; M is a 3 × 3 matrix that causes the thrust vector to 
deviate from ZEMLin direction and change its magnitude as 
well; tbgo is the time-to-go until burnout. 

The relation of matrix M is available in Deihoul and 
Massoumnia (2003). The thrust direction in the second 
conceptual guidance is applied in the direction of ULin for 
non-throttleable rocket motors as follows:

To compare the performances of the guidance schemes 
precisely, a third relation based on the exact calculation of ZEM 
in a spherical-Earth model is written as follows:

where: eU is the unit vector along U calculated by:

where ZEM is computed numerically.

GUIDANCE LAW BASED ON VELOCITY-TO-BE-GAINED
In space missions a class of guidance laws is based on required 

velocity with the desired thrust acceleration along the velocity-
to-be-gained. Th e required velocity concept and velocity-to-be-
gained can be generalized for interception of a moving target, as 
mentioned before. Th e conceptual guidance law is then given by:

where: evg
 is the unit vector along the velocity-to-be-gained; εv 

is an allowable velocity-to-be-gained error. 
It is worth noting that the preceding conceptual guidance 

law is equivalent to Eq. 31 for constant gravity assumption as 
is evident from Eq. 29.

(41)

(42)

(43)

where:

Th is conceptual guidance law causes the direction of velocity-
to-be-gained to be fi xed in inertial space.

RESULTS AND DISCUSSION

To compare the performance of conceptual guidance laws, 
a nonlinear fl ight simulation is utilized. Th e interceptor and 
its target are taken as particles in vertical planar motion with 
perfect dynamics, i.e. the thrust acceleration is assumed to be 
exactly in the desired direction of computed thrust direction, 
without any error or delay. 

First, guidance laws (Eqs. 31 – 33) with diff erent ZEM 
defi nitions, i.e. ZEM, ZEMmin, and also the normal component of 
ZEM, ZEMPLOS, are compared in a fl at-Earth model with constant 
gravity. Th e interceptor is located at origin (0,0) with ath = 50 m/s2

(ath = | ath |). The fuel consumption, ∆V = | ath | tco, of the 
mentioned conceptual guidance laws are shown in Figs. 2 – 4, 
where tco is the thrust cut-off  time, applied when |ZEM| ≤ ε. 
In these fi gures, the solid lines indicate the fuel consumption 
when the thrust vector is applied along ZEM direction. Th e 
circle and square signs indicate the values of fuel consumption 
when the thrust direction is applied along ZEMmin and ZEMPLOS, 
respectively, for their corresponding resulted fi nal times. In Fig. 2, 
the fuel consumption is depicted versus predetermined fi nal time 
for 2 cases of an initial 0 velocity, vI (0) = 0, and a vertical velocity 
of

 
vIz

 (0) = 1 km/s for a stationary target at rT = [500   0]Tkm.
As seen in Fig. 2, the fuel consumption depends on the value 
of the fi nal time when the thrust vector is applied along ZEM. 
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Also, the minimum fuel consumption is not occurred necessarily 
when ZEMmin is utilized; however, it may occur for a special 
case. It should be noted that an appropriate fi nal time (or time-
to-go until intercept) is estimated in practice.

In order to investigate more precisely, the fuel consumption 
is drawn versus range in Fig. 3 for the 3 mentioned guidance 
schemes when the interceptor launches from rest. Other initial 
values and parameters are similar to Fig. 2. As shown in Figs. 2 
and 3, the fuel consumption is highly increased using guidance 
law (Eq. 33) based on ZEMPLOS. In Fig. 3, the minimum fuel 
consumption for the case of thrust direction along ZEM is 
computed by setting the optimum value, tf

*, for intercept time. 
In other words, tf

* is the intercept time for minimum ΔV when 
the thrust acceleration is imposed along ZEM. Th e value of ε 
is, here, chosen as 1 m due to numerical errors.

In the next step, the performances of the conceptual guidance 
laws are compared in Figs. 4a and 4b for a free-falling target 
at an initial altitude of 100 km, having a minimum required 
velocity to hit the origin in a fl at-Earth model. Initial values and 
parameters are similar to Fig. 2, except target position. Th e target 
range is taken 100 and 500 km for Figs. 4a and 4b, respectively. 
A vertical solid line has been drawn for each of Figs. 4a and 4b, 
showing the maximum possible fi nal time (tfmax

), i.e. the time of 
hitting origin (0,0) by the free-falling target. Th e region at the 
right-hand side of this vertical line is not acceptable, because 
the interception of a free-falling target occurs behind the origin 
in negative altitudes. Th is is an important diff erence between 
the two cases of stationary and free-falling targets.

According to our analysis for a fl at-Earth model, the capture 
criteria for the conceptual guidance law based on ZEMPLOS are 
highly restricted comparing to the conceptual guidance law 
based on ZEM, at least, for non-throttleable rockets.

We are now to study the performance of conceptual guidance 
laws (Eqs. 31, 32, and 40) for a spherical-Earth model in
Figs. 5 – 14 against stationary targets. Th e interceptor fi res 

Figure 4. Fuel consumption versus fi nal time for interception of a free-falling target in fl at-Earth model. (a) initial range = 100 km; 
(b) initial range = 500 km.

Figure 2. Fuel consumption versus fi nal time for interception 
of a stationary target in fl at-Earth model.
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from position rI0
 = [6400   0]T km with a velocity of 1 km/s 

along near vertical horizon (89°) and ath = 50 m/s2. The initial 
distance of target from the earth center is taken rT = 6,500 km.

First, the fuel consumptions of these guidance laws are 
plotted in Figs. 5a; 5b and 5c for a target at range angles of 
10; 40 and 70°, respectively. As seen in the figures, if the 
thrust direction is applied along the direction of vg, the fuel 
consumption is considerably reduced for long-range applications. 
To investigate the trajectory of the interceptor based on ZEM 
direction, four scenarios with different final times are selected. 
These points, namely, S1; S2; S3 and S4 are assigned in Fig. 5a 
for different specified final times when the range angle is 10°. 

The typical interceptor trajectories of the mentioned scenarios 
are illustrated in Figs. 6a, 6b, 6c, and 6d for the points S1, S2, S3, 
and S4, respectively, and compared to interceptor trajectories 
based on vg direction with the same final times. The interceptor 
trajectories based on ZEM and vg are viewed by solid and dashed 
lines, respectively. The thrust cut-off time, tco, is also observed 
for each trajectory in the figures. In the case of ZEM-based 
trajectory, increasing total flight time causes an extra revolution 
of trajectory around the earth center, as shown in Fig. 6d. The 
maximum limit of total flight time to avoid this phenomena 
is assigned with S4 in Fig. 5a and with S4’ in Figs. 5b and 
5c with different range angles. The typical interceptor trajectories 
with final times larger than that of S4’ in Figs. 5b and 5c, are 
similar to Fig. 6d for ZEM-based trajectories. Moreover, Fig. 7 
shows that the fuel consumption of vg-based guidance law is 
less sensitive to the estimation of total flight time. In this figure, 
the total flight time is considered about the total flight time for 
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Figure 5. Fuel consumption versus final time for interception 
of a stationary target in spherical-Earth model. (a) range 
angle = 10°; (b) range angle = 40°; (c) range angle = 70°. Figure 7. Increase in ∆V for guidance laws based on vg and ZEM.

Figure 6. Typical interceptor trajectories for initial range 
angle = 10° and different values of total flight times (solid line: 
thrust vector along ZEM direction; dashed line: thrust vector 
along vg direction). 
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minimum ΔV for each guidance scheme, and it is denoted by 
tfmin

, which is obtained for each range. 
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Figure 12. Decrease in ∆V for vg- based guidance with respect to 
ZEM-based guidance for minimum and non-minimum energy orbit.
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Figure 11. Mean of the absolute value of the angle between 
vg and ZEM versus range angle for thrust vector along ZEM 
direction with different total final times. 

Figure 10. Max and mean of the absolute value of the angle 
between vg and ZEM versus range angle for thrust vector 
along ZEM direction (minimum energy orbit).

Figure 9. History of the angle between vg and ZEM for thrust vector 
along ZEM direction (minimum energy orbit with a range angle of 10°).

The total rotation of the thrust direction of conceptual 
guidance laws (Eqs. 31, 32, and 40) can be seen in Figs. 8a, 
8b and 8c for different values of thrust acceleration of 50 and 
100 m/s2 when the range angle is 70°. The final times are chosen 



J. Aerosp. Technol. Manag., São José dos Campos, Vol.9, No 1, pp.101-115, Jan.-Mar., 2017

110
Mohammad-abadi MD, Jalali-Naini SH

for minimum energy orbit. Other parameters and initial values 
are similar to Fig. 5. In these figures, θth is the angle of the thrust 
acceleration with respect to the equatorial plane. As can be seen 
in these figures, the guidance law based on ZEM has a larger 
total rotation of the thrust vector than those of the two guidance 
laws based on vg . Also, it is observed that the rate of change 
of θth is nearly constant for the two guidance laws based on vg. 
This property phenomena can be used for implementation of 
the guidance laws based on vg .

An important question comes from the implementation 
point of view: what is the typical value of the angle between 
ZEM and vg? If this value is large enough to overwhelm 
the control system tracking error and estimation error of 
required velocity in the presence of target tracking error, 
the performance study of the guidance law can go ahead 
for this purpose.

First, the angle between vg and ZEM, denoted by θVZ, is 
depicted in Fig. 9 versus time for an interceptor when its thrust 
acceleration is applied along ZEM for a range angle of 10°. The 
maximum and the mean of |θVZ|, ∫o 

tco |θVZ| dt/tco, are observed 
by solid and dashed lines, respectively. The maximum and mean 

values of |θVZ| are shown in Fig. 10 versus range angle. The 
final times in Figs. 9 and 10 are chosen for minimum energy 
orbit, i.e. minimizing the required velocity. To investigate more 
precisely, the mean value of |θVZ| is plotted in Fig. 11 versus 
range angle for a deviation of ±20% with respect to the final 
time of minimum energy orbit. As expected, the values of θVZ 
are large enough to overcome noisy measurements and control 
system tracking error for medium-to-super range applications. 
The effect of this deviation on ∆V can be viewed in Fig. 12 where 
the comparison is made with respect to the fuel consumption 
of the ZEM-based guidance law.

The effect of target altitude is investigated in Fig. 13. First, 
the fuel consumption is plotted versus target radial position 
for a range angle of 10° for the minimum energy orbit. As 
can also be seen in Fig. 5a, there is little difference between 
the fuel consumptions of vg- and ZEM-based guidance laws. 
This difference is increased by increasing the range angle. For 
example, the difference is shown in Fig. 13b for the range angle 
of 40°. Moreover, the maximum value of the angle between vg 
and ZEM versus target radial position can be viewed in Figs. 
14a and 14b for minimum and non-minimum energy orbits, 

Figure 14. Max of the absolute value of the angle between vg 
and ZEM versus target radial position for thrust vector along 
ZEM direction. (a) range angle = 10°; (b) range angle = 40°.

Figure 13. Fuel consumption versus target radial position 
for interception of a stationary target in spherical-Earth 
model. (a) range angle = 10°; (b) range angle = 40°.
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e.g. tf = (1± 0.2)tfM.E.O., respectively, where M.E.O. is the mean 
energy orbit.

After a preliminary study of conceptual guidance laws for 
flat-Earth model and also stationary targets in spherical-Earth 
model, we focus on free-falling targets in the case of spherical-
Earth model. The interceptor initial position, velocity, and 
acceleration due to thrust is taken similar to the studied case 
of spherical-Earth model with stationary targets.

First, the guidance law based on linearized ZEM, Eq. 26, is 
compared to the guidance based on the direction computed by 
linear optimal guidance law (Eq. 36) as obtained by Deihoul and 
Massuomnia (2003). The miss distance and fuel consumption 
of the two guidance schemes are plotted in Figs. 15 and 16 
versus final time for a target at a range angle of 40°, having the 
required velocity of minimum energy to hit the initial position 
of the interceptor. The initial distance of target from the Earth 
center is taken rT = 6,500 km. These 2 guidance laws produce 
nearly the same results; however, the little differences in the 
results cannot appear properly in Figs. 15 and 16 because of the 

scale of these figures. These results are obtained by setting an 
optimized value of tb = 60 s in Eq. 37 for the gain matrix M. This 
analysis turns out the gain matrix M do not give a significant 
improvement on the performance of the ZEM-based guidance 
schemes for an initial range angle less than 40°.

To study more precisely, the initial distance of the target 
from the earth center increases to 7,500 km. First, the value of 
tb is chosen 100 s by the performance analysis based on Fig. 17 
for an initial range angle of 90° with 3 different values of total final 
times. In the next step, the fuel consumptions of four conceptual 
guidance laws, i.e. guidance laws based on ZEMmin, based on 
ZEM, based on the direction of linear optimal problem, and 
based on velocity-to-be-gained are compared together. For this 
purpose, the fuel consumption is depicted versus final time in 
Figs. 18a; 18b and 18c for 3 different initial range angles of 60°; 
90° and 120°, respectively. The value of tb is optimized for each 
range angle. Other parameters and initial values are taken as 
before. For a typical range comparison, the interceptor travels 
29.7° (3,301 km) for an initial range angle of 90° (10,002 km) 
as plotted in Fig. 19 for a total flight time of 1,600 s. The thrust 
direction along the velocity-to-be-gained produces less fuel 
consumption among the other mentioned guidance laws as 
shown in the Fig. 18. For short range applications, the angle 
between ZEM and velocity-to-be-gained is negligible as shown in 
Fig. 20. The angle between the 2 directions increases by increasing 
the initial range angle. The effect of matrix gain of M is also 
increased by increasing the range angle, but for these ranges the 
direction of the velocity-to-be-gained produces a considerable 
decrease on fuel consumption. Besides, the estimation error of 
time-to-go for guidance laws based on velocity-to-be-gained 
has less sensitivity than that of ZEM-based guidance schemes.
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Figure 16. Fuel consumption versus final time for 
interception of a free-falling target in spherical-Earth model 
(initial range angle = 40°).

Figure 15. Miss distance (MD) versus final time for 
interception of a free-falling target in spherical-Earth model 
using linearized ZEM relation (initial range angle = 40°).

Figure 17. Fuel consumption versus burnout time for 
interception of a free-falling target in spherical-Earth model, 
when thrust vector is along linearized ZEM direction (initial 
range angle = 90°).
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The angle of thrust direction with respect to the equatorial 
plane is plotted in Fig. 21 versus time for 3 guidance laws. As 
can be seen, there is a little difference between the velocity-to-
be-gained direction and the direction of guidance laws based 
on constant vg direction. The maximum difference for an initial 
range angle of 70° is about 5.26°. In addition, the rate of change 
of thrust direction for guidance laws based on velocity-to-be-
gained are very small comparing to that of the guidance laws 
based on ZEM. To investigate more precisely the difference 
between the thrust angles under the 2 conceptual guidance 
laws based on velocity-to-be-gained, θBV, is shown in Fig. 22 
in three forms, i.e. max of |θBV|, mean of |θBV|, and mean of 

θBV for a minimum energy orbit and a stationary target. Initial 
values for interceptor and its target are the same as Figs. 5 – 7. 
As seen in Fig. 22, the mean value of θBV is 1.11° for an initial 

Figure 18. Compassion of fuel consumption of four 
conceptual guidance laws for interception of a free-falling 
target in spherical-Earth model. (a) initial range angle = 60°; 
(b) initial range angle = 90°; (c) initial range angle = 120°.
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Figure 19. Interceptor and its target trajectories for initial 
range angle of 90° and total flight time of 1,600 s.

Figure 20. Maximum and mean of the absolute value of 
the angle between vg and ZEM versus initial range angle for 
interception of a free-falling target (thrust vector along ZEM 
direction, minimum energy orbit).

Figure 21. Comparison of thrust angle with respect to the 
equatorial plane for 3 conceptual guidance laws (initial range 
angle = 70°; ath = 50 m/s2).
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range angle of 70°. Their fuel consumptions are compared in 
Fig. 23 versus initial range angle for minimum and non-
minimum energy orbit. For example, the guidance based on 
the constant vg direction causes a decrease of 0.32% in fuel 
consumption for minimum energy orbit with respect to the 
guidance law based on vg direction for a range angle of 180°. 
As seen in Fig. 22, below the initial range angle of 10.3°, max 
|θBV| is less than 1°. However, improving the performance of 
a guidance law is always of interest by a modified formulation 
without any additional hardware or extra cost. Fortunately, 
several iterative and approximate methods are available in 
literature to calculate the required velocity and Q-matrix for 
Lambert’s problem.

For space missions, Sokkappa (1966) developed a near optimal 
guidance in closed-loop for throttleable spacecraft assuming 
constant Q-matrix; however, the Q-matrix was updated for 
onboard computation. Our simulation results show that the 
maximum difference between the thrust angles of Sokkappa’s 

solution and guidance based on constant vg direction is less than 
0.5° when the initial range angle is less than 180° (the initial values 
and parameters are similar to Fig. 22). In addition, Sokkappa 
compared his optimal solution with the guidance law based on 
constant vg direction for a case of injection from an earth orbit 
of 100 nautical miles to pass through an inertial point of 180,000 
nautical miles. The guidance law based on constant vg direction 
produces ∆V = 3,328.6 m/s, whereas Sokkappa’s solution has a 
34.2 m/s decrease in ∆V. Also, the performance of guidance law 
based on constant vg direction and numerical optimal solution 
was compared by Circi (2004) for a satellite launch vehicle. The 
optimum solution has a decrease of 39 kg for a payload mass of 
1,734 kg under the guidance law based on constant vg direction 
for a perigee of 150 km.

It is worth noting that the guidance laws based on velocity-
to-be-gained are applicable provided that a required velocity 
can be defined. For example, a required velocity cannot be 
defined for a fixed-final-time problem when final position 
and velocity vectors are both constrained. The impact angle 
of the conceptual guidance schemes is not considered in 
this investigation. It may be accomplished using appropriate 
choice of final time. 

CONCLUSIONS

This study suggests the effective thrust direction of an 
exoatmospheric interceptor for interception of short-to-
super range moving targets with final position constraint. 
This has accomplished using a comprehensive study on 
conceptual guidance laws with stationary, moving, and free-
falling targets. The first class of guidance law is based on 
ZEM. Three guidance schemes are considered in the first 
class, regarding to 2 definitions of ZEM and the component 
of ZEM perpendicular to line-of-sight. The capture criteria of 
the guidance scheme based on the perpendicular component 
of ZEM are highly restricted for non-throttleable rockets. 
The second class of conceptual guidance laws are based on 
linearized formulation, i.e. linearized ZEM and linear optimal 
control theory for throttleable rockets when its computed thrust 
direction is applied to non-throttleable rockets. The third class 
of guidance laws is based on the generalized required velocity 
and generalized velocity-to-be-gained. Two guidance schemes 
are considered in the third class. In the first scheme, the thrust 
acceleration is applied along the velocity-to-be-gained vector, 
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Figure 22. Maximum and mean of the absolute value, 
and mean value of the angle between the thrust direction 
along vg and constant vg direction versus range angle for 
interception of a stationary target for minimum energy orbit.

Figure 23. The percentage decrease in ∆V for the guidance 
law based on constant vg direction with respect to vg 
direction for minimum and non-minimum energy orbit.
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whereas the second scheme tries to avoid the rotation of the 
velocity-to-be-gained in an inertial space. 

The suggested direction of thrust acceleration is along 
the generalized velocity-to-be-gained, defined based on the 
generalized required velocity for interception of moving 
targets. For short-range application, the same results have 
been achieved when the thrust acceleration applied in the 
direction of ZEM or in the direction of the generalized velocity-
to-be-gained. Increasing the range angle, the difference in 
performance is appeared. For long-range interception, the 
suggested thrust direction requires less amount of fuel rather 
than conceptual guidance laws based on ZEM or linearized 
formulations. The guidance performance is not improved as 
expected using a ZEM vector multiplied by a gain matrix to 
deviate the thrust direction from ZEM vector, as obtained in 
linearized optimal solutions. 

If the intercept time is chosen a bit larger than the minimum 
energy orbit due to tactical consideration, e.g. salvo firing, 
adjustment of impact angle, etc., the suggested direction 
will have a significant fuel savings rather than guidance laws 

based on ZEM. Moreover, the performance of the suggested 
conceptual guidance law has less sensitive to the estimation 
error of final time. The guidance scheme based on constant 
velocity-to-be-gained direction may improve negligibly the 
fuel performance of the interceptor in the presence of noise 
for suborbital interception. Finally, the optimal solution does 
not give a better performance when the target position and 
velocity are contaminated by noise for suborbital interception 
such as a ballistic target; however, it improves the performance 
for a satellite launch vehicle and possibly for interception of 
orbital targets.
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