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ABSTRACT: The correlation of a model with test results is 
a common task in engineering. Often genetic algorithms or 
adaptive particle swarm algorithms are used for this task. In 
this paper another approach is presented using two quasi-
Newton algorithms of the class defined by Broyden. A study 
was conducted with thermal models showing the performance 
of this approach. Comparing the results to other studies 
reveals that the approach reduces the number of iterations 
by several orders of magnitude; typical calculation times for 
model correlation times are reduced from the order of weeks 
and months to the order of hours and days.

KEYWORDS: Thermal vacuum test, Thermal analysis, 
Correlation, Broyden, ESATAN, Thermica.
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INTRODUCTION

In every calculation, there are always discrepancies 
between the predictions of a mathematical model and their 
physical measurements. Refinement of the models can 
reduce the discrepancies, however, the exact values of many 
parameters are often unknown. Without perfect knowledge 
of the values of these parameters, a model refinement will 
never lead exactly to the measured results. 

Determining the exact values of all parameters individually 
is too costly or sometimes even impossible. Testing is often 
only possible at the system level, and extracting parameter 
values from the test results is a difficult task which is done by 
correlating the mathematical model with the measurement 
data. This means that the model parameters are changed 
via feedback from the measurement results, so that the 
discrepancies between the measurements and the models 
are minimized.

Many methods have been developed and analyzed to 
perform model-to-measurement correlation (Jouffroy, 2007; 
De Palo et al., 2011; Momayez et al., 2009; Harvatine and 
De Mauro, 1994; Roscher, 2006; van Zijl, 2013; WenLong 
et al., 2011; Mareschi et al., 2005). Most methods are based 
on stochastic optimization algorithms and often require 
several hundred iterations to converge. In this paper, an 
approach is presented using Broyden’s class of methods 
(Broyden, 1965), which use considerably less iterations for 
the majority of cases.

doi: 10.5028/jatm.v6i4.373

1.Tesat-Spacecom GmbH & Co – Backnang – Germany

Author for correspondence: Jan Klement | KG, Gerberstraße 49 | D-71522 Backnang – Germany | Email: Jan.Klement@tesat.de

Received: 05/26/2014 | Accepted: 10/06/2014



J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.407-414, Oct.-Dec., 2014

408
Klement, J.

THE THERMAL MODEL 
CORRELATION PROBLEM

The method will be presented with a typical thermal 
model correlation as used in the space industry, but the 
procedure can also be applied to many other models as used 
in other industries and areas.

Thermal models calculate temperatures at certain points 
depending on a set of parameters. Mathematically expressed, 
this means:

tmdl = F(p),� (1)

where:
F is the mathematical model with function F:Rk→Rm (k is the 
number of parameters, m is the number of results);
tmdl is a vector containing the temperatures at the selected points; and
p is a vector containing the parameters of the model, for example 
thermal conductivity, thermal capacity, thermal emissivity, and 
solar absorptivity.

During the tests, the temperatures are measured at 
the same points as described in the model tmdl. The aim 
of the correlation is to find the set of parameters pcorr for 
which the root sum square of the differences between the 
measured temperatures tmes and the calculated temperatures 
F(pcorr) is minimal. 

||F(Pcorr) – tmes|| = min{||F(p) – tmes|||p ∈ P}� (2)

where P is the solution space for the parameter vector. 

THE METHOD

In contrast to most correlation methods developed 
(Jouffroy, 2007; De Palo et al., 2011; Momayez et al., 2009; 
Harvatine and DeMauro, 1994; Roscher, 2006; van Zijl, 2013; 
WenLong et al., 2011; Mareschi et al., 2005), this method will 
not attempt to minimize the length of the vector ||F(p) – tmes||, 
but searches a root of the equation system:

F(pcorr) – (tmes) = 0.� (3)

The advantages of this method are that a whole vector 
of information, in this case temperature differences, can be 
evaluated instead of a single scalar and that a set of simple 
functions are used instead of a complex function. One of the best 
methods to solve this type of problem is the multidimensional 
Newton method, which applies the following formula iteratively:

pn+1 = pn – J(pn)-1 F(pn)� (4)

where: 
pn is the vector of parameters;
J(pn) is the Jacobian matrix at pn

A limitation of this method is that the Jacobian matrix can 
often only be calculated numerically, with the consequence 
that, for each individual parameter in pn, a separate calculation 
is needed. Fortunately, Broyden developed a class of methods 
to approximate the Jacobian matrix based on the results from 
the previous step. The methods are described in Broyden 
(1965) and therefore will not be explained here. Broyden’s first 
method (the “good Broyden method”) is chosen for the 
algorithm used in this paper as it performed better for 
Broyden’s practical problems. 

In addition, a self-developed method of the Broyden 
class is tested. This method updates each element bn

ij of the 
approximated Jacobian Matrix Bn with the following formula:

bij
n+1 = (1+ kn

i bn
ij sn

j) bn
ij� (5)

where:
sn: = pn – pn-1� (6)

yex,n: = Bnsn� (7)

yis,n: = F(pn) – F(pn-1)� (8)

ki =
yiis,n – yiex,n

(bn
ij sn

j )2Σm
j=1

� (9)

CONSTRAINTS FOR THE METHOD

Every optimization method has requirements which 
need to be fulfilled in order to be used effectively. Within 
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this section, some of the more important requirements for 
practical model-to-test correlation, and the main practical 
consequences, are described. The requirements are important 
when choosing to use this method and also for the selection 
of the parameters and results to be used.

MONOTONY AND DIFFERENTIABILITY
An important restriction in the use of this method is 

that each result of the model is a differentiable monotone 
function of the parameters within the solution space. 

Most thermal models are monotone and differentiable 
functions of the parameters, but there are a few exceptions 
such as controlled heating systems or when the parameter 
is, for example, the orbit position of a spacecraft. For small 
changes the model is neither monotone nor differentiable 
due to numerical noise.

If the function does not fulfill this requirement, within the 
solution space, the algorithm may be prevented from converging. 

OBSERVABILITY OF THE PARAMETERS
Each of the parameters must have an effect on at least one 

result. This is not a specific issue to this particular method, 
but it is a general requirement for correlation. Although 
the requirement appears trivial, it is often the reason why the 
algorithm is unable to converge. For the presented method, 
a low degree of observability combined with numerical noise 
can lead to instability.

Often, the relevance of parameters can be deduced through 
an understanding of the model, but for complex systems it is 
sometimes difficult to estimate the relevance of an individual 
parameter. Fortunately, the Jacobian matrix addresses some 
of these limitations. If a column of the Jacobian matrix 
consists solely of zeros, the corresponding parameter cannot 
be observed. In practical applications there are often many 
values close to zero, mainly due to small effects or numerical 
noise. If the relevance of the parameter is smaller than the 
accuracy of the measurement data, the parameter can then 
be considered as not observable.

INFLUENCE OF THE PARAMETERS ON THE 
RESULTS

Each result has to be influenced by at least one parameter. 
This is also not a general requirement for correlation, but 
it prevents model correlation. For the presented method, 

numerical noise combined with a low level of influence on 
a result can lead to instability.

Again, the Jacobian matrix is a good tool for estimating the 
influence of a parameter on results. If a row of the Jacobian 
matrix has only zeros or very small values, the corresponding 
result cannot be influenced. 

ACCURACY OF THE MEASUREMENT AND 
MODEL INACCURACIES

Due to measurement errors and model inaccuracies, 
it is unlikely that the result vector will converge towards 
zero. If the measurement error is larger than the effect of a 
parameter, then the relevant parameter may not converge 
to a reasonable result. Model inaccuracies may, in addition, 
make it impossible to correlate it within the parameter space.

CONSTRAINTS
In most instances, each parameter has certain limits 

defined by the physics of the model. For example, thermal 
conductivity will never be zero or below and never exceed 
a certain value. As the method defined by Broyden is for 
unconstrained problems, the following algorithm is used:
•	 Calculate pn+1 without considering the constraints;
•	 If a parameter of pn+1 is outside the defined boundaries, 

scale the change of the parameters so that all parameters 
are within the boundaries;

•	 If some parameters have already reached their 
constraints, calculate pn+1 for the condition that these 
parameters are fixed at their constraints.

LOAD CASES ANALYZED

Two load cases were analyzed: a constructed simple 
model and a complex model of real piece of hardware. These 
models where build in Systema/THERMICA, a thermal 
analysis software specialized to simulate spacecraft (mostly 
compatible to ESATAN and similar to SINDA). The standard 
syntax for these models was used.

THE CONSTRUCTED SIMPLE MODEL
The thermal model is a steady state model consisting of four 

diffusive nodes and an environment node at 0°C. Each node 
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has a surface of 0.1 m² with an emissivity of 1, which radiates to 
the environment. 10 W are dissipated in each node. Node 1 is 
connected to the environment node with a thermal conductance 
of 1 W/K. Nodes 1 to 4 are all connected to each other by 
6 thermal linear links (GL) as shown in Fig. 1. 

In order for the temperatures at the nodes to correspond 
to the measured values, the parameter values of the thermal 
links need to be changed. Therefore, the equation system to be 
solved by the algorithm is:

Tcalculated(GL) – Tmeasured = 0,� (10)

where:
Tcalculated is the function which represents the model;
GL is the vector containing GL1 to GL6; and
Tmeasured is the vector of the calculated temperatures for 
GLi = (0.1 + i/100)W/K. This is assumed to be a measurement.

The initial estimates for all GL are 0.5 W/K.
Three load cases are derived from this problem:

•	 An underdetermined system: All links are variable. There 
are six parameters (links) for four values (temperatures);

•	 A determined system: Links 3 and 6 are constant 
(GL3 = 0.13W/K, GL6 = 0.16W/K). There are four parameters 
(links) for four values (temperatures);

•	 An overdetermined system: Links 3, 5, and 6 are constant 
(GL3 = 0.13W/K, GL5 = 0.6W/K, GL6 = 0.16W/K). There 
are three parameters (links) for four values (temperatures), 
and GL5 is chosen so that it is impossible to solve the system.

THE COMPLEX MODEL
The complex model is a model of real spacecraft hardware, 

which was tested in a thermo vacuum chamber. In total, 13 

parameters where chosen; they consist of thermal boundary 
conditions, thermal conductances, and emissivities for the 
infrared spectrum. 

Temperature readings were taken from 26 sensors at 
6 test points over time, yielding 156 evaluated temperatures.

RESULTS

RESULTS OF THE UNDERDETERMINED 
SIMPLE MODEL 

Figure 2 shows the development of the root sum square of all 
temperature differences for both analyzed algorithms. The values of 
some significant points shown in this diagram are listed in Table 1. 
The model quickly converged toward 0, with both algorithms 
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Figure 1. Thermal test model schematics.

Figure 2. Root sum square of the temperature differences 
over iterations of the underdetermined simple model.

Algorithm

Iterations 
for Jacobian 

matrix 
generation

Nº of 
iterations 

after Jacobian 
matrix 

generation

RSS/K

Broyden 6

0 (initial) 4.261

6 5.921E-03

9 2.646E-05

Self-
developed 

method
6

0 (initial) 4.261

6 7.652E-04

12 5.385E-05

Table 1. Selected points of the algorithm convergence of the 
underdetermined simple model.
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reducing the RSS by approximately one order of magnitude every 
two to three iterations, until the numerical accuracy limit of 1E-5 
was reached. After the 4th iteration, the self-developed algorithm was 
faster, but after the 9th iteration, the Broyden algorithm converged 
faster. In conclusion, the performance of both algorithms can be 
considered comparable for this case.

RESULTS OF THE DETERMINED SIMPLE MODEL 
In the same way as shown for the underdetermined 

simple model, Fig. 3 and Table 2 show the root sum square 
development for the determined simple model. The model 
converged slower than for the underdetermined problem. 

The Broyden algorithm needed an average of 11 steps per order 
of magnitude while the self-developed algorithm needed an 
average of only 5 of them. 

RESULTS OF THE OVERDETERMINED SIMPLE 
MODEL 

The overdetermined model converged, as expected, not 
to 0 but to a finite value (0.0375K), as is shown in Fig. 4 and 
Table 3. For this load case, the self-developed method converged 
considerably faster, with approximately 4 iterations per order of 
magnitude, while the Broyden algorithm used approximately 8 
iterations per order of magnitude.
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Figure 3. Root sum square of the temperature differences 
over iterations of the determined simple model.

Figure 4. Root sum square of the temperature differences 
over iterations of the overdetermined simple model.

Algorithm

Iterations 
for Jacobian 

matrix 
generation

Nº iterations 
after Jacobian 

matrix 
generation

RSS/K

Broyden 4

0 (initial) 3.442

6 1.024

41 9.487E-05

Self-
developed 

method
4

0 (initial) 3.442

6 5.813E-02

22 1.414E-05

Table 2. Selected points of the algorithm convergence of the 
determined simple model.

Algorithm

Iterations 
for Jacobian 

matrix 
generation

Nº iterations 
after Jacobian 

matrix 
generation

RSS/K

Broyden 3

0 (initial) 3.442

4 1.869

15 3.760E-02

Self-
developed 

method
3

0 (initial) 3.442

4 1.869

8 3.757E-02

Table 3. Selected points of the algorithm convergence of the 
overdetermined simple model.
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RESULTS OF THE COMPLEX MODEL
Figure 5 and Table 4 show the convergence of the algorithm 

for the complex model in a different way to the way that was shown 
for the simple model. The complex model is an overdetermined 
system and it is not expected to converge to 0. Therefore, the 
difference between the RSS of each iteration and the best RSS reached 
is used. This difference is standardized to the initial value. The best 
RSS was reached by restarting the algorithm near the optimum.

As can be seen in the following figure, the optimum is 
nearly reached after a few iterations. In this steep initial part, 
both algorithms required approximately 2 iterations, on 
average, to reduce the target value by one order of magnitude.

After reaching 0.25%, the Broyden algorithm stayed stable 
while the new algorithm converged slowly to a lower value.

DISCUSSION OF THE RESULTS

Both algorithms converged in all of the studied cases 
until either the numerical accuracy limit or a limit due to 
an over-constrained system was reached. The number of 
iterations can be approximated by the formula:

m = 1 + k + r * c� (11)

where:
m is the total number of iterations including the first;
k is the number of parameters (iterations of Jacobian matrix 
generation); and
r is a value specific to the problem; it depends mainly on the 
nonlinearity of the model and the interactions between the parameters. 
The total number of parameters is not very significant for this 
value. For the load cases studied, the value was between 2 and 
10, on average, until a certain limit was reached. For similar load 
cases, it is not expected to increase significantly; c is the desired 
reduction in the order of magnitude of the difference of the root 
sum square and the minimal possible root sum square. It is defined 
by the following formula:

c = log10(R0 – Rmin) – log10(Rfinal – Rmin)� (12)

where:
R0 is the initial root sum square of the deviation vector 
(F(po) – tmes);

Rfinal is the final root sum square of the deviation vector 
(F(pfinal) – tmes); and
Rmin is the minimum possible root sum square of the deviation 
vector (F(pfinal) – tmes).

As can be seen in Fig. 6 the number of iterations needed 
for the presented algorithms (10 to 30) to the typical number 
of iterations needed for genetic (25600 (van Zijl, 2013), 843 to 
33072 (Jouffroy, 2007)), adaptive particle swarm optimization 
(6000 (van Zijl, 2013)) or the stochastic design improvement 
(555, (Mareschi et al., 2005)), this approach is much faster. The 
number of parameters of the models used in these evaluations 
is comparable to the complex model used in this paper, but the 
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Figure 5. relative root sum square of the temperature 
differences over iterations of the complex model.

Algorithm

Iterations 
for 

Jacobian 
matrix 

generation

Nº iterations 
after 

Jacobian 
matrix 

generation

(RSS-
RSSmin) /
(RSSinitial-
RSSmin)

Broyden 13

0 (initial) 100.00%

4 0.81%

18 0.22%

Self-
developed 

method
13

0 (initial) 100.00%

4 0.19%

18 0.06%

Table 4. Selected points of the algorithm convergence of 
the complex model.
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the number of iterations needed for the tested algorithms 
is 20 to 1,000 times smaller than the number of iterations 
reported for genetic or adaptive particle swarm algorithms. 
In conclusion, this algorithm significantly reduces the cost of 
a thermal model correlation.

The “good Broyden method” and the self-developed 
method delivered satisfactory results and are, therefore, both 
considered suitable. The self-developed method delivered 
slightly better results for most of the cases analyzed.
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number of nodes used is considerably lower. Unfortunately, 
the models and tools used for these methods are not accessible 
so that a direct comparison was not possible.

For each iteration, the CPU time required for generating 
a new set of parameters is only a few milliseconds and, 
therefore, it is negligible compared to the minutes or hours 
required for solving the model. It can be concluded that 
the total CPU time is nearly proportional to the number of 
iterations, independent from the algorithm.

Both algorithms studied showed similar performance. 
Therefore, both are considered suitable for model correlation. 
The new algorithm showed better performance for most situations.

CONCLUSION

It has been shown that using root finding algorithms of the 
Broyden class for thermal mathematical model-to-test correlation 
is feasible and efficient. Although a direct comparison of the 
analyzed methods and a genetic algorithm was not possible, 

Complex model (2062 n, 13 p)

Underdet.simple model (5 n, 6 p)

Det. simple model (5 n, 4 p)

Overdet. simple model (5 n, 3 p)

Jou�roy – GA (100 n, 5 p)
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Jou�roy – GA (100 n, 21 p)
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Mareschi, Perotto and Matteo SDI (111 n, 12 p)
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Figure 6. Comparison of the number of iterations needed for thermal model correlation (n=nodes of the model, p=parameters 
correlated).



J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.407-414, Oct.-Dec., 2014

414
Klement, J.

REFERENCES
Broyden, C.G., 1965, “A Class of Methods for Solving Nonlinear 
Simultaneous Equations”, AMS Mathematica of Computation, Vol. 
19, No. 92, pp. 577-593. doi: 10.1090/S0025-5718-1965-
0198670-6.

De Palo, S., Malost, T. and Filiddani, G., 2011, “Thermal Correlation 
of BepiColombo MOSIF 10 Solar Constants Simulation Test”, 25th 
European Workshop on Thermal and ECLS Software.

Harvatine, F.J. and DeMauro, F., 1994, “Thermal Model 
Correlation Using Design Sensitivity and Optimization Techniques”, 
24th International Conference on Environmental Systems and 5th 
European Symposium on Space Environmental Control Systems.

Jouffroy, F., 2007, “Thermal model correlation using Genetic 
Algorithms”, 21st European Workshop on Thermal and ECLS Software.

Mareschi, V., Perotto, V. and Gorlani, M., 2005, “Thermal 
Test Correlation with Stochastic Technique”, 35th International 
Conference on Environmental Systems (ICES).

Momayez, L., Dupont, P., Popescu, B., Lottin, O. and Peerhossaini, 

H., 2009, “Genetic algorithm based correlations for heat transfer 

calculation on concave surfaces”, Applied Thermal Engineering, 

Vol. 29, No. 17-18, pp. 3476-3481. doi: 10.1016/j.

applthermaleng.2009.05.025.

Roscher, M., 2006, “Genetische Methoden zur Optimierung von 

Satelliten Thermalmodellen bei EADS ASTRIUM“, Hochschule Wismar 

& EADS Astrium.

van Zijl, N., 2013, “Correlating thermal balance test results with a 

thermal mathematical model using evolutionary algorithms”, Faculty of 

Aerospace Engineering, Delft University of Tecnology.

WenLong, C., Na, L., Zhi, L., Qi, Z., AiMing, W., ZhiMin, Z. and ZongBo, H., 

2011, “Application study of a correction method for a spacecraft thermal 

model with a Monte-Carlo hybrid algorithm”, Chinese Science Bulletin, Vol. 

56, No. 13, pp. 1407-1412. doi: 10.1007/s11434-010-4053-z.


