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Synthesis of a boron modified 
phenolic resin 
Abstract: Phenolic resin has long been used as matrix for composites 
mainly because of its flame retardant behavior and high char yield after 
pyrolysis, which results in a self supporting structure. The addition of 
ceramic powders, such as SiC and B4C, as fillers to the phenolic resin, 
results in better thermo-oxidative stability, but as drawbacks, it has poor 
homogeneity, adhesion and processing difficulties during molding of 
the composites. The addition of single elements, such as boron, silicon 
and phosphorus in the main backbone of the thermo-set resin is a new 
strategy to obtain special high performance resins, which results in 
higher mechanical properties, avoiding the drawbacks of simply adding 
fillers, which results in enhanced thermo-oxidative stability compared to 
conventional phenol-formaldehyde resins. Therefore, the product can have 
several applications, including the use as ablative thermal protection for 
thermo-structural composites. This work describes the preparation of 
a boron-modified phenolic resin (BPR) using salicyl alcohol and boric 
acid. The reaction was performed in refluxing toluene for a period of four 
hours, which produced a very high viscosity amber resin in 90% yield.The 
final structure of the compound, the boric acid double, substituted at the 
hydroxyl group of the aromatic ring, was determined with the help of the 
Infrared Spectroscopy, 1H-NMR, TGA-DSC and boron elemental analysis. 
The absorption band of the group B-O at 1349 cm-1 can be visualized at 
the FT-IR spectrum. 1H-NMR spectra showed peaks at 4.97-5.04 ppm and 
3.60-3.90 ppm assigned to belong to CH2OH groups from the alcohol. 
The elemental analysis was also performed for boron determination.The 
product has also been tested in carbon and silicon fibers composite for 
the use in thermal structure. The results of the tests showed composites 
with superior mechanical properties when compared with the conventional 
phenolic resin.
Keywords: Phenolic resin, Boron, Thermal protection, Oxidizing agents.

LIST OF SYMBOLS

Ar-H	 Aromatic protons 
BPFR	 Boron-containing phenol-formaldehyde resin
DMA	 Dynamic mechanical analysis
DSC 	 Differential scanning calorimetry
DTG	 Differential thermogravimetry
FT-IR	 Fourier transform spectroscopy
GPC	 Gel permeation chromatography
HMTA	 Hexamethylenetetramine
ILSS	 Interlaminar shear strength
Mn	 Molecular weight (average number)
Mw	 Molecular weight (average weight)
NMR	 Nuclear magnetic resonance
OH	 Hydroxyl group
PC	 Polycarbonates
PF	 Phenol formaldehyde resin
PPG	 Polypropyleneglycol
PS	 Polystyrene
TLC	 Thin layer chromatrography 

Tc	 Critical temperature
Tg	 Glass transition temperature
TG 	 Thermogravimetric analysis

INTRODUCTION

Phenolic resin was the first synthetic polymer. The processing 
technique was carried out firstly by A. von Bayer, in 1872, 
and further patented by Leo H. Baekeland in 1907 (Knop 
and Pilato, 1985). Since then, thermo-set phenolics have 
wide industrial and commercial application (Whitehouse, 
Pritchett and Barnett, 1968). Due to their excellent ablative 
properties and structural integrity, they have been used as 
high performance thermal protection systems, such as nose 
caps and exit cones for rocket nozzles (Knop and Pilato, 
1985; Segal, 1967; Schmidt and Graig, 1982). They also 
have widely use in thermal insulation materials, molding 
compounds, foundry, coating material, wood products 
industry and in many other composite materials (Casiraghi 
et al., 1980). Another application is the use as precursor of 
solid carbon materials as a matrix for heat resistant materials 
(Lenghaus, Qiao and Solomon, 2000), and also as adhesives Received: 14/06/10 
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for production of wood agglomerates (Park et al., 1999). 
Another important application of phenolics is as a polymeric 
blend with other polymers, which produces materials with 
superior physical properties, such as tensile strength and 
modulus (Okoroafor, Villemaire and Agassant, 1992). 

Phenolic resins are synthesized by the reaction of phenol 
with formaldehyde. These resins can be divided into two 
main groups according to reaction conditions that are 
used, such as pH of the catalyst and the formaldehyde/
phenol ratio. Formaldehyde has a functionality of two 
and phenol, of three. Phenol will react with the OH group 
at the para and at the two ortho position. The two meta 
positions are un-reactive. If the reaction proceeds with 
excess of one or two moles of formaldehyde, the final 
product is a thermo-set resin. If the reaction proceeds 
with excess of phenol, it has sufficient functionality, but 
not enough cross linking molecules to be thermo-set or 
thermoplastic resin.

Under acidic conditions, the reactions of phenol 
with formaldehyde with excess of phenol lead to the 
formation of novolac type resin (Fig. 1). The resole type 
resin is formed under alkaline conditions and excess of 
formaldehyde (Fig. 2).

The main difference between novolac and resole resins is the 
presence of the reactive methylol groups and, occasionally, 

dimethylene-ether linkage in the resoles instead of the 
condensation products linked with methylene bridges, 
as in the case of novolacs. Therefore, novolac resins are 
thermally cured by addition of a methylene cross linker – 
hexamethylenetetramine (HMTA) or paraformaldehyde. 
Resoles are cured only by application of heat.

Phenol formaldehyde resins (PF) are characterized by 
their capability of forming hydrogen bonds with polymers 
containing carbonyl or carbonate groups (Fahrenholtz and 
Kwei, 1981), or forming covalent bonding if the polymer 
contains complementary hydroxyl groups. In addition, 
the phenyl ring structure of phenolic resin is capable of 
forming secondary bonding by p-p overlap, which is 
important for building these polymers. 

The final properties of these materials depend on the 
synthesis and operating conditions. Details of the curing 
process are responsible for many of the physical and 
mechanical characteristics: the cure time and temperature 
influence, the resulting glass transition temperature (Tg) 
and the elastic modulus. Thus, structural information 
and explicit knowledge relevant to the curing process is 
important and essential for understanding and improving 
the synthesis process and the use of phenolic resins.

The most commercially available phenolic resin has the 
average molecular weight (Mw) in the range of 500 to 1000 
gmol-1. The molecular weight of phenolic resins depends 
on the formaldehyde/phenol ratio, the type of catalyst 
(acidic or alkaline), and the time and temperature of the 
reaction, but the most important factor for controlling the 
molecular weight of PF is the molar ratio. Figure 3 shows 
the resulting type of phenolic resin, resole or novolac, as a 
function of the formaldehyde/phenol ratio and molecular 
weight (Lemon, 1985).  
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Figure 1:	 Structure of novolac resin.
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Figure 2:	 Structure of resole resin.
Figure 3:	 Curing graphic for phenolic resin forming novolac 

and resol (Lemon, 1985).
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The most common catalyst of phenol-formaldehyde 
novolac resin synthesis is: sodium, potassium and 
lithium hydroxides, and rarely hydroxides of divalent 
metals (magnesium, calcium or barium) (Knop and 
Sheib, 1979; Knop and Pilato, 1985). Carbonates (Na) 
and oxides (Ca or Mg) can also be used as catalyst in the 
synthesis (Polish Patent 109 966, 1981; Polish Patent 150 
036, 1990). Tertiary amines, in particular triethylamine, 
were claimed recently as the catalyst for the resole resin 
synthesis (Russina Patent 2 028 313, 1995; US Patent 4 
045 398, 1977).

Knop (1979,1985) found that the substitution of 
phenol with formaldehyde in the ortho-position versus 
para-position increased in the following sequence of 
hydroxide catalyst metal: K < Na < Li < Ba < Sr < 
Ca < Mg. Grenier-Loustalot et al. (1996) concluded 
that the rate at which phenol disappeared from the 
reaction mixture depended on the metal valence in the 
hydroxide catalyst and on the size of the hydrated metal 
cation. Magnesium, calcium and barium hydroxides 
were found to be more effective catalyst than lithium, 
sodium or potassium hydroxides.

Although phenolic resin has good thermo-oxidative 
resistance, extensive research has been done to improve 
their thermal properties through modification of their 
structure with introduction of some elements, such as 
boron or phosphorus and even silicon.

The boron-containing phenol-formaldehyde resin (BPFR) 
is a modification of the phenolic resin. It is obtained with 
the introduction of boron in the main backbone of the 
phenolic resin. The BPFR resin has good heat-resistance, 
mechanical properties, electric properties and absorbance 
of neutron radiation (Abdalla, 2003). There are several 
works that describe the synthesis and applications of 
BPFR (America Patash Chem Corp, 1964; Gao and 
Liu, 1999; Gao and Liu, 2001). This resin is usually 
synthesized by the formaldehyde method, in which phenol 
borate synthesized from phenol and boric acid is followed 
by the reaction with poly-formaldehyde. Another popular 
method is the synthesis using the method of formalim 
(Gao and Liu, 1999), which consists in the reaction of 
phenol with formaldehyde to form the alcohol and then 
followed the reaction with boric acid. 

MATERIALS AND EXPERIMENTAL

Materials

Solvents, boric acid and 2-hydroxy benzyl alcohol were 
purchased from Aldrich, Fluka or Merck, according to 
their required purity, price and availability. Butanediol, 

dichloromethane and epichlorhydrin were purified by 
distillation prior to use.

Experimental

Synthesis

Boric acid and 2-hydroxy benzyl alcohol in a ratio of 1:2 
were dissolved in toluene and placed in a four-necked 
round bottom flask equipped with a stirrer, thermometer, 
condenser and a Dean Stark system, and stirred under 
reflux for the period of four hours. Over this period, the 
amount of water collect at the Dean Stark was according 
to the calculated amount, and also the total disappearance 
of the alcohol can be observed on the TLC plate. Then, 
the solvent was evaporated giving a high viscous amber 
product in 89.4% yield.

The reactions were performed by the use of the Dean 
Stark system with a heat controlled oil bath, and they 
were followed through the amount of water that were 
released during the reaction and also from thin layer 
chromatography.

1H-NMR, 13C-NMR analysis were conducted on a 300 
MHz Brüker DPX spectrometer using methyl-d6 sulfoxide 
as solvent. The proton and carbon chemical shifts are 
recorded in ppm and calibrated on the solvents as internal 
standard. Infrared spectroscopy has been recorded by a 
Magna-IR spectrometer 750 Fa. Thermo Nicolet (4000 to 
400 cm-1, 40 scans). 

Resin characterization and composite processing and 
characterization

The characterization of boron-modified phenolic resin, 
uncured and cured, was performed by thermal (DSC and 
TG) and mechanical analysis. DSC analyses were carried 
out in a PerkinElmer Pyris 1 DSC analyser, at 20°C/min 
in N2 (20 mL/min), mass of 11 mg in a tightly closed 
aluminium sample holder and gave information on the 
curing process, temperature and heat of the reaction and 
also the glass transition temperature for the cured resin. 
The glass transition was measured in the second heating. 

TG/DTG analysis of uncured resin were carried out in 
a SDT-Q600 TA Instruments analyser, using alumina 
pans (11 mg), under nitrogen atmosphere (100 mL/
min) and heating rate of 10ºC/min. TG/DTG curves 
under nitrogen or synthetic air (20 mL/min) of the 
cured boron-modified phenolic resin were produced at 
10°C/min using a PerkinElmer Pyris 1 TG analyser 
and platinum pans (11 mg). TG/DTG/DTA curves 
were obtained with a Seiko TG/DTA 6200 analyser, 



Kawamoto, A. M. et al. 

J. Aerosp.Technol. Manag., São José dos Campos, Vol.2, No.2, pp. 169-182, May-Aug., 2010172

under synthetic air (20 mL/min) at 2.5 and 10oC/min, 
platinum pans (2 mg).

The rheological characterization of n on cured resin 
was performed on a Rheometrics SR5 rheometer by 
using a parallel plate measuring system. The rheological 
characterization helps to obtain viscosity profiles as a 
function of time, temperature and shear rate, which in 
turn can be used to define the processing window of the 
neat resin.

Thermal diffusivity measurements were carried out 
according to ASTM E1461-07 in the temperature range 
of 25 to 175°C. The thermal diffusivity of a material 
depends on its thermal conductivity, density and heat 
capacity according to Equation 1. The thermal diffusivity 
characterizes the heat transport in material during transient 
regime conditions. 

Thermal diffusivity
Cp

 κ
ρ.

			   (1)

Where: 
k = thermal conductivity; 
ρ = density; 
Cp = heat capacity.

A composite material was molded in the form of a plate 
by using a lab-scale autoclave. The composite was 
molded with silica fabric fiber (650 g/m2) and the boron-
modified phenolic resin. The cure schedule was made 
according to the cycle developed in this work. A 55% 
fiber volume fraction was measured in the silica fiber/
resin composite. 

The composite was characterized by interlaminar and 
Iosipescu shear tests. The interlaminar shear strength was 
measured according to ASTM D2344-06, using specimens 
with dimensions showed in Fig. 4. Accepted failure modes 
for interlaminar shear are characterized by tiny elongated 
cracks between laminae at the center of the specimen. The 
interlaminar shear strength is calculated according to the 
Equation 2.

τ average
ruptureP
A

= ⋅3
4

				    (2)

Where: 
taverage: apparent interlaminar shear strengh (MPa);
Prupture :  ultimate load corresponding to the rupture of the 
sample (N);
A: cross section area calculated by W (width) x t (thickness) 
(mm2).

The Iosipescu shear test was performed according to 
ASTM D5379-98. The strength and modulus of composite 

specimen were measured in the direction 1-2 of the 
composite, as shown in Fig. 5. In this case, the loading 
is parallel to the stacked layers. The test jig used for the 
tests is showed in Fig. 6. Accepted Iosipescu shear failure 
modes are mainly between the V-notches.

∅=3 mm

∅=6 mmP

P/2 P/2

load span

specimen

Figure 4:	 Dimensions of the specimens and its assembling on 
the equipment for performing the tests according to 
ASTM 2344-06.

Figure 5:	 Specimen geometry for Iosipescu shear tests in the 
1-2 plane.

3
1

2

Figure 6:	 Test jig for Iosipescu shear test, according to ASTM 
D5379-98.
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The Iosipescu shear strength can be calculated by the 
Equation 3:

τ  P
A

ultimate 					     (3)

Where:
t:  the aparent average shear strength, in MPa;
Pultimate: the ultimate load of the sample at rupture – N;
A: the cross section area of the specimen (width x 
thickness), between the V-notches (mm2).

RESULTS AND DISCUSSION

Structure of boron modified phenolic resin

According to the literature (Xu, 1976; Tu and Wei, 1981; 
Heefel et al., 1975), the initial condensation product of salicyl 
alcohol and boric acid consists mainly of phenol borate and 
some salicyl alcohol borate as shown in Fig. 7.

Several attempts has been done to obtain the boron resin 
using the formalin method, however, it was not possible 
to get a monomer free from side compounds and therefore 
the following reaction to get BPFR resin did not proceed. 
The alternative proposed in this project was to get the 
monomer starting from the available pure alcohol and 
reaction with boric acid. Then, the reaction was performed 
according to Scheme 3.

Figure 7:	 Condensation products from the reaction of salicyl 
alcohol and boric acid.

O O
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Scheme 1:	Method for the synthesis of salicyl alcohol. 
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In this work, the synthesis has been done using the 
Formalin (Gao and Liu, 1999) method, that consists in 
the initial formation of salicyl alcohol (reaction of phenol 
with formaldehyde) that followed the reaction with boric 
acid. However, the reaction of phenol with formaldehyde 
produced a mixture of several compounds as shown in 
Scheme 1 (Abdalla, Ludwick and Mitchell, 2003).

This mixture is difficult to separate, causing problems 
to follow the subsequent reaction to obtain the desired 
monomer.

Hirohata et al. (Hirohata, Misaki and Yoshii, 1987) used 
the strategy of the reaction of phenol with boric acid 
followed reaction with formaldehyde. However, this 
also leads to a mixture of several compounds that is very 
difficult to separate, as shown in Scheme 2.

However, it has been proved (Gao and Liu, 1999) that 
the reaction of salicyl alcohol with boric acid proceeded 
with the ratio of 50% in 50 minutes, while the reaction 
of phenol was only 4% in 150 minutes. Therefore, it is 
evident that the condensation product has salicyl alcohol 
groups attached to oxygen of boric acid (Scheme 3).

In order to replace the three OH groups at boric acid to 
alcohol, the molar ratio of 3:1 (alcohol:acid) was used, 
which would produce the compound shown in Scheme 4. 
As it has been described at experimental part, the reaction 
was performed in toluene at 120°C. However, the 
resulting compound has only two OH groups replaced by 
the alcohol. The third group could not be replaced, and 
this might be due to steric hindrance. After four hours, the 
reaction is finished, as it can be visualized from the water 
that is formed and collected at the Dean Stark. When 
the reaction was left longer (approximately 12 hours), it 
was verified the formation of side compounds, resulted 
from the reaction of the methylol groups that condense 
with each other forming methylene and ether linkages, as 
shown is Scheme 4.
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When the reaction is interrupted after four hours, 
the product is only the compound resulting from the 
condensation of boric acid with salicylic acid (Knop and 
Pilato, 1985), an amber and high-viscous compound. The 
non reacted salicylic acid precipitated as white solid.

Analysis of the boron modified phenolic resin

Figure 8 shows the FT-IR spectrum of the boron resin. 
The main bands are in agreement with the bands coming 
from boron and the alcohol. The region at 3400-3300 
cm-1 shows characteristic bands for alcohol and acid. The 
band at 1592 cm-1 belongs to the alcohol. Boric acid has a 
strong and characteristic band at 1480 cm-1 and the alcohol 
has several bands between 1482 and 1417 cm-1. Therefore, 
the bands that were observed between 1493 and 1421 cm-1 
belong to both acid and alcohol. The bands at 1395 and 
1234 cm-1 belong only to alcohol, since these bands are 

not present in the acid, and the band at 1350 and 1300 cm-1 
(BO) refers to the acid. The strong band at 1200 cm-1 and 
the remaining bands at 700 cm-1 refer to alcohol and acid 
(Smith, 1999). 

In general, the 1H-NMR and 13CNMR spectra of the 
BPFR resins are always complicated to analyze, which 
reflects the complexity of the boron containing system. 
The 1H-NMR spectrum is shown in Fig. 9. The wide 
resonance lines (multiplets) at the region of 6.89-7.19 
ppm refer to the aromatic protons (Ar-H). The resonances 
at the region of 4.97-5.04 ppm and 3.60-3.90 ppm are 
assigned to the methylene groups (CH2OH) and ether 
linkages (CH2OR). The peaks at the region of 2.5 ppm 
are assigned to the OH groups that come from boric acid 
and salicylic alcohol.

The elemental analysis of the resin showed 66.49% 
carbon, 5.36% hydrogen, 13.96% oxygen and 4.46% 
boron. The calculation of the percentage value of boron 
that can be present in a resin (pre-polymer), obtained 
from boric acid reaction, gave a value of about 4%. 
The calculation was carried out based on the compound 
resulted from the reaction of boric acid with two 
molecules of salicyl alcohol (Fig. 10a). The difference 
resulted from the measured elemental analysis was about 
10%, which might be from the small amount of product 
containing methylol group condensation that started to 
form (Fig. 10b), which presents higher content of boron.

Scheme 4:	Synthesis of boron resin.
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Figure 8:	 Fourier transform spectroscopy (FT-IR) for boron resin.
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Differential scanning calorimetry analysis

With differential scanning calorimetry (DSC) measurement 
is possible to get a thermal profile of the investigated 
sample under the conditions of thermal dynamic or 
isothermal scanning. The results of the measurements 
produce the knowledge of the reaction behavior, the 
beginning, the end and at which point the reaction reach 
its maximum peak. It also gives the heat of reaction and 
the glass transition temperature when operated under 
dynamic scanning. 

Figure 11 shows the DSC curve of the boron phenolic 
resin. The reaction starts at around 205°C, with a peak 
in 224°C, and ends at 260°C. The heat of reaction is 
approximately 120 J/g.The Tg at DSC from cured 
samples is shown in Fig. 12. The value of Tg for the 
boron phenolic resin is approximately 266.4°C, which 
is superior to the commercial phenolic resin that has a 
value of 130°C.

Table 1 summarized the results obtained from the 
isothermal cure showed in Fig. 10. These curves give the 
possibility to calculate the partial heat of reaction, which 
subsequently could be used for determining the rate of 
conversion of the ongoing curing reaction.

Thermogravimetric analysis

The thermogravimetric (TG) analysis is an important 
thermal analysis that shows the thermal stability of the 

Figure 9:	 1H-NMR of boron resin.
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Figure 10:	 (a) Molecules of salicyl alcohol (b) product 
containing methylol group condensation.
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materials. Also, the profile of decomposition process and 
yield of the material associated with the thermal treatment 
can be obtained.

The TG curve of a uncured boron-modified phenolic resin 
is shown in Fig. 13. It shows two stages of weight loss. The 
first stage started around room temperature and continued 
until 250°C, with 12.5 ± 0.3% of weight loss, which is 
related to the curing reaction. In the second stage, 250-
790°C, the weight loss was 25.7 ± 0.2%, which was due to 
the decomposition of the polymer, leaving a carbonaceous 
residue equal to 61.9 ± 0.4% of the initial mass.

around 25%, which results in a significant yield of 75%. 
As a comparison, condensation cure phenolic resins show 
a carbon yield of 45% tested under similar conditions. In 
synthetic air, the material showed a similar behavior, but 
with a weight loss of 10% up to 500°C, and 27% up to 
800°C, shows an yield of 72%. 

Figure 12:	 DSC analysis for determining glass transition 
temperature of boron resin after DSC curing. The red 
line is the specific heat curve. 
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Figure 13:	 TG and DTG curves of uncured boron resin (nitrogen, 
10°C/min).

Figures 14 and 15 show the TG analysis for a cured 
boron-modified phenolic resin in nitrogen atmosphere 
and synthetic air atmosphere, respectively. In nitrogen, 
the material showed a maximum weight loss of 5% up 
to 500°C, when an inflexion begins until, approximately, 
600°C. Up to 800°C, the material showed a weight loss 

Figure 14:	 TG of the cured boron-modified phenolic resin in 
nitrogen (20 mL/min). Heating rate = 10°C/min; 
sample weight = 12 mg.

Figure 15:	 TG of cured boron-modified phenolic resin in 
synthetic air (20 mL/min). Heating rate = 10°C/min; 
sample weight = 11.6 mg. 

The controlled degradation mechanism under pyrolysis 
of phenol formaldehyde type resins has been described 
elsewhere in many works during the last four decades 
(Costa et al., 1997; Serio et al., 1991). The structural 
changes are mainly monitored by thermogravimetry 
coupled with mass spectroscopy and FT-IR. In inert 
atmosphere and temperatures above 350°C, there is 
mainly evolution of water and unreacted oligomers 
(Costa et al., 1997). Up to 500°C, the polymer network 
remains essentially unaffected, whereas above 500°C 
dramatic changes can be noticed, leading to the 
collapse of the network and formation of polyaromatic 
domains (Costa et al., 1997; Clayton, Fabish and 
Lagedrost, 1969). 
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According to Costa (Costa et al., 1997), air oxidation takes 
place in lower temperatures (~300°C) than when the resin 
was heated in an inert atmosphere. This was confirmed 
in the present work for the boron-modified phenolic 
resin (Figs. 14 and 15). Although similar morphology 
rearrangements can take place, in the presence of an 
oxidizing atmosphere, oxidative degradation is not an 
important pyrolysis pathway, as mentioned by Costa et al. 
(1997).

In the case of the boron-modified phenolic resin, an 
hyperbranched structure can take place after curing, 
which increases the carbon yield (~80%/mass in nitrogen 
at 800°C) in the air in relation to the conventional phenol 
formaldehyde resin (~45%/mass in nitrogen at 800°C) 
(Costa et al., 1997).

On the other hand, Liu  et al. (2007) studied the pyrolysis 
and the structure of hyperbranched polyborate modified 
phenolic resin using thermogravimetry. The resin was 
prepared by mixing resole with boric acid in acetone. The 
yield in weight loss obtained by thermogravimetry was 
found to be ~75%/mass in nitrogen up to 800°C, which is 
similar to the result  found in the present work (Fig. 14).

The thermogravimetric studies performed on the boron-
modified phenolic resin show the outstanding performance 
of this material in oxidizing environment (Fig. 16) in 
relation to the commercial phenolic resin (Fig. 17). Boron 
has been used as an oxidation resistant material for carbon 
materials, as a surface coating or as a mixture in the 
formulation of the carbon material (Castro, 1991; McKee, 
1991). So, it is possible that the B-C linkages formed in 
the resin during charring can enhance oxidation resistance 
during temperature excursion.

Figures 16 and 17 show curing process for boron phenolic 
resin comparatively to CR2830 phenol-formaldehyde 
resin at different heating rate in synthetic air. The 
results can prove the superior thermal properties of the 
boron-modified phenolic resin when compared with the 
commercial phenolic resin that are in current use at the 
institute in the thermal protection of the Rocket program. 
Additionally, the high yield (~70%/mass at 700°C) of the 
resulting carbon from boron-modified resin, compared 
to the commercial phenolic resin, is a significant result 
for decreasing the processing time for Carbon/Carbon 
composite, which consequently reduces the number of 
cycles required for the pyrolysis/impregnation processes.

Results of thermal diffusivity

Figure 18 shows the curve of thermal diffusivity for boron 
phenolic resin. The majority of the polymers have thermal 

diffusivity in the range of 1.0 x 10-7 and 1.5 x 10-7 m2/s 
at room temperature (Santos, Mummery and Wallwork, 
2005). Thermal diffusivity of unfilled phenolic resin is 
hardly found in literature. Besides, thermal properties 
of unfilled polymer materials are given by their thermal 
conductivity. Anyway, the thermal conductivity of 
an unfilled phenolic resin at 25°C is 0.21 W/m.K and 
increases to 0.28 W/m.K at 316°C (US Army Armament 
Research, Development, and Engineering Center, 1991). 
The specific heat of a typical phenolic resin is ~1.2 kJ/
kg.K and the density is ~1250 kg/m3 – this results in a 
thermal diffusivity of ~0.14 mm2/s at 25°C, which agrees 
reasonably with the result found for the boron-modified 
phenolic resin (Fig. 18). At temperatures higher than 
200°C, phenolic resin undergoes morphological changes 
and the thermal conductivity at 316°C can only be taken 
as a reference.

Rheological characterization

Figure 19 shows results of the storage shear modulus (G’), 
loss modulus (G”), Tan δ and viscosity (η) as a function 
of shear stress (τ).

Figure 16:	 TG/DTA curves for the cured boron-modified 
phenolic resin. (A) Rate of heating of 2.5°C/min, in 
synthetic air, weight of the sample = 2.184 mg; (B) 
Rate of heating of 10°C/min, in synthetic air, weight 
of the sample = 2.2669 mg.
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Figure 17:	 TG/DTA curves for a cured CR2830 phenol-
formaldehyde resin. (A) Rate of heating of 2.5°C/
min, in synthetic air, weight of the sample = 2.432 
mg; (B) Rate of heating of 10°C/min, in synthetic air, 
weight of the sample = 2.206 mg.

Figure 18:	 Thermal diffusivity as a function of temperature for 
the cured boron-modified phenolic resin.

Figure 19:	 Elastic modulus (G’), loss modulus (G”), tan δ and 
viscosity (η) versus shear stress for boron phenolic 
resin at room temperature (25°C).
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The shear stress defines the conditions for testing the neat 
resin, which corresponds to the near newtonian behavior 
related to the storage shear modulus. For the phenolic 
boron resin, the chosen value for shear stress was 6 Pa, 
which corresponds to the region of maximum G’. This 
value was kept constant for all the other tests.

Figure 20 shows the plot of viscosity (η) as a function of 
temperature for the boron-modified phenolic resin. It can 
be seen that the minimum viscosity of the resin reach a 
value lower than 20 Pa at 60°C, keeping it constant up to 
approximately 200°C. This indicates that, in this range of 
temperature, the cure reaction is latent. This consequently 
results in benefits for processing as, for instance, a longer 
pot life for the resin. In this range of temperature (60-
200°C), is not temperature dependent, which characterizes 
a polymer that contains mainly olygomers.

Figure 20:	 Dynamic scanning at the rate of 5°C/min for shear 
elastic modulus (G’), shear loss modulus (G”), tan 
δ and viscosity (η) at frequency of 1 rad/s and shear 
stress of 6 Pa.
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Figure 21 shows graphics of viscosity as a function of 
time for the boron-modified phenolic resin at isotherm 
temperatures of 160, 180 and 200°C. In this case, it can be 
seen that cure reactions start at 20 minutes, 13 minutes and 
5 minutes, respectively. 
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For composite processing, results of viscosity as a function 
of time and temperature are important, since they can 
define the schedule of the curing cycle. Figure 22 shows the 
curing cycle that has been proposed for curing composites 
made with the boron-modified phenolic resin matrix. The 
curing process started at a heating rate of 3°C/min up to 
160°C. After 60°C, the material exhibits adequate flow, 
which allows the wetting of the reinforcing fibers. After 
~30 minutes at 160°C, pressure of 0,7 MPa and vacuum are 
applied to the molding system, for compaction of the layers. 
After 1 hour at 160°C, the curing proceeds up to 220°C.

The results showed that there is no evidence of 
significant differences in the average values of  ILSS 
for both materials, although there is a gently failure 
mode of the composite made with commercial phenolic 
resin in relation to the composite made with boron-
modified phenolic resin. This is not a surprise, since 
interlaminar shear properties are a matrix dominated 
property.

Figure 21:	 Viscosity as a function of time at temperature 
isotherms of 160°C, 180°C and 200°C for the boron-
modified phenol resin.
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Figure 22:	 Curing cycle proposed for the boron-modified 
phenolic resin for composite preparation.

Results of interlaminar shear strength 

Figure 23 shows the interlaminar shear stress (ILSS) as a 
function of deflection for boron-modified phenolic resin 
composite and silica fiber, and Fig. 24 shows comparative 
results of composites made from commercial phenolic 
resin and silica fibers.

Figure 23:	 ILSS as a function of deflection for boron-modified 
phenolic resin composite/silicon fiber.

Figure 24:	 Comparative results of a ILSS as a function of 
deflection for composites made from commercial 
phenolic resin (CR 2830) and silica.
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Results of Iosipescu shear test

The value of the Iosipescu shear strength is around 25 
MPa, corresponding to a deformation closer to 1.5%. 
The shear modulus (G12), calculated at the limit of 20 
MPa, was approximately 3.5 GPa, which is a value close 
to many other polymer composite systems. Figure  25 
shows the Iosipescu shear strengh as a function of shear 
strain for the boron-modified/phenolic resin. Figure 26 
shows a representative Iosipescu composite specimen 
after the test. It can be observed that the failure region is 
located between the V-notches, which is a representative 
and valid failure mode for Iosipescu shear. 

From DSC analysis it is also possible to see the superiority 
of the boron resin, comparing to the commercial phenolic 
resin.

ILSS and shear resistance Iosipescu tests have been done 
in silica fiber and boron phenolic resin composite. ILSS 
was ~16 MPa for silica fiber/phenolic resin and silica 
fiber/boron-modified phenolic. The in-plane V-notch 
Iosipescu shear for silica fiber reinforced with boron-
modified phenolic resin was 25 MPa.

ACKNOWLEGMENT 

The authors thanks to Unesp-FEG, Dr. M. L. Costa, for 
the DSC and rheometer measurements, Wenka Schweiker 
from ICT (Germany) for some FT-IR measurements 
and for Dr. D. Camarano, from CDTN/CNEN, for the 
thermal diffusivity measurement.

Figure 26:	 View of the failure in the central V-notch region of 
the Iosipescu specimen of boron-modified phenolic 
resin/silica fiber.

Figure 25:	 Iosipescu shear stress as a function of shear strain 
for a boron-modified phenolic resin/sílica fiber 
composite.

CONCLUSIONS

A boron-modified phenolic resin was prepared from the 
reaction of salicyl alcohol and boric acid using the ratio 
alcohol:acid of 2:1. The resulting compound has been 
fully characterized by NMR, IR, DSC, TG and elemental 
analysis, and it showed properties that indicate promising 
processing applications. 

It has been cured as composite with silica, and the results 
were compared with cured commercial phenolic resin. 
The results of TG of boron phenolic resin showed clearly 
a superior thermal performance when compared with the 
commercial ones, that are in use at the Brazilian space 
program.
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