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ABSTRACT: Spacecrafts in space environment are exposed to several kinds of thermal sources such as radiation, albedo and 
emitted IR from the earth. The thermal control subsystem in spacecraft is used to keep all parts operating within allowable 
temperature ranges. A failure in one or many temperature sensors could lead to abnormal operation. Consequently, a 
prediction process must be performed to replace the missing data with estimated values to prevent abnormal behavior. The 
goal of the proposed model is to predict the failed or missing sensor readings based on artificial neural networks (ANN). 
It has been applied to EgyptSat-1 satellite. A backpropagation algorithm called Levenberg-Marquardt is used to train the 
neural networks (NN). The proposed model has been tested by one and two hidden layers. Practical metrics such as mean 
square error, mean absolute error and the maximum error are used to measure the performance of the proposed network. 
The results showed that the proposed model predicted the values of one failed sensor with adequate accuracy. It has 
been employed for predicting the values of two failed sensors with an acceptable mean square and mean absolute errors; 
whereas the maximum error for the two failed sensors exceeded the acceptable limits.

KEYWORDS: Artificial neural networks, Thermal control subsystem, Thermal control simulation, Sensor values prediction, 
Levenberg-Marquardt algorithm. 

INTRODUCTION

Spacecrafts in space environment are exposed to different thermal conditions such as Sun radiation, albedo (reflected sunlight 
from earth) and emitted IR from the earth (Fig. 1). The amount of external heat absorbed directly from solar energy is a function 
of the satellite material properties and its orientation with respect to the sun (Bulut et al. 2008b). The satellite must be protected 
from all thermal effects. The thermal control subsystem is used to maintain the temperature of all satellite components within 
acceptable ranges during all phases.

The temperature may exceed the acceptable values due to unexpected interferences, which may result in serious damage to the 
satellite parts or decreasing the lifetime of the mission (Boato et al. 2017). Also, some temperature readings may be missed due 
to sensor breakdown, or it may encounter wrong values due to abnormal heat from one or more of the electronic components. 
Predicting the missing values is very essential to keep the satellite working normally, and can be used to deal with some of the 
satellite parts problems.
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Figure 1. Heat exchange between the satellite and the space environment 

(Pngtree.com and freepik.com). 
 

 
Figure 2. EgyptSat-1 Satellite (NARSS Foundation http://www.narss.sci.eg/). 
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Figure 2. EgyptSat-1 Satellite (NARSS Foundation http://www.narss.sci.eg/).

Many algorithms for predicting the missing data have been developed in the last decades (Schafer and Graham 2002). The 
first solution is to discard the samples with missing values. This method is known as listwise deletion or complete case analysis 
(Van Buuren 2018). It is not suitable for high rate missing data or temperature sensor failure in the satellite as it may result in 
mission failure. The second solution is to replace the missing data with estimated values, which is known as data imputation. A 
variety of imputation methods have been developed. Such methods include last value carried forward, mean imputation, spectral 
analysis, kernel methods, matrix factorization, EM algorithm, matrix completion and multiple imputations (Che et al. 2018).

Since the early 2000s, a new paradigm of thinking has emerged where missing values are treated as unknown values 
to be learned through a machine-learning model. In this framework, complete data samples are used as training set for a 
machine-learning model, which is then applied to the data samples with missing values to impute them. Both clustering 
(unsupervised) and classification (supervised) algorithms can be adapted for imputation (Liu and Gopalakrishnan 2017).

Using popular imputation methods lead to a time-consuming prediction procedure and may impair the prediction performance. 
This paper proposes a model based on the ANN to predict the failed sensor readings. An ANN can represent any linear or nonlinear 
system, even when no physical model or mathematical equations are needed. The ANN training establishes the correlation between 
output and input. The proposed networks have been trained using the Levenberg-Marquardt algorithm with the EgyptSat-1 
(Fig. 2) satellite temperature data to estimate the failed or missing sensor values.
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One of the advantages of using a NN to predict missing values over other imputation methods is that the trained network can 
simulate the new scenarios of the satellite.

RELATED WORK

Schafer and Graham (2002) surveyed the methods for missing data treatment and described their strengths and 
limitations. Batista and Monard (2003) analyzed four missing data imputation methods for supervised learning. Graham 
(2009) presents a practical summary of the missing data literature, including a sketch of missing data theory and descriptions 
of normal model multiple imputation (MI) and maximum likelihood methods. Fung (2006) reviewed many approaches for 
modeling time series data with missing values such as time series decomposition, least squares approximation, and numerical 
interpolation methods. Avinash et al. (2015) predicted satisfactorily the next data of wireless sensor networks using Kalman 
filter. Sutagundar et al. (2016) presented the ANN modeling of Micro-Electro-Mechanical cantilever resonator using the 
Levenberg-Marquardt algorithm.

Neural networks have been used in many applications to treat the missing data problem, especially in the medicine. Tresp 
and Briegel (1998) presented a solution using the recurrent NN to predict the glucose/insulin metabolism of a diabetic patient 
where blood glucose measurements are only available few times a day at irregular intervals. Pan et al. (2017) successfully 
predicted the relapse in pediatric acute lymphoblastic leukemia in the context of machine learning algorithms.

This paper focuses on predicting the values of a failed or missed sensor. But to detect the failed sensor, other techniques 
were proposed by Gilmore (2002) and Napolitano et al. (1995). Some works in the literature like Reis Junior et al. (2017), 
Girimonte and Izzo (2007) and López-Martínez et al. (2015) proposed the use of the ANN with thermal subsystems or others. 
Song and Zhang (2014) made a comparison between four algorithms for training the NN Quasi-Newton algorithm: the 
gradient descent algorithm with adaptive learning rate back-propagation algorithm, the gradient descent with momentum 
and adaptive learning rate back-propagation algorithm, and the Levenberg-Marquardt algorithm. Results of these algorithms 
demonstrated that the best one is the Levenberg-Marquardt one. There is a high dependency of the ANN weights, biases, 
learning rate, number of hidden layers and the number of neurons of each hidden layer on its performance. There is no 
specific technique or algorithm to find the optimum number of hidden layers or number of neurons in each layer for a 
certain problem. However, Kamiński (2016) and An et al. (2016) presented methods for optimizing the weights, biases and 
learning rate. To control the temperature of the satellite, passive and active control systems are used. The passive control 
is applied to most of the nano-satellites because of its simplicity, cost reliability, mass, and power. Passive control can be 
performed by Multi-Layer Insulation (MLI), Optical solar reflector (OSR), paints, heat sinks, heat Pipes (HP) and thermal 
insulation spacer. Active temperature control can be designed by heaters and temperature sensors. Bulut and Sozbir (2015) 
and Liu et al. (2008) provide more information about active and passive control methods.

Further information about forecasting using Levenberg-Marquardt algorithms is accomplished by Saini and Soni (2002). 
Bulut et al. (2008a) presented spacecraft thermal control design using passive and active approaches. They demonstrated 
that the thermal control of the satellite is affected by the thermal properties of passive approaches. Gilmore (2002) includes 
valuable information about the space environment and the thermal control system design, testing and analysis. Li-Ping and 
Hongquan (2008) demonstrate a Particle Filtering (PF) algorithm based on a double lumped thermal model to identify the 
heat flux dynamically and predict the temperature more correctly.

MATHEMATICAL MODELING FOR SATELLITE HEAT BALANCE

The overall thermal control of a satellite is usually achieved by balancing the energy emitted by the spacecraft as IR radiation 
against the energy absorbed from the environment. Equation 1 represents the mathematical model for the satellite heat balance.
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𝑑𝑑𝑑𝑑 = 𝑄𝑄𝑎𝑎 − 𝑄𝑄𝑑𝑑 + 𝑄𝑄𝑙𝑙                                              (Eq. 1)

where: i refers to the node number; m is the mass; and cp is the specific heat at constant pressure; Qa, 

Qd and Ql are the heat absorbed from the space, the heat dissipated to space by the radiator and the heat 

developed by the thermal control subsystem for heat balance respectively. This mathematical model 

cannot be used to simulate and predict the behavior of new scenarios because the calculations of Qa, 

Qd and Ql require some assumptions for their parameters according to the satellite attitude, orientation 

and its position with respect to the sun. So, the ANN may be used to predict and simulate the behavior 

without assumptions and prior information. 

THE NEURAL NETWORK 

 Artificial neural networks are mathematical models inspired by biological NN. The ANN 

consists of several neurons interconnected together. A neuron is a mathematical model for information 

processing. It comprises a summation unit that receives multiple inputs and a transfer function, which 

is also known as the activation function. ANNs have the advantage to perform nonlinear mapping of 

multidimensional functions and predicting system outputs by limited experimental data. The main 

advantage of utilizing an ANN in the present case is that it does not require any presumptions for the 
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physical components of the satellite or space parameters. It just requires the data received from the live 

satellite to predict and simulate the failed sensor values. 

 A backpropagation neural network (BPNN) with one hidden layer can approximate any system 

with nonlinear characteristics, such as satellite thermal control subsystem. The BPNN as well as the 

feedforward NN are consisting of inputs, hidden layers and outputs, but the BPNN returns the error 

values back to modify the weights and bias values. This gives the BPNN the ability to minimize the 

error between the NN output and target values (Fig. 3). So in this model the BPNN may be used to 

predict the failed sensor values. The estimated output may be calculated by Eq. 2. 

                                     𝑌̌𝑌 = 𝑓𝑓 ( ∑ w1,j
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where: Y̌ is the estimated output; wi,j denotes the weights between the inputs and the hidden layer; w1,j 

denotes the weights between the hidden and output layers; bj refers to the biases of the hidden layer 

neurons; and b2 is the biases of the output layer neuron. 

 

 
Figure 3. The structure of the backpropagation neural network. 
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Figure 3. The structure of the backpropagation neural network.
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Table 1. Part of the EgyptSat-1 Satellite data.

Date T1 T2 T3 T4 T5 T6 T7 T19 T20

24/06/2009-20:27:20 7.61 6.47 2.61 –18.6 –13.5 –24.1 –2.39 ..... –31.5 –37.0

24/06/2009-20:27:21 7.04 6.13 2.8 –17.9 –13.2 –23.4 –1.59 ..... –32.38 –37.38

24/06/2009-20:27:22 7.38 5.91 2.61 –18.07 –13.3 –24.2 –1.82 ..... –33.18 –37.38

24/06/2009-20:27:23 7.5 6.59 2.61 –18.18 –13.6 –25.2 –2.16 ..... –32.95 –37.27

20/04/2010-09:11:48 19.88 9.2 9.77 31.13 24.2 26.36 18.97 ..... 11.47 66.35

20/04/2010-09:11:49 18.18 8.97 10.11 30.9 24.54 26.47 18.97 ..... 11.81 66.46

20/04/2010-09:11:50 18.52 8.97 10 30.79 24.31 26.58 18.97 ..... 11.7 66.35

20/04/2010-09:11:51 19.09 9.09 9.77 30.67 24.31 26.58 18.97 ..... 11.7 66.12

The temperatures unit is °C.

DATASET APPROACHES

There are two approaches for the satellite temperature data to be used for training the network. The first approach 
is to predict the failed temperature sensor values depending on all parameters in the telemetry (the overall data for the 
satellite) such as sun sensor, earth sensor, altitude values, and the temperature readings. In this approach, the NN output 
represents the failed temperature sensor values, and the other parameters represent the network input. The second 
approach uses only the temperature sensors readings. The network output is the failed sensor values, and the network 
input is the other temperature sensors readings. In this paper, the second approach is adopted.

DATASET FOR EGYPTSAT-1
EgyptSat-1 is the first Egyptian satellite for remote sensing purposes. It had been launched in 2007. The satellite has 

twenty temperature sensors distributed on all plates. Each side on the satellite has three sensors, but the top and the base 
have four sensors each, as shown in Fig. 4. The sample values are gathered from the readings of two years, 2009 and 2010. 
The total number of samples is 9027. Table 1 presents part of the samples.

Figure 4. Location of the temperature sensors on the satellite plates.
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24/06/2009
-20:27:20 7.61 6.47 2.61 –18.6 –13.5 –24.1 –2.39 ..... –31.5 –37.0 

24/06/2009
-20:27:21 7.04 6.13 2.8 –17.9 –13.2 –23.4 –1.59 ..... –

32.38 
–

37.38 
24/06/2009
-20:27:22 7.38 5.91 2.61 –

18.07 –13.3 –24.2 –1.82 ..... –
33.18 

–
37.38 

24/06/2009
-20:27:23 7.5 6.59 2.61 –

18.18 –13.6 –25.2 –2.16 ..... –
32.95 

–
37.27 

20/04/2010
-09:11:48 19.88 9.2 9.77 31.13 24.2 26.36 18.97 ..... 11.47 66.35 

20/04/2010
-09:11:49 18.18 8.97 10.11 30.9 24.54 26.47 18.97 ..... 11.81 66.46 

20/04/2010
-09:11:50 18.52 8.97 10 30.79 24.31 26.58 18.97 ..... 11.7 66.35 

20/04/2010
-09:11:51 19.09 9.09 9.77 30.67 24.31 26.58 18.97 ..... 11.7 66.12 

The temperatures unit is °C. 

 

TESTING THE PERFORMANCE 

 The performance is measured by: (I) The Mean Square Error (MSE), which is frequently used 

to measure the difference between the values predicted by a model and the values actually observed; 

(II) Mean Absolute Error (MAE), which measures the average error for the overall dataset; and (III) 

the maximum error for each network. A better model often provides the least maximum error value 

and acceptable MSE and MAE, where (Eqs. 3 and 4) 

                                                       MSE =  1
n ∑ (n

i=1 Ỹi − Yi)2                                   (𝐸𝐸𝐸𝐸. 3) 

                                                  MAE =  1
n ∑ |n

i=1 Ỹi − Yi | = 1
n ∑ |n

i=1 ei |                      (𝐸𝐸𝐸𝐸. 4) 

where: Ỹi is the predicted values; Yi is the actual values; and n represents the number of samples. 

THE PROPOSED NEURAL NETWORKS 

 Training the proposed networks was performed using the BPNN Levenberg-Marquardt 

algorithm (ALM). It is widely accepted as the most efficient algorithm in the sense of realizing 

accuracy because it interpolates between the Gauss-Newton algorithm (GNA) and the method of 

gradient descent. Also, it is the fastest backpropagation algorithm in Matlab toolbox and is highly 

recommended as a first-choice of the supervised algorithms. 

(3)

(4)

Figure 5. The procedures performed for the prediction operation.
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TESTING THE PERFORMANCE

The performance is measured by: (I) The Mean Square Error (MSE), which is frequently used to measure the difference 
between the values predicted by a model and the values actually observed; (II) Mean Absolute Error (MAE), which measures the 
average error for the overall dataset; and (III) the maximum error for each network. A better model often provides the least 
maximum error value and acceptable MSE and MAE, where (Eqs. 3 and 4)

where Y ˜
i is the predicted values; Yi is the actual values; and n represents the number of samples.

THE PROPOSED NEURAL NETWORKS

Training the proposed networks was performed using the BPNN Levenberg-Marquardt algorithm (ALM). It is widely accepted 
as the most efficient algorithm in the sense of realizing accuracy because it interpolates between the Gauss-Newton algorithm 
(GNA) and the method of gradient descent. Also, it is the fastest backpropagation algorithm in Matlab toolbox and is highly 
recommended as a first-choice of the supervised algorithms.

It is well known that many parameters affect the performance of the neural networks such as the number of hidden layers, 
number of neurons for the hidden layers, initial weights and biases. But no certain approach or algorithm could be used to find the 
optimum number of neurons for a certain problem. So for choosing the best-trained network to predict one or two failed sensor 
values, many networks have been designed and tested. Considering constant weights and biases, Fig. 5 shows the procedures of 
the proposed model for the prediction operation.
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Figure 6. The first neural network model, 19 inputs and one output.

Figure 7. (a) Predicting values of the T3 sensor using 18 sensor readings. (b) Predicting the values of T5 using the other 18 sensors.
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Two procedures for designing the neural networks are proposed. The first procedure is used to predict the missing values of 
one failed sensor. The output layer of the designed network consists of one neuron for the estimated values of the failed sensor. 
The input layer consists of 19 neurons corresponding to the correct readings of the 19 sensors in addition to one hidden layer 
as in Fig. 6. In the second procedure, two failed sensors were considered. In this case, two neural networks were designed. Each 
network is used to predict one of the two missed sensors and consists of one hidden layer, 18 input neurons for the correct 
18 sensor readings and one output for the generation of the estimated values of the failed sensor (Fig. 7).

Three processes for predicting the failed sensors have been performed. The first is the training process in which the network 
is trained with seventy percent (70%) of the overall data set. The second process is the validation process, used to choose the best 
network among all other designed networks by testing each one of them with the second part of the data, which is 15%. The last 
process is the testing process in which the third part of the data set is used to measure the performance of the chosen network 
(15%). The three parts of the data set were chosen randomly.

SIMULATION AND RESULTS
PREDICTING THE VALUES OF ONE FAILED SENSOR

As shown in Fig. 5, two networks have been trained and tested to predict the missing values of one failed sensor. The first 
network has only one hidden layer and the second contains two hidden layers. Considering the third sensor (T3) to be failed, Fig. 8 
shows the effect of the number of neurons on the performance of one and two hidden layer networks regarding the maximum 
error, MSE, and MAE. The results showed that the MSE and MAE for two hidden layers network are better than the one hidden 
layer network. The maximum error value for one hidden layer in most cases is less than the values of two hidden layers. But two 

(a) (b)
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Figure 8. Effect of the number of neurons on the performance of the first network: 
(a) on the maximum error; (b, c) on the MSE and MAE.
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hidden layers network with ten neurons provides the minimum value for the maximum error, which is 2.1 °C. So the two hidden 
layers network with ten neurons has been chosen and tested with the third part of the dataset (testing set) (Fig. 9). The testing 
results demonstrated that the maximum error is 2.75 °C, the MSE equals 0.08, and the MAE equals 0.17. The allowable tolerance 
is ±5 °C, according to references (Boato et al. 2017; Gilmore and Donabedian 2002).

In Fig. 10 the estimated values of the sensor values (ANN output) and the actual values of the T3 sensor have been compared 
for the first hundred samples. The figure shows that the estimated values and the target ones are almost identical. The error, which 
is the difference between the estimated values and the target, is plotted in Fig. 11. It is shown that the ANN can predict the failed 
sensor values with high accuracy.

The previous results consider only the third sensor T3 to be failed. The same procedures have been performed on another ten 
sensors considering each one of them failing individually. The prediction results are shown in Table 2.

(a)

(b)

(c)
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Figure 10. Estimated values (ANN output) and target for the first hundred samples for the T3 sensor.

Figure 11. Errors for all testing samples for the T3 sensor.
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Table 2. Performance of the networks regarding failure for each sensor.

Failure Number of neurons MSE MAE Maximum error (°C) Tolerance

Regarding T3 failed 10 0.12 0.2 2.7 Accepted
Regarding T1 failed 50 0.16 0.23 2.4 Accepted
Regarding T2 failed 35 0.15 0.22 3.4 Accepted
Regarding T4 failed 10 0.26 0.33 3.4 Accepted
Regarding T5 failed 5 0.23 0.32 3.6 Accepted
Regarding T6 failed 30 0.16 0.25 2.9 Accepted
Regarding T7 failed 10 0.14 0.25 2.3 Accepted
Regarding T8 failed 25 0.17 0.26 3.5 Accepted
Regarding T9 failed 10 0.26 0.33 4.4 Accepted

Regarding T10 failed 45 0.27 0.25 4.2 Accepted

PREDICTING THE VALUES OF TWO FAILED SENSOR

Two networks performed the values prediction of two failed sensors. Each network is used to predict the values of one failed 
sensor. It consists of 18 neurons in the input layer corresponding to the correct 18 sensors and one neuron in the output layer to 
estimate one of the two failed sensors, as indicated in Fig. 7. The number of hidden layers and the number of neurons has been 
changed according to the procedure shown in Fig. 5.

As shown in Fig. 12, one hidden layer network cannot be used to predict the values of the first sensor because the maximum 
error exceeds the acceptable limits (±5 °C) for all cases. The two hidden layers network with 30 neurons (Fig. 13) provide acceptable 
values for the maximum error, MSE, and MAE. This network has been tested by the third part of the dataset (testing dataset), and 
the results demonstrated that the maximum error is 6.5 °C, MSE is 0.44 and the MAE equals to 0.34.

The results for the prediction of he second sensor values are as shown in Fig. 14. The maximum error values for one hidden 
layer are better than those for two hidden layers. The one hidden layer network with ten neurons has been chosen because it 
provides the least value for the maximum error 3.85 °C.

After testing the chosen network with the testing dataset, the maximum error value is 5.7 °C.
As shown in Table 3, the MSE and MAE values indicate that the system predicts the two failed sensor values with good accuracy. 

But the maximum error is 6.5 °C for the first sensor and 7.6 °C for the second and these values exceed the acceptable limits.
Many factors could impact the performance of the proposed model such as number of both hidden layers and neurons as well 

as percentage of data division. Therefore, k-fold cross-validation (CV) is utilized to evaluate the average performance. The cross 
validation (CV) is a technique for evaluating the performance of predictive models by showing how the model would generalize 
to an independent data set.

In K-fold cross-validation mechanism, the dataset is randomly divided into k disjoint subsets (folds) of equal size. The 
mechanism procedures can be listed as follow: one of the k subsets is used as the testing set, whereas the training set is constructed 
by other k-1 folds; this process is repeated for using another fold as a testing set and the other folds as a training set; then, the 
performance metrics are measured to evaluate the whole performance by averaging the k accuracy estimates. Results of 10-fold 
CV for predicting one and two failed sensor values are listed in Tables 4 and 5.

The average values of the maximum error, MSE and MAE from Table 4 affirm the previous results that the model is able to 
predict the values of one failed sensor. It cannot be used to predict the values of two failed sensors as the average of the maximum 
error exceeded the temperature limit for the first sensor. Furthermore it provides a value close to the temperature limit for the 
second sensor.
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Figure 12. Performance of the first sensor: (a) effect of neurons on the maximum error; 
(b) effect of neurons on the mean square error; (c) effect of neurons on the mean absolute error.
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Figure 13. The Chosen network for predicting the first sensor values.
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Figure 14. Performance of the second sensor: (a) effect of the number of neurons on the maximum error; (b) effect of the 
number of neurons on the mean square error; (c) effect of the number of neurons on the mean absolute error.

Table 3. Performance of the two neural networks for two failed sensors.

Neural network The first sensor The second sensor

MSE 0.44 0.34
MAE 0.34 0.27

Max error (°C) 6.5 5.7

Table 4. Performance of the model using k-fold CV for one failed sensor.

Number of iterations 1 2 3 4 5 6 7 8 9 10 Average

Max error ME (°C) 1.9 3.5 2.8 3.0 2.4 2.7 2.0 3.2 2.3 2.1 2.59

MSE 0.07 0.25 0.13 0.11 0.1 0.1 0.09 0.15 0.09 0.12 0.12

MAE 0.16 0.16 0.22 0.19 0.18 0.19 0.18 0.23 0.17 0.22 0.19

(a)

(b)

(c)
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CONCLUSION

Predicting the failed temperature sensor values protects the satellite from abnormal behavior. In this paper, a prediction model 
of a spacecraft’s temperature sensor values based on ANN is proposed and applied to the EgyptSat-1satellite, which contains 
twenty temperature sensors. The proposed model was utilized to predict the values of one and two failed sensors. The simulation 
results depict the outstanding ability of the ANN modeling to predict the values of missing values of one failed sensor with good 
accuracy. The model has been applied to most of the sensors considering them to be failed individually and predicted the values 
of each of them without exceeding the acceptable temperature limits.

Using the proposed model to predict the values of two failed sensors, it was observed that the model is able to estimate the 
two sensor values with acceptable MSE and MAE. But the maximum error exceeded the acceptable limit, which is not tolerable 
on the satellite.

The trained network provided a real-time diagnostics by predicting the missing/faulty readings without delay time regarding 
the high-speed capability of the ANN. This is very important for the satellite as real-time diagnostics in the spacecrafts, especially 
for fault detection and prediction, is an essential issue.
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