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Abstract: A multistage adaptive fast multipole method is used to accelerate the matrix-vector products arising from

the Burton-Miller boundary integral equations, which are formed in a boundary element method. The present study

considers the scattering of acoustic waves, generated by localized sources from bodies with rigid surfaces. Details

on the implementation of a multistage adaptive fast multipole method are described for two and three-dimensional

formulations. The code is verified through the solution of well documented test cases. The fast multipole method is tested

for acoustic scattering problems of single and multiple bodies, and a discussion is provided on the performance of the

method. Results for engineering problems with complex geometries, such as a multi-element wing, are presented in

order to assess the implemented capability.
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INTRODUCTION

The development of physics-based noise prediction tools
for analyzing aerodynamic noise sources, such as the jet and
airframe ones, is of paramount importance, since noise regu-
lations have become more stringent, and more sophisticated
methods are needed to achieve the required noise reductions
without a significant performance penalty. The design of 3D
complex configurations requires the use of time-consuming
numerical simulations for the study and mitigation of noise
sources. In the context of aeroacoustics, several acoustic
scattering codes, such as the fast scattering code (FSC) from
NASA Langley Research Center (Dunn and Tinetti, 2004;
2005; Tinetti ef al., 2007, Dunn and Farassat, 2007) and the
ACTI3S and the ACTIPOLE codes from Airbus-F, (Delnevo
et al., 2005), are under development. These scattering codes
solve the Helmholtz equation through the discretization
of boundary integral equations by the boundary element
method (BEM) or by the equivalent source method (ESM).
It is found that the fast multipole method (FMM) accelerates
the computations of BEM and ESM formulations leading to
high improvements in simulation time and memory storage
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(Nishimura, 2002; Sakuma and Yasuda, 2002; Chen and
Chen, 2003; Darve and Have, 2004). In the present work, we
have developed a scattering code for 2D and 3D simulations
using a multilevel FMM and BEM. In the future, the code
will be used for the analysis of airframe noise sources and
for exploring strategies for their mitigation.

The use of BEM for solving scattering and radiation
problems in acoustics provides several advantages over finite
element methods (FEM) and finite difference methods (FDM).
Among these, one can cite the advantage of requiring only the
boundary discretization, simplified preprocessing, and accu-
rate modeling of infinite domains. However, for large scale
problems, the solution of the nonsymmetric dense matrices
appearing in the BEM have computational complexity propor-
tional to O(n*) when an iterative solver is used, which makes
the method prohibitive to use. Here, n is the number of bound-
ary elements used in the discretization. In order to reduce the
computational complexity, one can use FMM to accelerate the
solution of the linear systems and reduce the computational
complexity to an order proportional to O(n log n).

The FMM was introduced by Rokhlin (1983) for the
solution of integral equations of classical potential theory.
However, the method was further developed and became
famous for the solution of N—body problems in the paper of
Greengard and Rokhlin (1987).
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The application of the FMM for acoustic scattering was
introduced by Rokhlin (1990) for the solution of integral
equations of scattering theory in 2D. Since then, the FMM
has been used to accelerate the solution of BEM in several
studies of acoustic scattering in 2D and 3D, and different
approaches were developed based on the range of frequencies
analyzed (Nishimura, 2002; Sakuma and Yasuda, 2002; Chen
and Chen, 2003; Darve and Have, 2004; Cheng et al., 2006;
Shen and Liu, 2007; Wolf and Lele, 2010).

While the approach proposed by Rokhlin (1990) is
considered a single stage or two-level FMM, which provides
computational complexity proportional to O(n*?3), the
methods that appeared in Nishimura (2002), Sakuma and
Yasuda (2002), Chen and Chen (2003), Darve and Have
(2004), Cheng et al. (2006), Shen and Liu (2007) and Wolf
and Lele (2009) are multilevel FMM and have computational
complexity O(n log n). In the direct BEM, large nonsymmet-
ric dense linear systems are formed by the discretization of the
boundary integrals. The FMM accelerates the matrix-vector
products in the iterative solutions of the large-scale linear
systems, without composing the dense influence coefficient
matrices used in the direct BEM.

In the present work, we have studied the sound scattering
from rigid bodies induced by localized sources. The Burton-
Miller equation is solved using a BEM formulation, whose
numerical solution is accelerated by a multilevel adaptive
FMM (Nishimura, 2002; Wolf and Lele, 2009; Cheng ef al.,
1999; Yoshida, 2001). The conjugate gradient squared —
CGS (Sonneveld, 1989) iterative solver is used to perform
the matrix-vector products in the linear systems formed by
the boundary integral equations. Several FMM formulations
are described in the literature for the solution of the Burton-
Miller boundary integral equation (Li and Huang, 2011;
Wu et al., 2011; Wu et al., 2012). The methods applied in
these references make use of diagonal formulations, which
provide higher acceleration of BEM linear systems for high
frequencies. However, as described in literature (Nishimura,
2002; Wolf and Lele, 2009), these formulations are unstable
at low frequencies due to the sub-wavelength breakdown.
The current FMM formulation is stable for any range of
frequencies and can be further accelerated by the method
described in Wolf and Lele (2009).

In the work carried out by Li and Huang (2011), a modified
Burton-Miller formulation was presented in order to avoid the
solution of hyper-singular integrals appearing in the BEM.
In the present work, these hyper-singular integrals are solved
using a method that is easy to implement for any singular
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kernel and that allows one to use regular Gaussian quadra-
ture. Numerical tests are performed to assess the capability
implemented. The sound scattering of sound from localized
axisymmetric cylindrical and spherically symmetric sources
by a cylinder and a sphere is computed and compared with the
corresponding analytical solutions. Benchmark comparisons
between the direct BEM and the adaptive FMM and BEM are
presented. The complete 2D and 3D FMM formulations are
presented with details on the implementation of the adaptive
multilevel FMM. Also, additional results of low frequency
acoustic scattering by complex geometries, e.g., a cylinder
with a cavity, multiple cylinders and spheres, and a multiele-
ment wing are analyzed.

THEORETICAL FORMULATION

The scattering of sound waves produced by a spatial
distribution of concentrated sources is solved in the present
paper. The following non-homogeneous Helmholtz equation
represents the pressure disturbances induced by concentrated
sources in a homogeneous medium, with zero mean flow

Vip(X) + K p(X) =— Q0.0 (X — X.). ()

In Eq. 1, p represents the pressure, & is the wave number,
Q, represents the i-th source strength, X' is a field point, and ¥’
is the i-th source location. The convention e™ is assumed for
time dependence. A fundamental solution for the Helmholtz
equation is the free space Green function, G(¥, ¥), which is
represented by Eq. 2:

G (%) = [ H" (k5 = ), @)

for a 2-D formulation, or Eq. 3,

k15—

- = e
G X, = — >, 3
(x.3) 4rlix —yl ®)
for a 3D formulation. Here, HO(” stands for the Hankel func-
tion of the first kind and order zero. Therefore, one can write
the Helmholtz equation for the particular solution given by the

Green function as Eq. 4:
ViG(X,y) + K¥G(X,y) ==—6(X — Y. 4)

Using Green’s second identity with Equations 1 and 4, one
can write the boundary integral equation in Eq. 5:
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N sourses

- 2 0.6GE), (5)

c@)p(az)—f[ap(y)c;(* 5 - LGa(j:;y) ds

where, ¢(¥) is equal to 1/2, when X is on a smooth boundary
surface S and ¢(X) is equal to 1 when X is a field point.

The derivatives with respect to the inward normal direc-
tion of the boundary surface are represented by % and 77 is
an inward unit normal. Figure 1 shows a sketch of an acoustic
field with scattering body S and source location X . The term
Smf represents a surface far from the scattering body. The
boundary conditions specified on the surface of the scatterer
can represent an acoustic rigid surface, g— =0, or a reacting

surface %P iwoplZ(w). However, in the present work, only

rigid surfzces are considered. In these boundary conditions, @
is the angular frequency, p is the density of the medium, and Z
is the acoustic impedance. One should note that the Sommer-
feld’s radiation condition, which allows only solutions with
—ikp = 0) , 18
naturally satisfied for the BEM formulation on Sl.n -

outgoing waves at infinity to be admitted, (

Figure 1. Sketch of acoustic field with scattering body and

source location.

Equation 5 represents a fundamental formulation for acous-
tic analysis in the BEM. However, the solution for this integral
formulation of the Helmholtz problem for external acoustic
wave problems is non-unique for the so-called forbidden
frequencies. This non-uniqueness has no physical meaning,
it is a drawback of the mathematical formulation (Burton
and Miller, 1971). Several boundary integral formulations
have been proposed to overcome this problem (Jones, 1974;
Piaszczyk and Klosner, 1984), and the combined Helmholtz
integral equation formulation —CHIEF (Schenck, 1968) and the
Burton-Miller formulation (Burton and Miller, 1971) are the
most widely used methods. The CHIEF method presents some

instability problems (Seybert and Rengarajan, 1987), depend-
ing on the number and location of sources and, therefore, in
this paper, the Burton-Miller method is implemented since
it is valid for any problem configuration. The Burton-Miller
formulation (Burton and Miller, 1971) considers a complex
linear combination of the standard integral equation, Eq. 5,
with a hyper-singular integral equation, resulting in Eq. 6:

3 . GEX,Y) .
c@p@E) + ac(®) - p(y> f[ p(y> GEY ~ ;:yy)p(y)]ds
- N sourses o ap(y) aG(i,i) . azG(iy);) -’]
;QﬂG(x»x“)”[ an, o on.an, PV|E.(6)
B N sourses M
o Q.u‘ on,

=
() 9() -

In Eq. 6, the terms 75, ~ and 5, ~ represent normal deriva-
tives computed at points X and ¥, respectively, and a, which
must be an imaginary number (Burton and Miller, 1971), was
chosen as i/k in the present work.

In the general BEM formulation, the scattering surface, S,
is discretized into a finite number of elements with polynomial
reconstructions for the unknown inside each element. Then, a
boundary integral equation, such as Eq. 6, is solved for each
of these elements through the solution of a generally non-
symmetric dense linear system of equations, [4]{p}={0}. In
this linear system, the known boundary values or the known
sources appear as the forcing term, {Q}, as in Eq. 7:

N sourses Lo 3G (X1, X,

200G @ELE) +a on
an Qi o A || P GG i
N sourses - X2, Xsi

Ay A -+ Qv || P2 —Z’_\:l Q,\,(G(XZ,X,\,)‘FQ/% (7)

aw Any -+ Ay | Pw ' = =
N sourses - 9G (Xn, Xsi

X 0GR + e 2T

For a rigid surface, the coefficients of matrix [A4] are given
_ aG(.??,,??,) 82G(56i756j)
by a; = 1/20; + /; on, +a n,an,

dsS, where 817. is

the Kronecker delta.

The matrix-vector products involving the unknowns are
solved by an iterative solver (CG, CGS, GMRES) or a direct
method (Gaussian elimination). In the present work, polyno-
mial reconstructions for the elements considered in the BEM
formulation are of the constant type, which makes the imple-
mentation of the FMM easier, avoid discontinuous fluxes on
the nodes of the elements, and simplify the solutions of the
singular integrals in Eq. 6. In order to solve the system of
equations, we use the CGS (Sonneveld, 1989) iterative solver,
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and an adaptive FMM is used to accelerate the matrix-vector
calculations in the linear systems. While the FMM method
is used for far-field interactions among elements, near-field
interactions are computed with direct computations using
the BEM. Therefore, we have to solve the singular integrals
appearing in the Burton-Miller BEM formulation.

Several approaches are found in the literature on how to
compute BEM singular integrals for acoustics, mainly for hyper-
singular integrals (Chien ez al., 1990; Liu et al., 1992; Geng et al.,
1996). In this paper, we present a method that is easy to imple-
ment for any singular kernel and that allows one to use regular
Gaussian quadrature. We first divide the boundary elements into
smaller triangular elements, as shown in Fig. 2, and perform a
transformation from Cartesian to polar coordinates. The trans-
formed singular integrals will have the form as in Eq. 8:

‘x(f s = f i gfi?) dRd0), (8)

They will be weakly singular for n=1, strongly singular for
n=2, and hyper-singular for n=3. The weakly singular integrals
can be solved with regular Gaussian quadrature integration,
since, after the transformation, the singular kernel vanishes.
The strongly singular and hyper-singular kernels are solved in
the radial direction in their Cauchy and Hadamard finite part
sense following the work of Branddo (1987). The equations
are worked out here for the specific case when the singular
point lies at one of the limits of integration.

/0 "Ep 0
D)o (~R)’ ]

Omax [~R(0)

-1 = ©)
Omax 'L 2 2j+1 R(O)

_£ 2( f(}|R0[FPf Rnl/]

j=0

R(ﬂ)f(R)
Rn*l

|+

dRdl
n— 2(

In Eq. 9, the finite part integrals in the last term are given

("
~ RO

R(0)
by F.P.l R,ll,l,j dR = o for n=3 or higher

R(0)
and F.P.j{: #dR = [n(R(#)) for n=2. The function

f= e O and £V is the j — th derivative of /. One should note
Ry sin ﬁ

that the term R depends on 0, R(6) = Sinte—f—0) °

and

the integrals are computed simultaneously in both variables.
Following this method, all the singular integrals can be

computed by regular Gaussian quadrature formulae and with-
out any regularization procedure.

“ 2

Boundary Element

Figure 2. Element subdivision performed for the singular
integration around the singular point Xs.
FAST MULTIPOLE METHOD

The adaptive FMM implemented in this work follows the
ideas from Carrier et al. (1988) and Nishimura (2002), for the
2D formulation, and from Cheng et al. (1999), Yoshida (2001)
and Shen and Liu (2007), for the 3D one. It consists of clustering
boundary elements at different spatial lengths and using multipole
expansions to evaluate the interactions among clusters, which are
well-separated from each other. We define two well-separated
clusters as sets of elements that are circumscribed by circles in
2D or spheres in 3D and whose centroids are distant from each
other by a length of at least three times their radius. One can
improve accuracy by increasing this parameter. However, this
will reduce the performance of the method because more direct
BEM computations will be performed. The nearby elements are
computed by the direct solution of the boundary integral equa-
tions as in any typical BEM formulation. In the accelerated BEM,
the surface boundary is discretized into elements and the entire
boundary object is surrounded by a square in 2D or a cube in 3D,
which is the computational box. Then, a recursive algorithm for
the refinement of the computational box is applied in order to
form the different expansion levels for the FMM. The recursive
algorithm presented here performs an adaptive refinement of the
computational box for all box levels, and it works for both 2D
and 3D FMM, independent of the formulations employed for
multipole expansions and translations. In this section, the algo-
rithm is presented for a 2D FMM formulation; however, the 3D
approach follows the same methodology, except that one should
replace the quad-tree structures by oct-tree ones.
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When the FMM algorithm starts, the entire computational
box is at level 0 and surrounds the scattering body of interest,
which is discretized by boundary elements. The general idea
consists of refining the computational box into four smaller
boxes, which will be at level 1 and inspecting the number of
elements contained by each of the new boxes. This process
continues until the number of boundary elements inside all
boxes is smaller than or equal to a certain prescribed number.
In Fig. 3, one can observe a computational box surrounding
an airfoil with all the smaller boxes showing the adaptive
refinement in regions where the number of boundary elements
exceeds the maximum allowed per box. This prescribed
number of elements per box will define the maximum stage
in the FMM. Boxes of level 1+1 are children of the parent
boxes of level 1. Each parent box is divided into four children
and these are direct neighbors among themselves, which
means that they share a common node or edge. Following the
algorithm, one can write a quad-tree structure containing all
children from all boxes, at all levels. At every level of refine-
ment, a table of nonempty boxes is maintained, so that once
an empty box is encountered, its existence is forgotten and it
is not used in the subsequent process.

In order to implement the FMM, we define a set of lists
containing some specific boxes, such as direct and parent neigh-
bors, among others. These lists will help with the computation of
multipole expansions and translations and the acceleration of the
FMM. List L, of a box b consists of box b itself and all boxes
that do not contain children boxes and that share a node or edge
with b. If b is a parent box, then L, = 0. List L, of a box b is
the iterative list from the original FMM (Greengard and Rokhlin,
1987), and it consists of all children of b parent neighbors, which
are well-separated from it. List L, is empty if b is a parent box, and
it consists of all children of b neighbors, at any level, which do not
share a node or vertex with b. Finally, list L, of' box b is formed by
all boxes ¢, such as that b € L (c). Itis possible to see that all boxes
in L,(b) are at higher levels than b, i.e., are smaller than b, and all
boxes in L (b) are at smaller levels than b, i.e., they are larger than
b. Beyond that, all boxes in L (b) do not have children. In Fig. 4,
one can observe the lists associated with a box b. In this figure, all
boxes are marked with numbers corresponding to the respective
lists that they are associated with. The boxes marked with number
five are those well-separated from b parent, which means that they
are in L, (b parent) or L4 (b parent). The authors suggest the papers
from Cheng et al. (1999) and Nishimura (2002) and the thesis
from Yoshida (2001) for a more detailed explanation on the FMM
implementation, including the adaptive refinement procedure and
the several steps described in the following paragraphs.
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Figure 3. Different box levels of the adaptive refinement.
5
4
4 4
313
2 2 1 1 15 2
1 3 >
2 3 1 | b o 2
113
4 1 1 5

Figure 4. Associated lists of box b.

The FMM is often applied to integral or summation
equations, which contain degenerate kernels. The Green
function, G(x,y) in Egs. 5 and 6 is the degenerate kernel
one wants to expand in a suitable form in order to apply
the FMM. Instead of computing the influence of all source
elements at ¥ to all field elements at X directly, one can
write the Green function as in Eq. 10:
GEY) =2 k" F— DG — 2), (10)
and, then, compute multipole approximations representing the
acoustic field of the far away elements by clusters of elements.
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Thus, the first step in the FMM algorithm consists of comput-
ing all the multipole expansions around the centroids of all
childless boxes, represented by zZ in Eq. 10. Using Eq. 10,
which holds for distances | ¥ — Z| larger than | ¥ — Z|, one can
write the multipole expansions for Eq. 6 as Eq. 11:

. WP e o PG —Z
M(2) =A[%7)k})(y—z)—%

where, S is a set of discrete elements inside the box with

pO)|dS, (11

centroid Z. Each element inside the box is represented in a
multipole expansion and all the multipoles are summed to
form a total representation of the sources inside the box. This
step is represented as “Step 1” in Fig. 5.

Subsequently, all the multipole expansions from the
childless boxes at all levels are shifted to the centroids of
their parent boxes up to level 2. Thus, we have multipole
expansions for the boxes in level 2 representing their
influence on the field outside each box. The translation of
multipoles from centroids of boxes of level /+1 to their
parents centroids at level / is commonly called multipole-
to-multipole (M2M) translation or upward pass, and it can
be seen in “Step 2” in Fig. 5. In the next step, which is repre-
sented in Fig. 5 as “Step 3”, the multipole expansions for
the boxes in L,(b) are converted to local expansions about
b centroid and added up forming a local expansion around
b centroid, representing the field of the elements from the
well-separated boxes at the same level of b. Following
the same ideas, the multipole expansions for the boxes in
L,(b) are converted to local expansions about b centroid
and added up. These conversions from multipoles to local
representations around centroids of well-separated boxes
are frequently called multipole-to-local (M2L) expansions
in the literature. All the local representations from L, and
L, are then shifted to b children, until the highest refine-
ment level is reached. One can observe these calculations
in “Step 4” of Fig. 5, which is referred in the literature as
local-to-local (L2L) translation or downward pass.

Finally, all the calculations can be performed in order
to represent the influence of far-field sources to each of
the boundary elements. In Fig. 5, one can observe this type
of calculation in “Step 57, in which the local coefficients
computed for the centroids of the boxes in the highest level
of refinement are used to compute the effects of far-field
sources to each of the elements contained inside box ». Once
the influence of the far elements is considered, a further
step includes the evaluation of nearby elements influence.
For each childless box b, we compute the direct interactions
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among all elements inside » and those on L,(b) and L,(b). All
the interactions from elements on L (b) are calculated using
direct BEM formulations, since they cannot be expanded
in multipoles. However, for L,(h), we compute multipole
expansions for all elements inside the boxes in L,(b), and,
then, compute the effects of these multipoles to each of
the elements inside b. These near-field calculations can be
observed in “Step 6” of Fig. 5.

All theorems and analytical tools, which prove the validity
of the multipole expansions and translations, and several formal
analysis of accuracy and algorithm complexity for the FMM are
available in literature (Greengard and Rokhlin, 1987; Carrier et al.,
1988; Epton and Dembart, 1995; Labreuche, 1998; Darve, 2000).

Other FMM formulations for low-frequency scatter-
ing can also be found in the works from Darve and Have
(2004), Sakuma and Yasuda (2002 a, b) and Gumerov and
Duraiswami (2003). In the former methods, the authors
computed the multipole expansions and translations
using plane wave expansions and in the latter, Gumerov
and Duraiswami (2003) used a formulation similar to the
one used in the present work plus recursive relations of
the translation operators and rotation-coaxial translation
decomposition of the translation operators to reduce the
computational complexity of the algorithm. These methods
will be studied in a future work and they are beyond the
scope of the present paper.

2D Formulation

In this subsection, for the sake of completeness, we
present the formulations used for the 2D algorithm. These
equations are well-documented in Nishimura (2002). Equa-
tion 2 can be written as an expansion of the degenerate
kernels such as in Eq. 12:

G(E.5) =5 20" (0)I"(0y), (12)

n=-—oo

where the functions O " and /" are defined as Eqs. 13 and 14:

0'(X) = i"H" (kr)e™ (13)
and
I'X) = (—i)"J,(kr)e™. (14)

In the last expression, J, stands for the n — th order
Bessel function of the first kind and » and @ are the polar
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STEP 1

boundary elements

®

box "b" centroid

STEP 3

\bcix 'h

level m

/}f\

A./

level m

box "b" centroid

Figure 5.

STEP 2
box "b" centroid
° ®
@ box "b’s parent"”
centroid
[ ] ®
boundary surface

]
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box "b"
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z
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Schematic diagram for the several steps in the fast multipole method.
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coordinates of some vector Y, which can be ox or E,
for instance. The vectors 0x and oy point from some box
center, 0, to a far-field source location, X, and a near-field one,

¥, respectively. To have a good approximation in Eq. 12 one
should truncate the series using p terms, where p > k| oy |.
Thus, the boundary integrals appearing in Eq. 6 can be

written as Eqgs. 15 and 16:
[15265- 255D 5 Jas=4 S0EIMG) (15)

and

I’G(X,y)
on,on,

/[31?@) dG(%,y) _

80 -
on, on, pOy )]dS—— Z (ox) M-,(0)

(16)

Therefore, following the notation from Eq. 11, one can
write multipole expansions Mn (¢) as Eq. 17:

wio- [

In Eq. 17, it is assumed that the origin o’ is located closely

pG)
on, I"(oy)

ar'(oy)
n,

p(y)|(dS. (17

to the boundary element S, and, then, |07€) | > max|$| holds.
The M2M (Eq. 18), M2L (Eq. 19) and L2L (Eq. 20) expan-
sions and translations are given by Egs. 18 to 20:

M) = 217 @0)I M), (18)
L) = X0 0d)M@) (19)
L(G) = 2100 L), (20)

v=—o

In Eq. 18, ¢’ is the center of a parent box and o’ is the center
of one of its children, and in Egs. 19 and 20, ¢’ is assumed to
be closer to X compared to o'. Finally, we can also write the
boundary and hyper-singular integral equations as functions

of the local expansions (Egs. 21 and 22):

9 L. AGEY .
A la);gy) Gy - #p(y) ds=
| - . @1)
X DTENLLE)
and -
pG) AGREY) FCGEY) ...
-/;, an, on, - on.on, p(y)]dS = o)

ii 8[”(0x)L”(*,)

3D Formulation

For the same reason as in the previous subsection, we pres-
ent the formulations used for the 3D algorithm. These equations
are well-documented in Yoshida (2001). Equation 3 can be
written as an expansion of degenerate kernels such as Eq. 23:

GG =4 Z(z + 1);0 (0x) I (0) (23)
where the function O” is defined as Eq. 24

0r'(X) = h"(kr) Y. (0.0) (24)
and I is the complex conjugate of I/, defined as Eq. 25
1:(X) = ji(kn) Y1 (0,). (25)

In these expressions, j represents the n-th order spherical
Bessel function of the first kind, /' is the n-th order spheri-
cal Hankel function of the first kind and Y™ are the spherical
harmonics defined as Eq. 26:

Yr(0,p) = \/%an(cos 0)e™,

where P," stands for the associated Legendre functions. The

(26)

terms r, 6, ¢ represent the spherical coordinates of some
vector Y, which can be ox or 5, for instance. The vectors
ox and oy point from some box center, o', to a far-field source
location, ¥, and a near-field source location, ¥, respectively.
Again, in Eq. 23, |0x | > max\oy | holds. The boundary integrals

in Eq. 6 can be written as Equations 27 and 28:

PO) ;x5 GEY) o
,/; ginfc(x,y)—Tyyp(y)]dS .
= %2(2” +1) 201 (0xX) M (9)
and n=0 me—n
pG) IGEy) CGEY)
fs o on anom PO )]dS o)

FONCTERID I “’”M()

n=0

Therefore, following the notation from Eq. 11, one can
write multipole expansions M, (0") as in Eq. 29:

M6 = f [—8’5,? DA

_an (oy)

p( )}dS (29)
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The M2M (Eq. 30), M2L (Eq. 31) and L2L (Eq. 32) expan-
sions and translations are given by Egs. 30 to 32:

nontn’

M;"<5'>=i 2 2 @)D Waina 7 (00) M, "(6) (30)

n'’=0 m'’=-n" 1=n-nl

=) n n+n

Lr:(é, ) =z Z Z (2’1, + D Wenm, m.lélimim(w) Mirln(a)

n=0 m=-n'"I=|n-n|

G

L’:(a')=; Z , l;ngzn%l) D" Wypmemi " "(00) Ly (5) - (32)

In Eq. 30, 0’ is the center of a parent box and o' is the
center of one of its children, and in Egs. 31 and 32, ¢’ is
assumed to be closer to X compared to &. For all these
expressions, the summations in /, X/~s-« are performed only
for even values of n +n’—[. Also in these formulas, the term
Or = h"(kr) Y (0,), and the term W mm are computed
using the formula in Eq. 33:

W;.ﬂ',m.m’,l = (2l + 1)[’”’”“(” f l>(n ) l)

00 0/\m mt (33)

abc
where, t=-m-m’and ( d e f) denotes the Wigner 3j symbol, which
can be computed using the Racah formula (Messiah, 1987).

RESULTS

The present section presents results obtained by the
BEM accelerated by the adaptive FMM. The problems
analyzed include a 2D cylinder, a sphere, 2D and 3D cylin-
ders with and without cavities, multiple spheres, and a 3D
multi-element wing.

Code verification

The first problem of interest considers the acoustic
scattering around a 2D rigid cylinder due to a localized
axisymmetric cylindrical source. The solution for such
problem is compared with the analytical one presented by
Morris (1995). The problem is described by a point source
placed at a distance L from the center of the cylinder. In
the present computations, the distance L=1.0 m, the radius
of the cylinder is set ¢=0.5 m, and the wave number is
k=10 m™', which corresponds to a frequency of f=541.4 Hz
for a speed of sound ¢=340.0 ms™".

For this test problem, the boundary of the cylinder is
discretized by four different meshes consisting of 1,000,

270 ——— Analytical solution
. Fast BEM

(a) 2-D cylinder

Analytical solution
. Fast BEM

(b) Sphere

Pressure directivities for the acoustic scattering around a

Figure 6.

rigid cylinder and sphere for R=50a and ka=5.

1,500, 2,000 and 2,500 elements with constant shape func-
tions. The computational time of a fast and of a direct BEM
solver for the 2D formulation implemented is assessed.
Figure 6(a) provides a comparison of the solutions in
terms of pressure directivity obtained by the fast BEM
method and by the analytical solution for a distance R=50a.
This solution is obtained for a cylinder discretized with
1,000 constant elements along its surface. Fifty boundary
elements per box is the maximum allowed in this computa-
tion, resulting in four FMM levels. The number of terms in
the FMM series that provides an accurate solution for the
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wave number and dimension of the scatterer in this prob-
lem is n=4. For larger ka, this number has to be increased
in order to have accurate solutions.

The convergence residue of the CGS iterative solver is
set equal to 10°¢ for all the test cases in this paper. With
these conditions, the method converged in five iterations.
No pre-conditioner was used to accelerate the CGS solver.
One can observe that the numerical solution for pressure
directivity matches perfectly with the analytical solution
provided by Morris (1995a).

In Table 1, there are the comparisons of computational
effort, including setup time, for the accelerated BEM and the
direct BEM. One can observe that Rokhlin’s single stage,
or two-level, FMM is more expensive than the higher-level
FMM and, for a small number of elements, the five-level
FMM is more expensive than the three and four-level FMM.
This is a consequence of the several recursive divisions and
list constructions performed in this method. However, when
the number of boundary elements is increased, the compu-
tational effort for the three-level FMM increases faster than
for the four and five-levels FMM. For even finer meshes,
the five-level FMM becomes the least expensive method
showing that multistage FMM is necessary for large-scale
problems. One can also observe that the computational time
used in the direct BEM solution is much larger than the one
in FMM solutions. While the direct BEM behaves propor-

k=10 m™', corresponding to a frequency of f=541.4 Hz for
a speed of sound ¢=340.0 m/s.

For this test problem, the boundary of the sphere is
discretized by four different meshes consisting of 2,400,
4,400, 6,200 and 9,600 quadrilateral elements with constant
shape functions. The computational time of the fast and
direct BEM solvers for the 3D formulation implemented is
assessed. Figure 6(b) provides a comparison of the solutions
in terms of pressure directivity obtained by the fast BEM
method and by the analytical solution for a distance R=50 a.
This solution is obtained for a sphere discretized with 2,400
constant elements along its surface. The maximum number
of boundary elements per box is set equal to one hundred,
resulting in two FMM levels. The number of terms in the
FMM series is set to three in all the 3D calculations in this
paper, except for the cavity problem, since we are consider-
ing low frequencies. One can observe that the numerical
solution for pressure directivity matches perfectly with the
analytical solution provided by Morris (1995b).

In Table 2, there are the comparisons of computational
effort, including setup time, for the accelerated BEM and
the direct BEM. The results in Table 2 show that the FMM
requires less computational time compared to the direct BEM.
We can also observe that the three-level FMM performs better
than the two-level FMM for large-scale problems.

tional to O(n?) for the present simulations, the five-level = Table2. Total time (in seconds) spent by the fast multipole method
FMM behaves proportional to O(n). with different levels and the direct BEM as a function of
number of elements.
Table 1.  Total time (in seconds) spent by the fast multipole method Method 2400 elem. 4400 elem. 6200 elem. 9600 elem.
with different levels and the direct BEM as a function of  Direct BEM 346.4 1130.1 2979.1 7258.5
number of elements. 2 levels FMM 15.4 37.1 775 177.08
Method 1000 elem. 1500 elem. 2000 elem. 2500 elem. 3 levels FEMM 19.8 32.5 454 70.2
Direct BEM 59.5 128.2 226.1 350.7
2 levels FMM 8.1 10.1 12.5 14.1 )
3 levels FMM 6.7 2.1 9.9 106 . Figure 7 shows the results of a benchmark Stl.ldy compar-
4 levels EMM 5 73 2.0 8.4 ing order of accuracy and memo;y usage of the dlre'ct and the
fast BEM. The results are obtained for the acoustic scatter-
5 levels FMM 5.8 7.1 7.3 7.5

The second problem considers the acoustic scatter-
ing around a rigid sphere due to a spherically symmetric
source. The solution for this problem is compared with
the analytical solution presented by Morris (1995b). The
point source is placed at a distance L from the center of the
sphere. In the present computations, the distance L=1.0 m,
the radius of the sphere is a=0.5 m and the wave number is

154

ing around the sphere previously analyzed. Three levels of
adaptive refinement are used in the fast BEM solutions. The
L, norm of the error, defined as \E|2=1/J,/Zj:1\p,—[7j [, is
plotted as a function of the mesh refinement in a log-log plot
in Fig 7(a). In the definition of |E],, p is the acoustic pressure
computed by the numerical method and p is that calculated
using the analytical solution. As expected, one can see that
both the direct and the fast BEM achieve first order of accu-
racy. The error in the fast BEM solution is only slightly higher
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than the equivalent for the direct BEM. This additional error
can be controlled by using more terms in the truncated series
or making the condition for well-separated boxes more severe,
for example. However, these changes will cause the method to
be more time and memory consuming. In Fig. 7(b) one can see
a plot for the memory requirements for the direct and the fast
BEM. In this case, the fast BEM shows a significant advantage

45e07F
4E-07_— — — e —— Direct BEM
| ——e—— FastBEM
i 1st order slope
» 35E-07|
< r
£
0 -
E seorf
o i
c i
N L
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L o b b
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(a) L2 norm of the error
10°
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——e—— Fast BEM

2nd order slope
1st order slope

T T T

Memory [Mb]
2

T T

L 1 L VIR RN N NN
4000 6000 800010000
Number of elements

1
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(b) Memory requirements.
Figure 7. Comparison between direct and fast BEM in terms of
accuracy and memory requirements for the acoustic scat-

tering around a sphere.

over the direct BEM in terms of memory usage for large-scale
problems. Direct BEM formulations scale proportional to
order O(n?) in terms of memory requirements, while the fast
BEM scales proportional to O(n), where n is the number of
boundary elements used in the discretization.
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Cylinder with cavity

The third test case presents results for the scattering
of pressure waves around a rigid cylinder with a cavity,
due to a monopole source located non-symmetrically with
respect to the cavity. In Fig. 8(a), one can observe the 3D
geometry and the mesh with 9,500 boundary elements used
in this problem, and in Fig. 8(b), the pressure around the
surface of the cylinder is plotted for a wave number k=10
m~'. The radius of the cylinder is ¢=0.5 m, its length is
L=1.4 m, the cavity depth is #=0.15 m, its width is d=0.2 m
and its length is /=0.8 m.
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(a) Mesh with 9500 boundary elements.

(b) Surface pressure.

Figure 8.  Acoustic scattering around a rigid cylinder with a cavity
due to a monopole source located non-symmetrically

with respect to the cavity for ka=5.
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Figure 9(a) shows the pressure field for the 3D computations
obtained with a mesh of 9,500 boundary elements. In Fig. 9(b),
one can see the solution for the same problem, but for a cylinder
with no cavity. The source location is x = 0.1 m, y = 0.5 m,
z = 0.0 m with respect to the center of the cylinder, located on
the origin of the Cartesian system. We can observe the strong
influence of the cavity in the scattering of the pressure waves.
For the cavity case, the scattering has a preferential direction,
which is from the left corner of the cavity to the source. The solu-
tions obtained for the cylinder with no cavity show the expected
symmetric scattering with respect to the source position. The
effects of the cavity on the scattering of pressure waves can be
observed in Fig. 10 in plots of pressure directivity for a far-field
observer at a radial distance R=100 m for z=0.0 m. This figure
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(a) Field pressure for the 3-D cylinder with cavity.
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(b) Field pressure for the 3-D cylinder without cavity.
Figure 9. Acoustic scattering around a 3D rigid cylinder with a
cavity due to a monopole source located non-symmetri-

cally with respect to the cavity for ka=5.

shows results for direct and fast BEM computations, and they are
in perfect agreement with each other. Again, it is possible to see
the effects of the cylinder with cavity compared to the one with
no cavity. The pressure directivity for the former clearly shows
the preferential scattering direction. The spatial effects can also
be observed, and one sees that the pressure magnitudes for the 2D
calculations are larger than for the 3D, as expected. For the 2D
cavity configuration, far-field pressure is smaller than that for the
cylinder in all directions. For the 3D case, one can observe higher
far-field pressures for angles between 0° and 90° and for 270°.
The 3D direct BEM and the two, three, and four-level FMM
are compared in terms of computational time in Table 3. The
time spent by each method for achieving the desired conver-
gence is in 40 iterations. For this test case, four terms are used
in the truncation of FMM series to obtain accurate results. The

90

(p Q\“\
SE:

300

Direct BEM - No Cavity
Fast BEM - No cavity
Direct BEM - Cavity

. Fast BEM - Cavity

270 A

(a) 2-D simulations.

Direct BEM - No cavity

270 v  FastBEM- No cavity
Direct BEM - Cavity
. Fast BEM - Cavity

(b) 3-D simulations.
Figure 10. Pressure directivity for direct and fast BEM for a far-field
with radial distance R=100 m for z=0.0.
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direct BEM solution requires 49265.7 seconds for reaching
the required convergence while the two, three and four-level
FMM achieve convergence in 449.3,271.1, and 299.0 seconds,
respectively. The optimum number of levels of refinement is
three as one can observe. For this test case, to use four levels
of adaptive refinement one should set the maximum number
of elements per box equal to 30, causing the FMM to be more
costly than the three-level FMM. The number of elements per
box should be always chosen to increase the performance of the
method. It can neither be too small (many box divisions, multi-
pole computations and translations) nor too big (many direct
computations). The solution obtained with the FMM-BEM is
181 times faster than the direct BEM for the most efficient case.

Multiple bodies

The fourth studied problem assesses the implemented capability
in dealing with the scattering of pressure waves around multiple
bodies. A monopole source is placed at coordinates x=0.5 m,y=0.0 m
on the side of two rigid cylinders in 2D or two rigid spheres in 3D.
These have centers on x=0.0 m and y=+0.25 m and radius ¢=0.15 m.
For the sphere centers, z=0.0 m. In Fig.11(a), one can observe the
3D geometry and the mesh with 10,300 boundary elements used
in this problem, and in Fig.11(b), the pressure around the surface of
the spheres is plotted for a wave number /=40 m™'. Figs. 12(a) and
(b) show plots of pressure directivity for 2D and 3D computations
for a far-field with radial distance R=100 m for z=0.0 m, and the 3D
relieving effects can be observed. The direct and fast BEM results
are in perfect agreement as one can see in Figs. 12(a) and (b).

The 3D direct BEM and the two, three, four, and five-level
FMM are compared in terms of total computational time in Table 3.
One can observe the total time, including the setup one, spent by
each method for achieving the desired convergence, obtained in
five steps by all the schemes. The maximum number of elements
per box was set as 1,000 for the two-level FMM, 300 for the three-
level FMM, 100 for the four-level FMM and 50 for the five-level
FMM. These are the values for best performance for each level
for this test case. In this problem, the elements are more uniformly
distributed inside the computational box if compared with the
cavity test case. This reduces the effect of the adaptive refinement,
since the computational box is refined more uniformly. As one can
see in the results from Table 3, the two-level FMM is still very
expensive compared to the higher level FMM, due to the many
direct evaluations in the method. The optimal solution in terms of
computational cost is achieved by the five-level FMM. For this
number of levels of refinement, the results show a reduction in
computational cost of 84 compared with direct computations.
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(a) Mesh with 10300 boundary elements.
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(b) Surface pressure.
Figure 11. Acoustic scattering around two rigid spheres due to a

monopole source for ka=6.

Table 3.  Total time (in seconds) spent by the fast multipole method
with different levels and the direct BEM as a function of
number of elements.

Method Cavity Mult. Spheres Wing
(9500 el.) (10300 el.) (14900 el.)
direct BEM 49265.7 5697.6 27706.8
2 levels FMM 449.3 3685.6 8830.4
3 levels FMM 271.1 151.1 683.5
4 levels FMM 299.0 69.0 182.2
5 levels FMM - 67.5 137.9

Multi-element wing

This test case consists of acoustic scattering around a
multi-element wing. The geometry studied is the same as
in Case A-2 in the AGARD Advisory Report No. 303.40
(Moir, 1994). The airfoil configuration is comprised of a slat,
main airfoil, and single-slotted flap. The slat is positioned at
an angle of 25°. The flap is referred to as configuration T2 — a
single slotted flap with a deflection angle of 20°, which is
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. Fast BEM

(a) Pressure directivity for the 2-D case.

150

180

210

300
. Fast BEM
b) Pressure directivity for the 3-D case.
Figure 12. Acoustic scattering around two rigid cylinders (2D) and

spheres due to a monopole source for ka=6.

typical of an aircraft in take-off configuration. For this case,
two monopole sources are placed in the gaps formed between
main airfoil and slat and flap. Figure 13(a) shows the geometry
and mesh with 14,900 boundary elements analyzed in the 3D
case and Fig. 13(b) shows the acoustic pressure plotted along
the multi-element wing surface for a wave number A=5.0.

Figure 14 shows the pressure field for the 3D computation
and a plot of pressure directivity for a far-field observer at
radial distance R=100 m for z=0.0 m. The direct and fast BEM
results are in perfect agreement as one can see in Fig. 14(b) for
the pressure directivity plots.

The 3D direct BEM and the two, three, four, and five-level
FMM are compared in terms of computational time in Table 3.

(a) Mesh with 14900 boundary elements.

(b) Surface pressure.
Figure 13. Acoustic scattering around a multi-element wing due to

two monopole sources for kc=5.

One can observe the time spent by each method for achieving
the desired convergence, obtained with ten steps by all the
schemes. The maximum number of elements per box was set
as 1,700 for the two-level, 600 for the three-level, 250 for
the four-level, and 100 for the five-level FMM. As one can
see in the results from Table 3, the two-level FMM is still
very expensive compared to the higher level FMM, due to the
many direct evaluations in the method. The three-level FMM
shows a high improvement over the two-level FMM, but it
is still expensive compared to the four and five-level FMM.
The optimum number of refinement levels for this test case
is five. For this number of levels of refinement, the results
show a reduction in computational cost of 200 compared with
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Figure 14. Acoustic scattering around a multi-element airfoil due to
two monopole sources for ke~5 based on the total airfoil

chord length.

direct computations. In this problem, the elements are concen-
trated in the center of the computational box in the y=0 plane.
Therefore, the adaptive FMM works more efficiently because
the scattering bodies occupy a specific region of the compu-
tational box. Thus, smaller boxes are concentrated only in the
central portion of the computational box causing the FMM to
have a smaller number of operations compared to cases where
the scattering body is more uniformly distributed around
the computational box. This occurs because there is a large
number of empty boxes distant from the center of the compu-
tational box, which are forgotten when the lists are built.

CONCLUSIONS

The present work concerns the study of sound scattering
from rigid bodies due to localized sources. The non-homoge-
neous Helmholtz equation is solved using a boundary integral
formulation discretized by the BEM, which is accelerated by
a multistage adaptive FMM. The Burton-Miller formulation
is implemented to deal with the non-uniqueness problems of
BEM for external acoustics analyses. A method that requires
only regular Gaussian quadrature is presented for the solution
of the hyper-singular integrals appearing in the equations.
BEM calculations are attractive since their pre-processing is
casier, and the equations are discretized along the boundaries
only. However, for large-scale problems, the costs for solving
the matrix-vector products arising from the method become
prohibitive. With the acceleration provided by the FMM,
boundary element calculations can be performed efficiently
for large-scale problems.

For the problems analyzed in this work, the FMM-BEM
provides excellent results matching analytical solutions
from well-known test cases from literature. Complex
geometries are studied and the fast BEM solutions are in
perfect agreement with direct BEM ones. Comparisons of
computational time are shown and the multistage algo-
rithm has proved to be more efficient than the single-stage
one. The results show that to have a better efficiency for
an increasing number of boundary elements in the discreti-
zation, more levels are required by the FMM. However,
there is always an optimum number of levels of refinement
depending on the number of boundary elements and the
spatial distribution of the scattering body. For boundary
elements uniformly distributed over the computational
box, the improvements in computational cost achieved
with the adaptive refinement are lower. When the spatial
distribution of the boundary elements is concentrated over
a specific region of the computational box, e.g., a wing
located along the center of the box, the results show larger
improvements in the performance of the FMM due to the
adaptive refinement. In all cases, FMM-BEM reduces the
computational cost relative to direct BEM. For several test
problems, a factor of two orders of magnitude reduction
in the cost is observed (181 for the cavity case, 84 for
the multiple spheres, and 200 for the wing). In addition,
FMM-BEM also reduces the memory requirement for
large-scale problems.
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